
Electronic Notes in Theoretical Computer Science � ������
URL� http���www�elsevier�nl�locate�entcs�volume��html � pages

Fixing the Semantics of Some
Concurrent Object�Oriented Concepts�

Extended Abstract

C� B� Jones

Department of Computer Science�

University of Manchester�

Manchester� U�K�

Abstract

Concurrent object�oriented languages provide a suitable target for a compositional

design process that copes with the interference inherent with concurrency� Fix�

ing the semantics of an object�based design language has been undertaken using

structured operational semantics and by a mapping to the pi�calculus� These two

approaches are outlined and contrasted� In particular� the di�culties in the two ap�

proaches of justifying the proof rules of the proposed design method are explained�

The language �o�� is intended as a design language for concurrent object�

oriented programs� A description of the development methods envisaged can

be found in ����� �the material from both of these conference papers is avail�

able electronically as ���	 and is brie
y discussed in another extended abstract

in these proceedings� Because it is not itself intended as a programming lan�

guage� �o�� is relatively small �an even smaller subset of �o�� is considered

in this extended abstract	� It is necessary to �x the semantics of �o�� in

order to justify the development steps proposed in ������ for example� ��� uses

an equivalence on programs which facilitates an increase in concurrency� �It is

important to note that it is not intended that the user of the proposed devel�

opment method is aware of this presentation of the semantics such developers

use the justi�ed rules only�	 Consider the �program� in Figure � which imple�

ments a sorted priority queue over a linked list of object instances� Notice that

the reference contained in l is marked as unique such a reference is de�ned

to be one which is never �copied� nor which has other references passed over

it� The equivalence rule which permits the return statement to be commuted

to the head of the method �thus releasing the rendez�vous	 is

S � return e can be replaced by return e�S

providing

�i	 S contains no return statement and always terminates�

�ii	 e is not a�ected by S � and

c����� Elsevier Science B� V�Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81998075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

C� B� Jones

Sort class

vars v N � nil� l unique ref�Sort	� nil

ins�x N	 method

begin

if is�nil�v	 then �v � x � l � new Sort	

elif v � x then l �ins�x 	

else �l �ins�v	� v � x 	

�

�

return

end
���

end Sort

Fig� �� An example �o�� program

�iii	 S only invokes methods reachable by unique references�

To illustrate the main points of the semantics� it is su�cient to consider

the following �reduced	 abstract syntax

Cdef ivars Id
m

�� Type

mm Id
m

�� Mdef

Type � UniqueRef j SharedRef j Bool

Mdef r �Type�

pl �Id �Type	�

b Stmt

Stmt � New j Call j Assign j � � � j Return

New lhs Id

cn Id

al Expr�

Call lhs Id

call Mref

Mref obj Id

mn Id

al Expr�

Assign lhs Id

rhs Expr

Return r �Expr �

The structured operational semantics is presented at two levels� For the

statement level

s

�� �Stmt� � �	� �Stmt� � �	

�

C� B� Jones

where the values of instance variables are given by

� � Id
m

�� Val

For example� the transition rule for assignment statements is

��x � e�y l � �	
s

� �l � � y fx �� ��e���g	

Rules for other basic statements are straightforward�

To de�ne the global transitions� one needs

O � Oid
m

�� �Stmt� ��	

M � Oid
m

�� Id

C � Id
m

�� Cdef

The promotion of the statement level transitions is covered by

O��	 � �l � �	

�l � �	
s

� �l �� ��

	

C � �O �M 	
g

� �O y f� �� �l �� ��

	g�M 	

The global rules for the remaining statements can now be presented� For

the new statement

O��	 � ��x � new A�y l � �	

� �	 domO

C � �O �M 	
g

� �O y

�
��
��
� �� �l � � y fx �� �g	�

� �� �� �� f g	

�
��
�� �M
 f� �� Ag	

To initiate a method call

O��	 � ��x � v �m�	�
y l � �	

��v	 � �

O��	 � �� �� �
�

	

C � �O �M 	
g

� �O y

�
��
��
� �� ��wait��� x 	�y l � �	�

� �� �mm�C �M ��			�m	� �
�

	

�
��
�� �M 	

To terminate the rendez�vous of a call

O��	 � ��wait��� x 	�y l � �	

O��	 � ��return�e	�y l �� ��

	

C � �O �M 	
g

� �O y

���
��
� �� �l � � y fx �� ��e����

g	�

� �� �l �� ��

	

���
��
�M 	

�

C� B� Jones

This SOS was not the �rst version written earlier versions followed more

closely the operational semantics of �for example� the ��calculus itself and

presented separate statement level transitions for method call and receipt etc�

this made the matching of send�receive pairs more opaque�

But even the SOS above presents hurdles to the proof of �o�� equivalences�

One is forced to present a low level of granularity �to permit interleaving of

steps in di�erent objects	 only to prove that this is not necessary� This is

compounded by the fact that there is no algebra for reasoning about such SOS

de�nitions one is almost always forced to induction over the computation�

A number of authors have looked at presenting the semantics of imper�

ative languages in general by mapping to process algebras �e�g� ���� Chap�

ter ��	� several authors have extended this idea to tackle object�oriented

languages ��������������� Here� a mapping to the ��rst�order	 polyadic ��

calculus ���� is given�

Processes �typical elements P �Q	

P � N j P j Q j �P j ��x �P

Normal processes �typical elements M �N 	

N � ��P j � j M �N

Pre�xes �typical element �	

� � x �ey� j x ey

The following abbreviation is used

ey
def
� y�y� � � �yn

It is straightforward to model Boolean values and to mimic the sequencing

of composite statements� To illustrate the mapping for simple classes� consider

Bit class

vars v B � false

w�x B 	 method v � x � return

r�	 method return v

end Bit

This can be mapped to

��Bit �� � � �� e���bit e��I
e�
	

I
e�
� ��sa��V j B

e�
		

V � ��t ��tbf j � t�x 	��ax �tx� s�y��ty		

B
e�
� ��w ��x ��sx ���B

e�
��r ����a�x ���x �B

e�
	

and

��new Bit �� � bit �e��� � � �

��p�w�true	�� � ������w�bt ����� � � �	

��p�r�	�� � ������r����x �� � � �	

This mapping bene�ts from the unique name generation of the ��calculus

which neatly models passing the method names as a �capability�� Furthermore�

�

C� B� Jones

replication is a perfect model for the way in which a class can be used to gener�

ate any number of objects� Most importantly� the result of such a mapping is

an expression in a language whose algebra and equivalence notions have been

studied� This has enabled David Walker �in ����	 to prove both the speci�c

transformation discussed for Figure � and a more complex example involving

returning values from a tree representation of a symbol table�

The general proof that the equivalence laws hold in all cases are however

more troublesome �see ���� for an outline proof which is not completely formal	�

Basically one might hope that the interactions with local �models of	 instance

variables could be hidden in a way which would make it possible to prove

bi�simulation� While this is true for the speci�c proofs� in the general �o��

commutativity results� one has to argue about statements which are unknown

�but satisfy stated conditions	� here� what one needs is to �nd ��calculus

conditions that follow from those at the higher level and are useful in the

proof� The essence is saying what can�t happen� Because unique references

cannot be passed at the �o�� level� one would like to be able to say that

�the names corresponding to	 references can only occur in subject positions �

unfortunately� accessing the names from the local instance variables violates

this by passing the name out in an object position�

In fact� the SOS has the advantage that the local state shows precisely

the limitation that these communications are intended to be local� This has

prompted an experiment with local state indices to processes the state index

idea is really a layer of syntactic sugar which brings the level of the ��calculus

closer to �o��� Using state indices the mapping becomes

��Bit �� � � �� e���bit e��B
e�
fv �� falseg	

B
e�
� � ��w ��x ����B

e�
�� y fv �� xg	� �r ��������v		�B

e�
�	

It is hoped to complete formal proofs of the equivalences in the near future�

There are then plenty of interesting challenges remaining� Most notably� the

development rules for rely�guarantee�conditions need to be re�expressed for

�o�� and justi�ed against the semantics�

Acknowledgements

The author was grateful to John Mitchell for the invitation to contribute to

the special session on object�oriented languages� The research supported here

has been greatly helped �and made much more enjoyable	 by collaboration

with Haruo Yamaguchi� Kohei Honda� Steve Hodges and Pierre Collette� The

author gratefully acknowledges the support of EPSRC funding for his research�

References

��� J� C� M� Baeten� editor� Applications of Process Algebra� Cambridge University
Press� �����

�	� E� Best� editor� CONCUR���� �th International Conference on Concurrency

Theory� Lecture Notes in Computer Science ���
������ Springer�Verlag�

�

C� B� Jones

��� M�C� Gaudel and J�P� Jouannaud� editors� TAPSOFT���� Theory and Practice

of Software Development� Lecture Notes in Computer Science ���
������
Springer�Verlag�

�� K� Honda and M� Tokoro� A small calculus for concurrent objects� ACM�

OOPS Messenger �
	�
������ p� �����

��� T� Ito and A� R� Meyer� editors� TACS��� � Proceedings of the International

Conference on Theoretical Aspects of Computer Science� Sendai� Japan�
Lecture Notes in Computer Science ���
������ Springer�Verlag�

��� C� B� Jones� An object�based design method for concurrent programs�
Technical Report UMCS��	��	��� Manchester University� ���	�

��� C� B� Jones� Constraining interference in an object�based design method� In
���
������ p� ��������

��� C� B� Jones� A pi�calculus semantics for an object�based design notation� In
�	�
������ pages ������	�

��� C� B� Jones� Reasoning about interference in an object�based design method�
In ����
������ p� �����

���� C� B� Jones� Process algebra arguments about an object�based design notation�
In ����� Chapter �� p� 	���	�� ����

���� R� Milner� Communication and Concurrency� Prentice Hall� �����

��	� R� Milner� J� Parrow� and D� Walker� A calculus of mobile processes�
Information and Computation� ���
���	�� pp� �����

���� A� W� Roscoe� editor� A Classical Mind� Essays in Honour of C� A� R� Hoare�
Prentice�Hall� ����

��� F� W� Vaandrager� Process algebra semantics of POOL� In ���
������ p� ����
	���

���� D� Walker� ��calculus semantics for object�oriented programming languages�
In ���
������ p� ��	����

���� D� Walker� Process calculus and parallel object�oriented programming
languages� In International Summer Institute on Parallel Computer

Architectures� Languages� and Algorithms� Prague� �����

���� J� C� P� Woodcock and P� G� Larsen� editors� FME���� Industrial	Strength

Formal Methods� Lecture Notes in Computer Science ���
������ Springer�
Verlag� �����

�

