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a b s t r a c t

Let J be a strongly stable monomial ideal in S = K [x0, . . . , xn] and
let Mf(J) be the family of all homogeneous ideals I in S such that
the set of all terms outside J is a K -vector basis of the quotient
S/I . We show that an ideal I belongs to Mf(J) if and only if it
is generated by a special set of polynomials, the J-marked basis
of I , that in some sense generalizes the notion of reduced Gröbner
basis and its constructive capabilities. Indeed, although not every
J-marked basis is a Gröbner basis with respect to some term order,
a sort of reduced form modulo I ∈ Mf(J) can be computed for
every homogeneous polynomial, so that a J-marked basis can be
characterized by a Buchberger-like criterion. Using J-marked bases,
we prove that the family Mf(J) can be endowed, in a very natural
way, with a structure of an affine scheme that turns out to be
homogeneous with respect to a non-standard grading and flat in
the origin (the point corresponding to J), thanks to properties of
J-marked bases analogous to those of Gröbner bases about
syzygies.

© 2011 Elsevier Ltd. All rights reserved.

0. Introduction

Let J be any monomial ideal in the polynomial ring S := K [x0, . . . , xn] in n + 1 variables such that
x0 < x1 < · · · < xn and let us denote by N (J) the set of terms outside J . In this paper, we consider the
family Mf(J) of ideals I of S such that S = I ⊕⟨N (J)⟩ as a K -vector space and investigate under which
conditions this family is in some natural way an algebraic scheme. If N (J) is not finite, the family of
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such ideals can be too large. For instance, if J = (x0) ⊂ K [x0, x1], the family of all ideals I such that
S/I is generated by N (J) = {xn1 : n ∈ N} depends on infinitely many parameters because the set N (J)
has infinite cardinality. Thus, we restrict ourselves to the homogeneous case, so that for every degree
d, the factor Sd/Id ∼= (S/I)d is a vector space of finite dimension.

To study the family Mf(J) we introduce a set of particular homogeneous polynomials, called
J-marked set, that becomes a J-marked basis when it generates an ideal I that belongs to Mf(J). If
J is strongly stable, a J-marked basis satisfies most of the good properties of a reduced homogeneous
Gröbner basis and, for this reason, we assume that J is strongly stable. However, even under this
assumption, a J-marked basis does not need to be a Gröbner basis (Example 3.18). We show that a
suitable rewriting procedure allows us to compute a sort of reduced forms and to recognize a J-marked
basis by a Buchberger-like criterion. This criterion is the tool by which we construct the family Mf(J)
following the line of the computation of a Gröbner stratum, that is the family of all ideals that have J
as initial ideal with respect to a fixed term order. In the last years, several authors have been working
on Gröbner strata, proving that they have a natural and well defined structure of algebraic schemes,
that results from a procedure based on Buchberger’s algorithm (Carrà Ferro, 1988; Lella and Roggero,
in press; Notari and Spreafico, 2000; Robbiano, 2009; Roggero and Terracini, 2010), and that they
are homogeneous with respect to a non-standard positive grading over Zn+1 (Ferrarese and Roggero,
2009). In this context, it is worth also to recall that Luo and Yilmaz (2001) describe a method to
compute all liftings of a homogeneous ideal with an approach different from, but close to the method
applied to study Gröbner strata.

The paper is organized in the following way. In Section 0 we give definitions and basic properties
of J-marked sets and bases, with several examples. In Section 1, under the hypothesis that J is strongly
stable, we prove the existence of a sort of reduced form, modulo the ideal generated by a J-marked
set, for every homogeneous polynomial (Theorem 2.2). A consequence is that, if J is strongly stable, a
J-marked set G is a J-marked basis if and only if J and the ideal generated by G share the same Hilbert
function (Corollaries 2.3 and 2.4). From now we suppose that J is strongly stable and in Section 2
define a total order (Definitions 3.4 and 3.9) on some special polynomials and give an algorithm to
compute our reduced forms by a rewriting procedure. This computation opens the access to effective
methods for J-marked bases, such as a Buchberger-like criterion (Theorem 3.12) that recognizeswhen
a J-marked set is a J-marked basis G, also allowing to lift syzygies of J to syzygies of G.

In Section 3 we study the family Mf(J), computing it by the Buchberger-like criterion and showing
that there is a bijective correspondence between the ideals ofMf(J) and the points of an affine scheme
(Theorem 4.1). A possible objection to our construction is that it depends on a procedure of reduction,
which is not unique in general. For this reasonwe show thatMf(J) has a structure of an affine scheme,
that is given by the ideal generated byminors of somematrices and that is homogeneous with respect
to a non-standard grading over the additive group Zn+1 (Lemma 4.2 and Theorem 4.5). Moreover, we
note that Mf(J) is flat in J and that the Castelnuovo–Mumford regularity of every ideal I ∈ Mf(J) is
bounded from above by the Castelnuovo–Mumford regularity of J (Proposition 4.6). In the Appendix,
over a fieldK of characteristic zero,we give an explicit computation of a familyMf(J)which is scheme-
theoretically isomorphic to a locally closed subset of the Hilbert scheme of 8 points in P2 (see also
Bertone et al., 2010). We note that it strictly contains the union of all Gröbner strata with J as initial
ideal and that it is not isomorphic to an affine space, even though the point corresponding to J is
smooth.

We refer to Buchberger (1985), Kreuzer and Robbiano (2000), Möller and Mora (1986) and Mora
(2005) for definitions and results about Gröbner bases, in particular to Möller (1985) and Schreyer
(1980) for the approach we follow, and to Valla (1998) for definitions and results about Hilbert
functions of standard graded algebras.

A preliminary version of this paper has been written and posed at arXiv:1005.0457 by the second
author.

1. Generators of a quotient S/I and generators of I

In this section we investigate relations among generators of a homogeneous ideal I of S and
generators of the quotient S/I , under some fixed conditions on generators of S/I .
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For every integer m ≥ 0, the K -vector space of all homogeneous polynomials of degree m of I is
denoted by Im. The initial degree of an ideal I is the integer αI := min{m ∈ N : Im ≠ 0}.

We will denote by xα
= xα0

0 . . . xαn
n any term in S, |α| is its degree, and we say that xα divides

xβ (for short xα
|xβ ) if there exists a term xγ such that xβ

= xαxγ . For every term xα
≠ 1 we set

min(xα) = min{xi : xi|xα
} and max(xα) = max{xi : xi|xα

}.

Definition 1.1. The support Supp(h) of a polynomial h is the set of terms that occur in hwith non-zero
coefficients.

If J is a monomial ideal, BJ denotes its (minimal) monomial basis and N (J) its sous-escalier, that is
the set of terms outside J . For every polynomial f of J , we get Supp(f ) ∩ N (J) = ∅.

Definition 1.2. Given a monomial ideal J and an ideal I , a J-reduced form modulo I of a polynomial h
is a polynomial h0 such that h − h0 ∈ I and Supp(h0) ⊆ N (J).

If I is homogeneous, the J-reduced form modulo I of a homogeneous polynomial h is supposed to
be homogeneous too.

Definition 1.3 ( Reeves and Sturmfels, 1993). Amarked polynomial is a polynomial f ∈ S togetherwith
a specified term of Supp(f ) that will be called head term of f and denoted by Ht(f ).

Definition 1.4. A finite set G of homogeneousmarked polynomials fα = xα
−

∑
cαγ xγ , withHt(fα) =

xα , is called J-marked set if the head terms Ht(fα) are pairwise different and form the monomial basis
BJ of a monomial ideal J and every xγ belongs to N (J), so that |Supp(f ) ∩ J| = 1. A J-marked set G is a
J-marked basis ifN (J) is a basis of S/(G) as a K -vector space, i.e. S = (G)⊕⟨N (J)⟩ as a K -vector space.

Remark 1.5. The ideal (G) generated by a J-marked basis G has the same Hilbert function as J , hence
dimK Jm = dimK (G)m for everym ≥ 0, by the definition of J-marked basis.

Definition 1.6. The family of all homogeneous ideals I such that N (J) is a basis of the quotient S/I as
a K -vector space will be denoted by Mf(J) and called J-marked family.

Remark 1.7. (1) If I belongs to Mf(J), then I contains a J-marked set.
(2) A J-marked family Mf(J) contains every homogeneous ideal having J as initial ideal with respect

to some term order, but it can also contain other ideals, as we will see in Example 3.18.

Proposition 1.8. Let G be a J-marked set. The following facts are equivalent:

(i) G is a J-marked basis;
(ii) the ideal (G) belongs to Mf(J);
(iii) every polynomial h of S has a unique J-reduced form modulo (G).

Proof. This follows by the definition of J-marked basis. �

Remark 1.9. A J-marked basis is unique for the ideal that it generates, by the unicity of BJ and of the
J-reduced forms ofmonomials. So, when the ideal I has a J-marked basesG, the unique J-reduced form
modulo I can be also called J-normal form modulo I .

In next examples wewill see that not every J-marked set G is also a J-marked basis, even when (G)
and J share the same Hilbert function. Moreover, it can happen that a J-marked set G is not a J-marked
basis, although there exists an ideal I containing G but not generated by G such that N (J) is a K -basis
for S/I .

Example 1.10. (i) InK [x, y, z] let J = (xy, z2) and I be the ideal generated by f1 = xy+yz, f2 = z2+xz,
which form a J-marked set. Note that J defines a 0-dimensional subscheme in P2, while I defines a 1-
dimensional subscheme, because it contains the line x + z = 0. Therefore, I and J do not have the
same Hilbert function, so that {f1, f2} is not a J-marked basis by Remark 1.5.
(ii) In K [x, y, z], let J = (xy, z2) and I be the ideal generated by g1 = xy + x2 − yz, g2 = z2 + y2 − xz,
which form a J-marked set. Note that J and I have the same Hilbert function because they are both
complete intersections of two quadrics. However, N (J) is not free in K [x, y, z]/I because zg1 + yg2 =

x2z + y3 ∈ I is a sum of terms in N (J). Hence {g1, g2} is not a J-marked basis.



F. Cioffi, M. Roggero / Journal of Symbolic Computation 46 (2011) 1070–1084 1073

(iii) In K [x, y, z], let J = (xy, z2) and I be the ideal generated by f1 = xy + yz, f2 = z2 + xz, f3 = xyz.
Both I and J define 0-dimensional subschemes in P2 of degree 4. Moreover, I belongs toMf(J) because
for every m ≥ 2 the K -vector space Um = Im + N (J)m = Im + ⟨xm, ym, xm−1z, ym−1z⟩ is equal to
K [x, y, z]m. This is obvious form = 2. Assumem ≥ 3. Then, Um contains all the terms ym−iz i, because
yz2 = zf1 − f3 belongs to I . Moreover Um contains all the terms xm−iyi because x2y = xf1 − f3 ∈ I
and xym−1

= ym−2f1 − zym−1
∈ Um. Finally, by induction on i, we can see that all the terms

xizm−i belong to Um. Indeed, as already proved, zm belongs to Um, hence xi−1zm−i+1
∈ Um implies

xizm−i
= xi−1zm−i−1f2 − xi−1zm−i+1

∈ Um. However, the J-marked set G = {f1, f2} does not generate I
and is not a J-marked basis, as shown in (i).

2. Strongly stable ideals J and J-marked bases

In this section we show that the properties of J-marked sets improve decisively if J is strongly
stable.

Recall that a monomial ideal J is strongly stable if and only if, for every xα0
0 . . . xαn

n in J , also the term
xα0
0 . . . xαi−1

i . . . x
αj+1
j . . . xαn

n belongs to J , for each 0 ≤ i < j ≤ nwithαi > 0, or, equivalently, for every

xβ0
0 . . . xβn

n inN (J), also the term xβ0
0 . . . xβh+1

h . . . xβk−1
k . . . xβn

n belongs toN (J), for each 0 ≤ h < k ≤ n
with βk > 0.

A strongly stable ideal is always Borel-fixed, that is fixed under the action of the Borel subgroup
of lower-triangular invertible matrices. If ch(K) = 0, also the vice versa holds (e.g. Deery, 1996) and
Galligo (1979) guarantees that in generic coordinates the initial ideal of an ideal I , with respect to a
fixed term order, is a constant Borel-fixed monomial ideal, denoted by gin(I) and called the generic
initial ideal of I .

Recall that some Gröbner-like bases and their structure were introduced by Janet (Janet, 1920,
1929; Pommaret, 1978) and the related algorithmhas been discussed as an alternative to Buchberger’s
algorithm under the name of involutive bases by Gerdt and Blinkov (Gerdt and Blinkov, 1998a,b). In
Mall (1998) the author investigates interrelation of Borel-fixed ideals and existence (finiteness) of
their Pommaret bases. In doing so, a Pommaret basis exists if and only if it is a minimal Janet basis
(see Gerdt (2000)).

In Reeves and Sturmfels (1993) a reduction relation
F

−→ modulo a given set F of marked
polynomials is defined in the usual sense of Gröbner bases theory and it is proved that, if

F
−→ is

Noetherian, then there exists an admissible term order ≺ on S such that Ht(f ) is the ≺-leading term
of f , for all f ∈ F , being the converse already known (Buchberger, 1985). A similar approach has been
proposed in Madlener and Reinert (1993) and better explained in Madlener and Reinert (1991) for
defining and computing Gröbner bases in group rings.

If we take a J-marked setG,
G

−→ can be non-Noetherian, as the following example shows. However,
we will see that, if J is a strongly stable ideal and G is a J-marked set, every homogeneous polynomial
has a J-reduced form modulo (G).

Example 2.1. Let us consider the J-marked set G = {f1 = xy + yz, f2 = z2 + xz}, where Ht(f1) = xy
and Ht(f2) = z2. The term h = xyz can be rewritten only by xyz − zf1 = −yz2 and the term −yz2
can be rewritten only by −yz2 + yf2 = xyz, which is again the termwe wanted to rewrite. Hence, the
reduction relation

G
−→ is not Noetherian. Observe that in this case J = (xy, z2) is not strongly stable,

but
G

−→ can be non-Noetherian also if J is strongly stable, as Example 3.18 will show.

Theorem 2.2 (Existence of J-Reduced Forms). Let G = {fα = xα
−

∑
cαγ xγ

: Ht(fα) = xα
∈ BJ} be a

J-marked set, with J strongly stable. Then, every polynomial of S has a J-reduced form modulo (G).

Proof. It is sufficient to prove that our assertion holds for the terms, because every polynomial is
a linear combination of terms. Let us consider the set E of terms which have not a J-reduced form
modulo (G). Of course E ∩ BJ = ∅. If E is not empty and xβ belongs to E, then xβ

= xixδ for some xδ

in J . We choose xβ so that its degree m is the minimum in E and that, among the terms of degree m
in E, xi is minimal. Let

∑
cδγ xγ be a J-reduced form modulo (G) of xδ , that exists by the minimality
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of m. Thus we can rewrite xβ by
∑

cδγ xixγ . We claim that all terms xixγ do not belong to E. On the
contrary, if xixγ belongs to E, then xixγ

= xjxϵ for some xϵ in J . If it were xi < xj then, by the strongly
stable property and since xγ belongs to N (J), we would get that xϵ

= xixγ /xj belongs to N (J), that is
impossible. So, we have xj < xi and by theminimality of xi the term xixγ has a J-reduced formmodulo
(G). This is a contradiction and so E is empty. �

Corollary 2.3. If J is a strongly stable ideal and I a homogeneous ideal containing a J-marked set G, then
N (J) generates S/I as a K-vector space. Thus dimK Im ≥ dimK Jm, for every m ≥ 0.

Proof. By Theorem 2.2, for every polynomial h there exists a polynomial h0 such that h − h0 belongs
to (G) ⊆ I and Supp(h0) ⊆ N (J). So, all the elements of S/I are linear combinations of terms of N (J)
and the claim follows. �

Corollary 2.4. Let J be a strongly stable ideal and G be a J-marked set. Then, G is a J-marked basis if and
only if dimK (G)m ≤ dimK Jm, for every m ≥ 0 or, equivalently, N (J) is free in S/(G).

Proof. By Proposition 1.8, G is a J-marked basis if and only if every polynomial has a unique J-reduced
form modulo (G). So, it is enough to apply Theorem 2.2 and Corollary 2.3. �

Corollary 2.5. Let J be a strongly stable ideal and I be a homogeneous ideal. Then I belongs toMf(J) if and
only if I has a J-marked basis.

Proof. If I has a J-marked basis then I belongs to Mf(J) by definition. Vice versa, apply Remark 1.7(1)
and Corollary 2.4. �

Remark 2.6. Every reducedGröbner basis of a homogeneous idealwith respect to a graded termorder
is a J-marked basis for some monomial ideal J , hence every homogeneous ideal contains a J-marked
basis. But, unless we are in generic coordinates, not every (homogeneous) ideal contains a J-marked
basis with J strongly stable, as for example a monomial ideal which is not strongly stable.

LetG be a J-marked basiswith J strongly stable. Thanks to the existence and the unicity of J-reduced
forms, G can behave like a Gröbner basis in solving problems, as the membership ideal problem in the
homogeneous case. Indeed, by the unicity of J-reduced forms, a polynomial belongs to the ideal (G) if
and only if its J-reduced form modulo (G) is null. But, until now, we do not yet have a computational
method to construct J-reduced forms.

In next section, by exploiting the proof of Theorem 2.2, we provide an algorithm which, under
the hypothesis that J is strongly stable, reduces every homogeneous polynomial to a J-reduced form
modulo (G) in a finite number of steps, although

G
−→ is not necessarily Noetherian. This fact allows us

also to recognize when a J-marked set is a J-marked basis by a Buchberger-like criterion and, hence,
to develop effective computational aspects of J-marked bases.

3. Effective methods for J-marked bases

Let I be the homogeneous ideal generated by a J-marked set G = {fα = xα
−

∑
cαγ xγ

: Ht(fα) =

xα
∈ BJ}, where J is strongly stable, so that every polynomial has a J-reduced form modulo I , by

Theorem 2.2.
In this section we obtain an efficient procedure to compute in a finite number of steps a J-reduced

form modulo I of every homogeneous polynomial. To this aim, we need some more definitions and
results.

For every degree m, the K -vector space Im formed by the homogeneous polynomials of degree m
of I is generated by the set Wm = {xδ fα : xδ+α has degreem, fα ∈ G}, that becomes a set of marked
polynomials by letting Ht(xδ fα) = xδ+α .

Lemma 3.1. Let xβ be a term of Jm \ BJ and xi = min(xβ). Then xβ/xi belongs to Jm−1.

Proof. By the hypothesis there exists at a least a term of Jm−1 that divides the given term xβ . So, let xj
such that xβ/xj belongs to Jm−1. If xj = xi, we are done. Otherwise, we get xβ

= xixjxδ , for some term
xδ , so that xixδ

= xβ/xj belongs to Jm−1. By the definition of a strongly stable ideal and since xj > xi,
we obtain that xβ/xi = xjxδ belongs to Jm−1. �
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The property of Borel ideals, that we point out by Lemma 3.1, allows us to define the following
special subset of Wm, by induction on m.

Definition 3.2. If m = αJ is the initial degree of J , we set Vm := Gm; so, for every term xβ
∈ BJ of

degree αJ , there is a unique polynomial gβ ∈ VαJ such that Ht(gβ) = xβ . If m = αJ + 1, for every
xβ

∈ JαJ+1 \ GαJ+1, we set gβ := xigϵ , where xi = min(xβ) and gϵ is the unique polynomial of VαJ such
that Ht(gϵ) = xϵ . Thus, we let VαJ+1 := GαJ+1 ∪ {gβ : xβ

∈ JαJ+1 \ BJ}. Analogously, for everym > αJ

and for every xβ
∈ Jm \ BJ , we set gβ := xigϵ , where xi = min(xβ) and gϵ is the unique polynomial of

Vm−1 with head term xϵ
= xβ/xi, and we let Vm := Gm ∪ {gβ : xβ

∈ Jm \ BJ}.

Remark 3.3. By construction, for every element gβ of Vm ⊆ Wm there exist xδ and fα ∈ G such that
gβ = xδ fα and xδ

= 1 or max(xδ) ≤ min(xα). Indeed, it is enough to take gβ1 = gβ/min(xβ), gβ2 =

gβ1/min(xβ1) and so on, until we obtain a polynomial fα of G and the term xδ
= min(xβ) ·

∏
min(xβi).

In particular, we get min(xδ) = min(xβ).

For every integer m ≥ αJ , we define the following total order ≽m on Vm. Note that we start by
fixing any ordering on Gm, that needs not to be a term order.

Definition 3.4. Let Gm be ordered with respect to any order≥ and, for every fα, fα′ ∈ Gm, let fα ≽m fα′

if and only if fα ≥ fα′ . For every gβ ∈ Vm \ Gm and fα ∈ Gm, we set gβ ≽m fα . For every m > αJ , given
xigϵ , xjgη ∈ Vm \ Gm, where xi = min(xixϵ) and xj = min(xjxη), we set

xigϵ ≽m xjgη ⇔ xi > xj or xi = xj and gϵ ≽m−1 gη.

By the definition of Vm and by well-known properties of a strongly stable ideal, we get the routine
VConstructor to compute Vm, for every αJ ≤ m ≤ s.

1: procedure VConstructor(G, s) → Vαj , . . . , Vs
Require: G is a J-marked set so that Gm is ordered with respect to any order, for everym ≥ αJ , with J

a strongly stable ideal, and s ≥ αJ .
Ensure: Vm ordered by ≽m, for every αJ ≤ m ≤ s
2: αJ := min{deg(Ht(fα))|fα ∈ G}

3: VαJ := Gα

4: form = αJ + 1 to s do
5: Vm := Gm;
6: for i = 0 to n do
7: for j = 1 to |Vm−1| do
8: if i ≤ min(Ht(Vm−1[j])) then
9: Vm = Vm ∪ {xiVm−1[j]}

10: end if
11: end for
12: end for
13: end for
14: return Vαj , . . . , Vs;
15: end procedure

Lemma 3.5. With the above notation,

xigϵ ∈ Vm \ Gm and xβ
∈ Supp(xigϵ) \ {xixϵ

} with gβ ∈ Vm ⇒ xigϵ ≻m gβ .

Proof. By induction on m, first observe that for m = αJ there is nothing to prove because VαJ = GαJ .
Form > αJ , let gβ = xjgη ∉ Gm. If xi = xj, then xη belongs to Supp(gϵ) \ {xϵ

} and, by the induction, we
have gη ≺m−1 gϵ . Otherwise, note that every term of Supp(xigϵ) is divided by xi, so xjxη

= xixλ and, by
Remark 3.3, we get xj = min(xβ) = min(xixλ) ≤ xi. �
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Proposition 3.6 (Construction of J-Reduced Forms). With the above notation, every term xβ
∈ Jm \ Gm

can be reduced to a J-reduced form modulo I in a finite number of reduction steps, using only polynomials

of Vm. Hence, the reduction relation
Vm

−→ is Noetherian in Sm.

Proof. By definition of Vm, every term xβ of Jm is the head term of one and only one polynomial
gβ of Vm ⊆ Wm. Hence, we rewrite xβ by gβ getting a K -linear combination of terms belonging to
Supp(gβ) \ {xβ

}. Applying Lemma 3.5 repeatedly, we are done since Vm is a finite set. �

Definition 3.7. A homogeneous polynomial, with support contained in N (J) and in relation by
Vm

−→

to a homogeneous polynomial h of degreem, is denoted by h̄ and called Vm-reduction of h.

For every homogeneous polynomial h of degreem, h̄ is a J-reduced formmodulo I . Hence, from the
procedure described in the proof of Proposition 3.6 we obtain the routine ReducedFormConstructor
that, actually, forms a step of a division algorithmwith respect to a J-marked set, with J strongly stable.

1: procedure ReducedFormConstructor(h,Vm) → h̄
Require: h is a homogeneous polynomial of degreem
Require: a list Vm, as defined in Definition 3.2, and ordered by ≽m
Ensure: Vm-reduction h̄ of h
2: L := |Vm|;
3: for K = 1 to L do
4: xη

:= Ht(Vm[K ]);
5: a := coefficient of xη in h;
6: if a ≠ 0 then
7: h := h − a · Vm[K ];
8: end if;
9: end for

10: return h;
11: end procedure

Remark 3.8. (1) There is a strong analogy between the union of the sets Vm and the so-called staggered
bases, introduced by Gebauer andMöller (1986) and studied also byMöller et al. (1992). Moreover, the
procedure to construct the sets Vm mimics the one introduced by Janet in a context in which it was
assumed (in generic coordinates) that the ideal generated by the head terms is Borel, and thus it is
sufficient to extend the basis by multiplying each polynomial g by variables xi ≤ min(Ht(g)). Indeed,
for constructing the set Vm wemultiply the polynomials of Vm−1 by the same variables considered for
Janet bases. For this reason, we plan to study relations between J-marked bases and Janet bases in a
future work, in which also a comparison with Border Bases would be interesting because of the lack
of a term order (Marinari et al., 1993;Mourrain, 1999;Mourrain and Trébuchet, 2005, 2008). Anyway,
we must point out that in our context the classical problem ‘‘given a basis of an ideal, extend it for
computing a Gröbner-like basis" is unnatural, because we have not an ideal, but we want to construct
the family of all the ideals I with a suitable K -vector basis of S/I .
(2) In the procedure ReducedFormConstructor we reduce a polynomial using Vm. Thus, it would be
better ifVm consisted of already reducedpolynomials, in analogywithwell-knownefficient algorithms
(Faugère et al., 1993; Möller and Buchberger, 1982). Anyway, we think that our algorithm can be
improved and we are making efforts in this direction.

Now, we extend to Wm the order ≽m defined on Vm. In our setting, a term xδ is higher than a term
xδ′

with respect to the degree reverse lexicographic term order (for short xδ >drl xδ′

) if |δ| > |δ′
| or if

|δ| = |δ′
| and the first non-null entry of δ − δ′ is negative.

Definition 3.9. Let the polynomials of Gm be ordered as in Definition 3.4 by any order ≥ and xδ fα ,
xδ′

fα′ be two elements ofWm. We set

xδ fα ≽m xδ′

fα′ ⇔ xδ >drl xδ′

or xδ
= xδ′

and fα ≥ fα′ .
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Lemma 3.10. (i) For every two elements xδ fα , xδ′

fα′ of Wm we get

xδ fα ≽m xδ′

fα′ ⇒ ∀xη
: xδ+ηfα ≽m′ xδ′

+ηfα′ ,

where m′
= |δ + η + α|.

(ii) Every polynomial gβ ∈ Vm is the minimum with respect to ≼m of the subset Wβ of Wm containing all
polynomials of Wm with xβ as head term.

(iii) xδ fα ∈ Wm \ Gm and xβ
∈ Supp(xδ fα) \ {xδxα

} with gβ ∈ Vm ⇒ xδ fα ≻m gβ .

Proof. (i) This follows by the analogous property of the term order >drl.
(ii) The statement holds by construction of Vm and by Remark 3.3. Indeed, by the same arguments

as before, if xδ fα is any polynomial of Wβ and gβ = xδ′

fα′ ∈ Vm, with max(xδ′

) ≤ min(xα′

) as in
Remark 3.3, then xj = min(xδ′

) = min(xδ′
+α′

) = min(xδ+α) ≤ min(xδ). If the equality holds, it is

enough to observe that xδ
xj
fα ∈ Wm−1 and xδ

′

xj
fα′ ∈ Vm−1 by construction.

(iii) The proof is analogous to the proof of Lemma 3.5. If xβ belongs to BJ we are done. Otherwise, note
that every term of Supp(xδ fα) is a multiple of xδ , in particular xδ′

+α′

= xδ+γ for some xγ
∈ N (J).

Let xi = min(xδ) and xj = min(xδ′

). By Remark 3.3, we get xj = min(xδ′
+α′

) = min(xδ+γ ) ≤

min(xδ) = xi. If xj = xi, then xβ/xi belongs to the support of xδ
xi
fα . Now we use induction. �

In Remark 2.6we have already observed that in generic coordinates every homogeneous ideal has a
J-marked basis, with J strongly stable. Now, given a strongly stable ideal J , we describe a Buchberger-
like algorithmic method to check if a J-marked set is a J-marked basis, recovering the well-known
notion of S-polynomial from the Gröbner bases theory.

Definition 3.11. The S-polynomial of two elements fα , fα′ of a J-marked set G is the polynomial
S(fα, fα′) := xβ fα − xβ ′

fα′ , where xβ+α
= xβ ′

+α′

= lcm(xα, xα′

).

Theorem 3.12 (Buchberger-Like Criterion). Let J be a strongly stable ideal and I the homogeneous ideal
generated by a J-marked set G. With the above notation:

I ∈ Mf(J) ⇔ S(fα, fα′) = 0, ∀fα, fα′ ∈ G.

Proof. Recall that I ∈ Mf(J) if and only if G is a J-marked basis, so that every polynomial has a unique
J-reduced form modulo I . Since S(fα, fα′) belongs to I by construction, its J-reduced form modulo I is
zero and coincides with S(fα, fα′), by the unicity of J-reduced forms.

For the converse, by Corollary 2.4 it is enough to show that, for every m, the K -vector space
Im is generated by the dimK Jm elements of Vm. More precisely we will show that every polynomial
xδ fα ∈ Wm either belongs to Vm or is a K -linear combination of elements of Vm lower than xδ fα itself.
We may assume that this fact holds for every polynomial in Wm lower than xδ fα . If xδ fα belongs to
Vm there is nothing to prove. If xδ fα does not belong to Vm, let xδ′

fα′ = min(Wδ+α) ∈ Vm, so that
xδ fα ≻m xδ′

fα′ , and consider the polynomial g = xδ fα − xδ′

fα′ .
If g is the S-polynomial S(fα, fα′), then it is a K -linear combination

∑
cigηi of polynomials of Vm

because S(fα, fα′) = 0 by the hypothesis. Moreover, by construction, xδ′

fα′ belongs to Vm and, thanks
to Lemma 3.10(iii), for all i we have xδ fα ≻m gηi .

If g is not the S-polynomial S(fα, fα′), then there exists a term xβ
≠ 1 such that g = xβS(fα, fα′) =

xβ(xηfα − xη′

fα′). By the hypothesis S(fα, fα′) is a K -linear combination
∑

cigηi of elements of Vm−|β|

lower than xηfα . Hence, xδ fα = xδ′

fα′ +
∑

cixβgηi , where all polynomials appearing in the right hand
are lower than xδ fα with respect to ≻m, by Lemma 3.10(i). So we can apply to them the inductive
hypothesis for which either they are elements of Vm or they are K -linear combinations of lower
elements in Vm. This allows us to conclude the proof. �

Let H = (h1, . . . , ht) be a syzygy of a J-marked basis G = {fα1 , . . . , fαt } such that every polynomial
hi =

∑
ciβxβ is homogeneous and every product hifαi has the same degree m. A syzygy M =

(m1, . . . ,mt) of J is homogeneous if, for every 1 ≤ i ≤ t , we have mixαi = ciϵxϵ , for a constant
term xϵ and ciϵ ∈ K .
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Definition 3.13. The head term Ht(H) of the syzygy H is the head term of the polynomial Hmax :=

max≽m{xβ fαi : i ∈ {1, . . . , t}, xβ
∈ Supp(hi)}. If Ht(H) = xη , let H+

= (h+

1 , . . . , h+

t ) be the t-uple
such that h+

i = ciβxβ , where xβxαi = xη , i.e. xβ fαi ∈ Wη . Given a homogeneous syzygy M of J , we say
that H is a lifting ofM , or thatM lifts to H , if H+

= M .

For the following result we refer to Möller (1985) and Schreyer (1980), in particular to Proposition
5.2 of Möller (1985).

Corollary 3.14. Every homogeneous syzygy of J lifts to a syzygy of a J-marked basis G.

Proof. Recall that syzygies of type (0, . . . , xβ , . . . ,−xβ ′

, 0, . . .) form a system of homogeneous
generators of syzygies of BJ = {. . . , xα, . . . , xα′

, . . .}, where xβ+α
= xβ ′

+α′

= lcm(xα, xα′

). Thus,
apply Theorem 3.12. �

The analogous result of Corollary 3.14 for involutive bases immediately holds and it is believable
that Janet was aware of that property of involutive polynomials sets.

Until nowwe have shown that a J-marked basis satisfies the characterizing properties of a Gröbner
basis. In the following result we consider a property that does not characterize Gröbner bases, but it is
satisfied by Gröbner bases. We show that it is satisfied by J-marked bases too, by standard arguments.

Corollary 3.15. Let {M1, . . . ,Mt} be a set of homogeneous generators of the module of syzygies of J . Then,
a set {K1, . . . , Kt} of liftings of the Mi’s generates the module of syzygies of G.

Proof. First, observe that the module of syzygies of G = {fα1 , . . . , fαt } is generated by the syzygies
H = (h1, . . . , ht) such that every hi =

∑
ciβxβ is a homogeneous polynomial and every product hifαi

has the same degree m. Let H+ the syzygy of J , as computed in Definition 3.13. Hence, there exist
homogeneous polynomials q1, . . . , qt such that H+

=
∑

qiMi. Let H1 = H −
∑

qiKi. By construction
we get that Hmax(H1) ≺m Hmax(H), by Lemmas 3.5 and 3.10. Since ≼m is a total order on the finite set
Wm, the proof is complete. �

Remark 3.16. In the proof of Theorem 3.12 we do not use Vm-reductions of all S-polynomials xδ fα −

xδ′

fα′ of elements in G, but only of those such that either xδ fα or xδ′

fα′ belongs to some Vm. Moreover,
we can consider the analogous property to that of the improved Buchberger algorithm that only
considers S-polynomials corresponding to a set of generators for the syzygies of J . Thus we can
improve Corollary 2.4 and say that, under the same hypotheses:

I ∈ Mf(J) ⇐⇒ ∀m ≤ m0, dimK Im = dimK Jm ⇐⇒ ∀m ≤ m0, dimK Im ≤ dimK Jm
where m0 is the maximum degree of generators of syzygies of J . Hence, to prove that dimK Im =

dimK Jm for somem it is sufficient that the Vm-reductions of the S-polynomials of degree≤ m are null.

Example 3.17. Let J = (z2, zy, zx, y2) ⊂ K [x, y, z], where x < y < z and consider a J-marked set
G = {fz2 , fzy, fzx, fy2}. In order to check whether G is a J-marked basis it is sufficient to verify if the
polynomials S(fz2 , fzy), S(fz2 , fzx), S(fz2 , fy2), S(fzy, fzx) and S(fzy, fy2) have Vm-reductions null, but it is
not necessary to control S(fzx, fy2) because yxfzy is the element of V3 with head term zy2x.

Example 3.18. Let J = (z3, z2y, zy2, y5)≥4 be a strongly stable ideal in K [x, y, z], with x < y < z,
and G = BJ ∪ {f } \ {zy2x} a J-marked set, where f = zy2x − y4 − z2x2 with Ht(f ) = zy2x. We can
verify that G is a J-marked basis using the Buchberger-like criterion proved in Theorem 3.12. Indeed,
the S-polynomials non-involving f vanish and all the S-polynomials involving f are multiple of either
z · (y4 + z2x2) or y · (y4 + z2x2). Since the terms y4 · z, y4 · y, z2x2 · z, z2x2 · y belong to V5, all the
S-polynomials have Vm-reductions null. Notice also that, in this case,

G
−→ is not Noetherian because,

although the V7-reduction of z2y2x3 is 0, being x2 · z2y2x ∈ V7 (while zxf /∈ V7), a different choice of
reduction gives the loop:

z2y2x3
f

−→ zy4x2 + z3x4
z3x2
−→ zy4x2

f
−→ y6x + z2y2x3

y5
−→ z2y2x3.

Moreover, G is not a Gröbner basis with respect to any term order ≺. Indeed, zy2x2 ≻ y4x and
zy2x2 ≻ z2x3 would be in contradiction with the equality (zy2x2)2 = z2x3 · y4x.
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4. J-marked families as affine schemes

In this section J is always supposed strongly stable, so that we can use all results described in the
previous sections for J-marked bases.

Here we provide the construction of an affine scheme whose points correspond, one to one, to the
ideals of the J-marked family Mf(J). Recall that Mf(J) is the family of all homogeneous ideals I such
thatN (J) is a basis for S/I as a K -vector space, henceMf(J) contains all homogeneous ideals forwhich
J is the initial ideal with respect to a fixed term order. We generalize to any strongly stable ideal J an
approach already proposed in literature in case J is considered an initial ideal (e.g. Carrà Ferro, 1988;
Ferrarese and Roggero, 2009; Lella and Roggero, in press; Robbiano, 2009; Roggero and Terracini,
2010).

For every xα
∈ BJ , let Fα := xα

−
∑

Cαγ xγ , where xγ belongs to N (J)|α| and the Cαγ ’s are new
variables. Let C be the set of such new variables and N := |C |. The set G of all the polynomials Fα

becomes a J-marked set letting Ht(Fα) = xα . From G we can obtain the J-marked basis of every ideal
I ∈ Mf(J) specializing in a unique way the variables C in KN , since every ideal I ∈ Mf(J) has a unique
J-marked basis (Remark 1.9 and Corollary 2.5). But not every specialization gives rise to an ideal of
Mf(J).

Let Vm be the analogous for G of Vm for any G. Let Hαα′ be the Vm-reductions of the S-polynomials
S(Fα, Fα′) of elements of G and extract their coefficients that are polynomials in K [C]. We will denote
by R the ideal of K [C] generated by these coefficients. Let R′ be the ideal of K [C] obtained in the same
way of R but only considering S-polynomials S(Fα, Fα′) = xδFα − xδ′

Fα′ such that xδFα is minimal
among those with head term xδ+α .

Theorem 4.1. There is a one-to-one correspondence between the ideals of Mf(J) and the points of the
affine scheme in KN defined by the ideal R. Moreover, R′

= R.

Proof. For the first assertion it is enough to apply Theorem 3.12, observing that a specialization of the
variables C in KN gives rise to a J-marked basis if and only if the values chosen for the variables C form
a point of KN on which all polynomials of the ideal R vanish.

For the second assertion, first recall that, by Remark 3.16, every S-polynomial xδFα − xδ′

Fα′ can be
written as the sum (xδFα − xδ′′

Fα′′) + (xδ′′

Fα′′ − xδ′

Fα′) of two S-polynomials, where xδ′′

fα′′ belongs to
Vm. Note that, considering the variables C as parameters, the support of xδFα−xδ′

Fα′ is contained in the
union of the supports of xδFα−xδ′′

Fα′′ andof xδ′′

Fα′′−xδ′

Fα′ . In particular, the coefficients in xδFα−xδ′

Fα′ ,
i.e. the generators of R, are combinations of the coefficients in (xδFα − xδ′′

Fα′′) + (xδ′′

Fα′′ − xδ′

Fα′), i.e.
of the generators of R′. �

Now, by exploiting ideas of Lella and Roggero (in press), we show how to obtain R in a different
way, using the rank of some matrices.

By Corollary 2.4, a specialization C → c ∈ KN transforms G in a J-basis G if and only if dimK (G)m =

dimK Jm, for every degree m. Thus, for each m, consider the matrix Am whose columns correspond to
the terms of degree m in S = K [x0, . . . , xn] and whose rows contain the coefficients of the terms in
every polynomial of degree m of type xδFα . Hence, every entry of the matrix Am is 1, 0 or one of the
variables C . Let A be the ideal of K [C] generated by the minors of order dimK Jm + 1 of Am, for everym.

Lemma 4.2. The ideal A is equal to the ideal R′.

Proof. Let am = dimK Jm. We consider in Am the am × am submatrix Ām whose columns correspond
to the terms xβxα in Jm and whose rows are given by the polynomials xβFα that are minimal with
respect to the partial order >m. Up to a permutation of rows and columns, this submatrix is upper-
triangular with 1 on the main diagonal because xβFα is minimal with respect to the partial order >m
and because of Lemma3.5.Wemay also assume that the submatrix Ām corresponds to the first am rows
and columns inAm. Then the idealA is generated by the determinants of the am+1×am+1 submatrices
containing Ām. Moreover the Gaussian row-reduction of Am with respect to the first am rows is nothing
else than the Vm-reduction of the S-polynomials of the special type considered defining R′, because
the first am rows are made of the coefficients of the polynomials of Vm. �
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The result of Lemma 4.2 shows that the construction of the ideal R does not depend on the
procedure of reduction. Now, we can give the following definition.

Definition 4.3. The affine scheme defined by the ideal R = R′
= A is called J-marked scheme.

We will denote a J-marked scheme and a J-marked family by the same symbol Mf(J) because
we can identify every ideal I with the corresponding specialization of the variables C , by the
parameterization of the J-marked family on the J-marked scheme. We point out that the one-to-one
correspondence between the J-marked family Mf(J) and the set of projective schemes defined by the
ideals of Mf(J) is analogous to the identification of the points of a Hilbert scheme with the projective
schemes these points represent.

Remark 4.4. A given homogeneous ideal I belongs toMf(J) if and only I has the sameHilbert function
as J and the affine scheme defined by the ideal of K [C] generated by R and by the coefficients of the
Vm-reductions of the generators of I is not empty. Indeed, the ideal I belongs to Mf(J) if and only
if it has the same Hilbert function of J and there exists a specialization C̄ in the J-marked scheme
defined by R such that every generator of I belongs to the ideal (Ḡ) generated by the polynomials of
G evaluated on C̄ . The generators of I belong to (Ḡ) if and only if their Vm-reductions evaluated on C̄
become zero.

Theorem 4.5. The J-marked scheme is homogeneous with respect to a non-standard grading λ of K [C]

over the group Zn+1 given by λ(Cαγ ) = α − γ .

Proof. To prove that the J-marked scheme is λ-homogeneous it is sufficient to show that everyminor
of Am is λ-homogeneous. Let us denote by Cαα the coefficient (=1) of xα in every polynomial Fα: we
can apply also to the ‘‘symbol’’ Cαα the definition of λ-degree of the variables Cαγ , because α − α = 0
is indeed the λ-degree of the constant 1. In this way, the entry in the row xβFα and in the column xδ

is ±Cαγ if xδ
= xβxγ and is 0 otherwise.

Let us consider the minor of order s determined in the matrix Am by the s rows corresponding to
xβiFαi and by the s columns corresponding to xδji , i = 1, . . . , s. Every monomial that appears in the
computation of such a minor is of type

∏s
i=1 Cαiγji

with xδji = xβixγji . Then its degree is:

s−
i=1


αi − γji


=

s−
i=1


αi − δji + βi


=

s−
i=1

(αi + βi) −

s−
i=1

δji

which only depends on the minor. �

Let ≺ be a term order and Sth(J, ≺) a so-called Gröbner stratum (Lella and Roggero, in press), i.e.
the affine scheme that parameterizes all the homogeneous ideals with initial ideal J with respect to
≺. We can obtain Sth(J, ≺) as the section of Mf(J) by the linear subspace L determined by the ideal
Cαγ : xα

≺ xγ


⊂ K [C]. In particular, if m0 is defined as in Remark 3.16 and, for every m ≤ m0,
Jm is a ≺-segment, i.e. it is generated by the highest dimK Jm monomials with respect to ≺, then
Sth(J, ≼) and Mf(J) are the same affine scheme. In fact we can obtain both schemes using the same
construction. Actually, for some strongly stable ideals J we can find a suitable term ordering such
that Sth(J, ≺) = Mf(J), but there are cases in which


≺

Sth(J, ≺) is strictly contained in Mf(J) (see
Appendix).

The existence of a term order such that Mf(J) = Sth(J, ≼) has interesting consequences on the
geometrical features of the affine scheme Mf(J). In fact the λ-grading on K [C] is positive if and only
if such a term ordering exists and, in this case, we can isomorphically project Mf(J) to the Zariski
tangent space at the origin (see Ferrarese and Roggero, 2009). As a consequence of this projection
we can prove, for instance, that the affine scheme Mf(J) is connected and that it is isomorphic to
an affine space, provided the origin is a smooth point. If for a given ideal J such a term ordering
does not exist, then in general we cannot embed Mf(J) in the Zariski tangent space at the origin (see
Appendix). However we do not know examples of Borel ideals J such that either Mf(J) has more than
one connected component or J is smooth and Mf(J) is not rational.

Denote by reg(I) the Castelnuovo–Mumford regularity of a homogeneous ideal I .
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Proposition 4.6. A J-marked family Mf(J) is flat at the origin. In particular, for every ideal I in Mf(J), we
get reg(J) ≥ reg(I).

Proof. Analogously towhat is suggested in Bayer andMumford (1993) and by referring to Artin (1976,
Corollary, Section 3, part I), we know that Mf(J) is a flat family at J , i.e. at the point C = 0, if and only
if every syzygy of J lifts to a syzygy among the polynomials of G or, equivalently, the restrictions to
C = 0 of the syzygies of G generate the S-module of syzygies of J . By Corollary 3.14 we know that
every syzygy of J lifts to a syzygy of G, for every specialization of C in the affine scheme defined by the
ideal R. And this is true thanks to Theorem 3.12 that allows also to lift a syzygy of J to a syzygy of G
over the ring (K [C]/R)[x0, . . . , xn]. So, the first assertion holds.

For the second assertion, it is enough to recall that the Castelnuovo–Mumford regularity is upper
semicontinuous in flat families (Hartshorne, 1977, Theorem 12.8, Chapter III) and that in our case the
syzygies of J lift to syzygies of G for every specialization of the variables C in the J-marked scheme,
i.e., for every ideal I of Mf(J), not only in some neighborhood of J . �

Appendix. An explicit computation

Let J be the strongly stable ideal (z4, z3y, z2y2, zy3, z3x, z2yx, zy2x, y5) in K [x, y, z] (where z > y >
x and ch(K) = 0), already considered in Example 3.18. Note that for every term order we can find in
degree 4 a monomial in J lower than a monomial in N (J), because zy2x ≻ z2x2 and zy2x ≻ y4 would
be in contradiction with the equality (zy2x)2 = z2x2 · y4. Hence, J4 is not a segment (in the usual
meaning) with respect to any term order.

The affine scheme Mf(J) can be embedded as a locally closed subscheme in the Hilbert scheme of
8 points in the projective plane (see Bertone et al., 2010), which is irreducible smooth of dimension
16, and contains all the Gröbner strata Sth(J, ≺), for every ≺, and also some more point, for instance
the one corresponding to the ideal I of Example 3.18.

Let G = {F1, . . . , F8} ⊂ K [z, y, x, c1, . . . , c64] where the polynomials Fi are

F1 = z4 + c1x2z2 + c2y4 + c3x2yz + c4xy3 + c5x3z + c6x2y2 + c7x3y + c8x4,
F2 = z3y + c9x2z2 + c10y4 + c11x2yz + c12xy3 + c13x3z + c14x2y2 + c15x3y + c16x4,
F3 = z2y2 + c17x2z2 + c18y4 + c19x2yz + c20xy3 + c21x3z + c22x2y2 + c23x3y + c24x4,
F4 = zy3 + c25x2z2 + c26y4 + c27x2yz + c28xy3 + c29x3z + c30x2y2 + c31x3y + c32x4,
F5 = z3x + c33x2z2 + c34y4 + c35x2yz + c36xy3 + c37x3z + c38x2y2 + c39x3y + c40x4,
F6 = z2yx + c41x2z2 + c42y4 + c43x2yz + c44xy3 + c45x3z + c46x2y2 + c47x3y + c48x4,
F7 = zy2x + c49x2z2 + c50y4 + c51x2yz + c52xy3 + c53x3z + c54x2y2 + c55x3y + c56x4,
F8 = y5 + c57x3z2 + c58xy4 + c59x3yz + c60x2y3 + c61x4z + c62x3y2 + c63x4y + c64x5.

By Maple 12 we compute the ideal R′ and the following ideal I(T ) that defines the Zariski tangent
space T to Mf(J) at the origin; note that T has dimension 16:

I(T ) = (c64, c63, c61, c56, c55, c53, c48, c47, c46, c45, c44, c40, c39, c38, c37, c36, c32, c31, c30, c29,
c28 − c54, c27, c26 − c52, c25, c24, c23, c22, c21, c20, c19, c18, c17, c16, c15, c14, c13,
c12, c11, c10, c9, c8, c7, c6, c5, c4, c3, c2, c1).

In the ideal R′ we eliminate several variables of type C by applying (Bertone et al., 2010, Theorem
5.4) and by substituting variables that appear only in the linear part of some polynomials of R′. We
obtain that Mf(J) can be isomorphically projected on a linear space T ′

≃ A19 containing T . In this
embedding, Mf(J) is the complete intersection of the following three hypersurfaces in A19 of degrees
4, 4 and 8, respectively:

G1 = c241c49c50 + c41c49c50c51 + c41c250c57 + c42c49c50c57 + c43c249c50 + c49c250c59
+ c49c50c251 + c250c51c57 + c250c57c58 − c41c49c52 − c49c50c53 − c49c51c52
− 2c50c52c57 + c33c49 − c241 + c41c51 − c42c57 − c43c49 + c49c54 − c53,
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G2 = c41c42c49c50 + c42c49c50c51 + c42c49c50c58 + c42c250c57 + c43c49c250 + c350c59 + c250c
2
51

+ c250c51c58 + c250c
2
58 − c42c49c52 − c44c49c50 − c250c53 − c250c60 − 2c50c51c52

− 2c50c52c58 + c34c49 − c41c42 + c42c51 − c42c58 − c43c50 + 2c50c54 + c252 + c44,

G3 = −c341c
3
49c

2
50 − c241c

3
49c

2
50c51 + c241c

3
49c

2
50c58 − 2c241c

2
49c

3
50c57 + c41c242c

5
49 + 2c41c349c

2
50c51c58

+ c41c349c
2
50c

2
58 − 2c41c249c

3
50c51c57 − c41c49c450c

2
57 + c242c

5
49c51 + c242c

5
49c58 − c349c

2
50c51c

2
58

− c349c
2
50c

3
58 + 2c249c

3
50c51c57c58 + 2c249c

3
50c57c

2
58 − c49c450c51c

2
57 − c49c450c

2
57c58

+ 2c241c
3
49c50c52 − 2c41c42c449c52 − 4c41c349c50c52c58 + 4c41c249c

2
50c52c57 − 2c42c44c549

− 2c42c449c50c60 − 2c42c449c51c52 + 2c349c50c52c
2
58 − 4 c249c

2
50c52c57c58 + 2c49c350c52c

2
57

− 2c33c41c349c50 + 2c33c349c50c58 − 2c33c249c
2
50c57 + 2c34c41c449 − 2c34c449c58

+ 2c34c349c50c57 + 4c341c
2
49c50 − c241c42c

3
49 − 2c241c

2
49c50c51 − 4c241c

2
49c50c58

+ 5c241c49c
2
50c57 + 3c41c42c349c51 + 4c41c42c249c50c57 + 3c41c43c349c50 + c41c349c

2
52

+ c41c249c
2
50c59 + c41c49c250c51c57 + 2c41c350c

2
57 + c42c43c449 + 2c42c449c54 + 3c42c349c50c59

+ c42c349c
2
51 − c42c349c51c58 + c42c349c

2
58 − 2c42c249c50c51c57 − 4c42c249c50c57c58

+ 2c42c49c250c
2
57 − 3c43c349c50c58 + 3c43c249c

2
50c57 + 2c44c449c52 + 2c349c50c52c60

+ c349c51c
2
52 − c349c

2
52c58 − c249c

2
50c58c59 − c249c50c

3
51 − 2c249c50c

2
51c58 + c49c350c57c59

− c49c250c
2
51c57 − 5c49c250c51c57c58 − 3c49c250c57c

2
58 + 2c350c51c

2
57 + 2c350c

2
57c58

− c41c249c52 + c41c44c349 + c41c249c50c60 + c41c249c51c52 + c41c249c52c58 − 5c41c49c50c52c57
− 2c42c349c53 + c42c349c60 + c42c249c52c57 + c43c349c52 − 2c44c349c51 − c44c349c58 − 2c349c52c54
+ c249c50c51c60 − c249c50c52c59 + 2c249c

2
51c52 + c249c51c52c58 + 2c49c250c57c60

+ 5c49c50c51c52c57 + 6c49c50c52c57c58 − 4c250c52c
2
57 + c33c41c249 − 2c33c249c51

− c33c249c58 + c33c49c50c57 − 3c34c249c57 − c35c349 − 2c341c49 + 2c241c49c51
+ 2c241c49c58 − 3c241c50c57 − c41c42c49c57 − 2c41c43c249 + c41c249c54 − 2c41c49c50c59
− 3c41c49c251 + c41c50c51c57 − c42c249c59 − c42c49c51c57 + 3c42c49c57c58 − 3c42c50c257
+ 2c43c249c58 − 2c43c49c50c57 − c249c50c62 − 2c249c51c54 − c249c54c58 − 2c49c50c51c59
− c49c50c54c57 − c49c351 + c49c251c58 − 2c49c252c57 − c250c57c59 − c50c251c57 − c41c49c60
+ c41c52c57 − c44c49c57 + 2c49c50c61 + 4c49c51c53 − c49c51c60 + c49c52c59
− c50c53c57 + c51c52c57 + c33c57 + c41c59 + c49c62 − c54c57 − c61.

Among the generators of the corresponding Jacobian ideal we have the following minors Di
obtained by computing the derivatives of G1,G2,G3 with respect to the sets of variables Ai, for
1 ≤ i ≤ 5:

D1 = −(2c49c50 − 1)(c49c50 − 1)(c49c50 + 1), A1 = {c61, c44, c53};

D2 = −(c49c50 + 1)(c49c50 − 1)2c49, A2 = {c53, c44, c62};

D3 = −c50(2c49c50 − 1)(c49c50 − 1), A3 = {c43, c61, c53};

D4 = c49(c49c50 − 1)2(2c49c50 − 1), A4 = {c43, c61, c44};

D5 = (c49c50 + 1)c250(2c49c50 − 1), A5 = {c53, c60, c61}.

The polynomials Di define the empty set, so that Mf(J) is smooth as we expected and, in particular,
J corresponds to a smooth point on Mf(J). Moreover, Mf(J) has dimension 16 but we claim that it
cannot be isomorphically projected on T . Indeed, note that we can choose a set of 16 variables that is
complementary to the tangent space and that does not contain the variables c53, c44, c61 which occur
in the linear parts of the polynomials Gi. These variables appear also in other parts of the polynomials
and their coefficients are c49c50 + 1, c49c50 − 1 and 2c49c50 − 1, respectively. If c̄ ∈ T is a point of the
tangent space onwhich none of the coefficients vanishes, we obtain a unique point ofMf(J) ofwhich c̄
is the projection on T . If c̄ ∈ T is a general point of the tangent space onwhich one of these coefficients
vanishes, one can see that c̄ is not the projection of any point of Mf(J). Hence, the projection of Mf(J)
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on T does not coincide with the tangent space T , but only with an open set. However, this fact implies
that Mf(J) is rational, in particular irreducible.

We point out that the variables c49 and c50, that appear in the coefficients of the variables
c53, c44, c61, are the coefficients in the polynomial F7 of the two terms x2z2, y4 whose behavior prevents
the ideal J from being a segment. Indeed, in this case the affine scheme Mf(J) is homogeneous with
respect to a non-positive grading.
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