View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Elsevier - Publisher Connector

Electronic Notes in Theoretical Computer Science 1 (1995)
URL: http://www.elsevier.nl/locate/entcs/volumel.html 6 pages

Fixing the Semantics of Some
Concurrent Object-Oriented Concepts:
Extended Abstract

C. B. Jones

Department of Computer Science,
University of Manchester,
Manchester, U.K.

Abstract

Concurrent object-oriented languages provide a suitable target for a compositional
design process that copes with the interference inherent with concurrency. Fix-
ing the semantics of an object-based design language has been undertaken using
structured operational semantics and by a mapping to the pi-calculus. These two
approaches are outlined and contrasted. In particular, the difficulties in the two ap-
proaches of justifying the proof rules of the proposed design method are explained.

The language moB A is intended as a design language for concurrent object-
oriented programs. A description of the development methods envisaged can
be found in [7,9] (the material from both of these conference papers is avail-
able electronically as [6]) and is briefly discussed in another extended abstract
in these proceedings. Because it is not itself intended as a programming lan-
guage, mof A is relatively small (an even smaller subset of 7o\ is considered
in this extended abstract). It is necessary to fix the semantics of mo8A in
order to justify the development steps proposed in [7,9]; for example, [7] uses
an equivalence on programs which facilitates an increase in concurrency. (It is
important to note that it is not intended that the user of the proposed devel-
opment method is aware of this presentation of the semantics: such developers
use the justified rules only.) Consider the ‘program’ in Figure 1 which imple-
ments a sorted priority queue over a linked list of object instances. Notice that
the reference contained in [is marked as unique : such a reference is defined
to be one which is never ‘copied’ nor which has other references passed over
it. The equivalence rule which permits the return statement to be commuted
to the head of the method (thus releasing the rendez-vous) is

S;return e can be replaced by return ;S
providing
(i) S contains no return statement and always terminates;

(ii) e is not affected by S; and
©1995 Elsevier Science B. V. Open accessunder CC BY-NC-ND license.

https://core.ac.uk/display/81998075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

C. B. JONES

Sort class
vars v: N « nil; [: unique ref(Sort) « nil
ins(z: N) method
begin
if 1s-nil(v) then (v « z; [« new Sort)
elif v < z then llins(z)
else (llins(v); v <« z)
fi
return
end

end Sort

Fig. 1. An example mo8\ program

(iii) S only invokes methods reachable by unique references.

To illustrate the main points of the semantics, it is sufficient to consider
the following (reduced) abstract syntax

Cdef :: fvars : Id 7> Type
mm : Id = Mdef

Type = UNIQUEREF | SHAREDREF | BooL

Mdef :: r : [Type]
pl . (Id x Type)*

b : Stmt
Stmt = New | Call | Assign | --- | Return
New :: lhs : Id

en : Id

al : Ezpr*
Call :: lhs : Id

call : Mref
Mref :: oby : Id

mn : Id

al : FEzpr*
Assign :: lhs : Id

rhs : FEzpr

Return :: r : [Ezpr]
The structured operational semantics is presented at two levels. For the
statement level:

5C (Stmt* x) x (Stmt* x ¥)

C. B. JONES

where the values of instance variables are given by

Y =1Id = Val

For example, the transition rule for assignment statements is:

([z « €] oy L,o) > (I,o 1t {z — [e]o})

Rules for other basic statements are straightforward.
To define the global transitions, one needs

O = Oid = (Stmt* x %)
M = 0id = Id

O = Id ™ Cdef
The promotion of the statement level transitions is covered by
O(a) = (I, 0)
(L,o) 5 (I, o")
CH(O,M)% (01t{am (I' o)}, M)

The global rules for the remaining statements can now be presented. For
the new statement

O(a) = ([z < new A] "V [,0)
B ¢ dom O

owo,M)&(m{“H“"’“Wﬁ})’},Mu{ﬁHAD
B (D)

To initiate a method call
0(a) = (2 — vtm()] ™ 1,0)
o(v) = B
0(8) = (1],

G (0105 (01 {a — ((wait(8,2)] ™ 1, 0), ,) } 0

B = (mm(C(M(B)))(m)

To terminate the rendez-vous of a call
O(a) = ([wait(B,2)] ™ 1,)
O(B) = ([return(e)] "> I, o)

OHO,M)L(OT{aH(z,UT{mH[[e]]a'}),}jM)

B—(l,o)
3

C. B. JONES

This SOS was not the first version written: earlier versions followed more
closely the operational semantics of —for example— the m-calculus itself and
presented separate statement level transitions for method call and receipt etc.:
this made the matching of send/receive pairs more opaque.

But even the SOS above presents hurdles to the proof of 708\ equivalences.
One is forced to present a low level of granularity (to permit interleaving of
steps in different objects) only to prove that this is not necessary. This is
compounded by the fact that there is no algebra for reasoning about such SOS
definitions: one is almost always forced to induction over the computation.

A number of authors have looked at presenting the semantics of imper-
ative languages in general by mapping to process algebras (e.g. [11, Chap-
ter 8]); several authors have extended this idea to tackle object-oriented
languages [14,15,8,4,16]. Here, a mapping to the (first-order) polyadic -
calculus [12] is given.

Processes (typical elements P, Q)

P::= N | P|@ | P | (vz)P
Normal processes (typical elements M, N)

N::=x.P | 0 | M+ N
Prefixes (typical element)

mii= z(Y) | Ty
The following abbreviation is used

~ def
Y=0NY2---Yn

It is straightforward to model Boolean values and to mimic the sequencing

of composite statements. To illustrate the mapping for simple classes, consider

Bit class
vars v: B « false
w(z:B) method v « z; return

7() method return v
end Bit
This can be mapped to
[Bit] = ! (va)(bita. L)
E = wsa)(V | Bg))
V = wit)(tbs | ' ¢(z).(az.tz + s(y).ty))
B = (o (wt).52.0.B; + a,(w).a(z).wz.Bs)
and
[new Bit] = bit(a). - - -
[ptw(true)] = (vw)(emwbdi.w(). - - -)
[p1(0)] = (v)(Gww(z).)
This mapping benefits from the unique name generation of the m-calculus
which neatly models passing the method names as a ‘capability’. Furthermore,

4

C. B. JONES

replication is a perfect model for the way in which a class can be used to gener-
ate any number of objects. Most importantly, the result of such a mapping is
an expression in a language whose algebra and equivalence notions have been
studied. This has enabled David Walker (in [16]) to prove both the specific
transformation discussed for Figure 1 and a more complex example involving
returning values from a tree representation of a symbol table.

The general proof that the equivalence laws hold in all cases are however
more troublesome (see [10] for an outline proof which is not completely formal).
Basically one might hope that the interactions with local (models of) instance
variables could be hidden in a way which would make it possible to prove
bi-simulation. While this is true for the specific proofs, in the general ToSA
commutativity results, one has to argue about statements which are unknown
(but satisfy stated conditions); here, what one needs is to find w-calculus
conditions that follow from those at the higher level and are useful in the
proof. The essence is saying what can’t happen. Because unique references
cannot be passed at the moBA level, one would like to be able to say that
(the names corresponding to) references can only occur in subject positions —
unfortunately, accessing the names from the local instance variables violates
this by passing the name out in an object position.

In fact, the SOS has the advantage that the local state shows precisely
the limitation that these communications are intended to be local. This has
prompted an experiment with local state indices to processes: the state index
idea is really a layer of syntactic sugar which brings the level of the 7-calculus
closer to mofBA. Using state indices the mapping becomes

[Bit] = ! (va)(bita. Bz{v + false})
Bzo = (ay(wz).w.Bz(o t {v — z}) + a,(w).w(c(v)).Bz0)
It is hoped to complete formal proofs of the equivalences in the near future.
There are then plenty of interesting challenges remaining. Most notably, the

development rules for rely/guarantee-conditions need to be re-expressed for
mofA and justified against the semantics.

Acknowledgements

The author was grateful to John Mitchell for the invitation to contribute to
the special session on object-oriented languages. The research supported here
has been greatly helped (and made much more enjoyable) by collaboration
with Haruo Yamaguchi, Kohei Honda, Steve Hodges and Pierre Collette. The
author gratefully acknowledges the support of EPSRC funding for his research.

References

[1] J. C. M. Baeten, editor. Applications of Process Algebra. Cambridge University
Press, 1990.

[2] E. Best, editor. CONCUR’93: 4th International Conference on Concurrency
Theory, Lecture Notes in Computer Science 715 (1993). Springer-Verlag.

5

C. B. JONES

[3] M-C. Gaudel and J-P. Jouannaud, editors. TAPSOFT’93: Theory and Practice
of Software Development, Lecture Notes in Computer Science 668 (1993).
Springer-Verlag.

[4] K. Honda and M. Tokoro. A small calculus for concurrent objects. ACM,
OOPS Messenger 2(2) (1991), p. 50-54.

[6] T. Ito and A. R. Meyer, editors. TACS’91 — Proceedings of the International
Conference on Theoretical Aspects of Computer Science, Senda:, Japan,
Lecture Notes in Computer Science 526 (1991). Springer-Verlag.

[6] C. B. Jones. An object-based design method for concurrent programs.
Technical Report UMCS-92-12-1, Manchester University, 1992.

[7] C. B. Jones. Constraining interference in an object-based design method. In
[3] (1993), p. 136-150.

8] C. B. Jones. A pi-calculus semantics for an object-based design notation. In
g
[2] (1993), pages 158-172.

[9] C. B. Jones. Reasoning about interference in an object-based design method.
In [17] (1993), p. 1-18.

[10] C. B. Jones. Process algebra arguments about an object-based design notation.
In [13], Chapter 14, p. 231-246. 1994.

[11] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[12] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes.
Information and Computation, 100 (1992), pp. 1-77.

[13] A. W. Roscoe, editor. A Classical Mind: Essays in Honour of C. A. R. Hoare.
Prentice-Hall, 1994.

[14] F. W. Vaandrager. Process algebra semantics of POOL. In [1] (1990), p. 173-
236.

[15] D. Walker. w-calculus semantics for object-oriented programming languages.
In [5] (1991), p. 532-547.

[16] D. Walker. Process calculus and parallel object-oriented programming
languages. In International Summer Institute on Parallel Computer
Architectures, Languages, and Algorithms, Prague, 1993.

[17] J. C. P. Woodcock and P. G. Larsen, editors. FME’93: Industrial-Strength
Formal Methods, Lecture Notes in Computer Science 670 (1993). Springer-
Verlag, 1993.

