Cardinal functions of Pixley–Roy hyperspaces

Masami Sakai 1

Department of Mathematics, Kanagawa University, Yokohama 221-8686, Japan

Abstract
Let \(F[X] \) be the Pixley–Roy hyperspace of a regular space \(X \), and let \(F_n[X] = \{ F \in F[X] : |F| \leq n \} \). For tightness \(t \) and supertightness \(st \), we show the following equalities:

1. \(t(F[X]) = \sup \{ st(X^n) : n \in \mathbb{N} \} \),
2. \(\sup \{ t(F_n[X]) : n \in \mathbb{N} \} = \sup \{ t(X^n) : n \in \mathbb{N} \} \).

The first equality answers a question posed in Sakai (1983) [18]. The inequality \(\sup \{ t(X^n) : n \in \mathbb{N} \} \leq \sup \{ st(X^n) : n \in \mathbb{N} \} \) is strict, indeed there is a space \(Z \) such that \(\sup \{ t(X^n) : n \in \mathbb{N} \} < \sup \{ st(X^n) : n \in \mathbb{N} \} \). The discrete countable chain condition and weak Lindelöf property of \(F[X] \) are also investigated.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

All spaces are assumed to be regular. The symbol \(\mathbb{N} \) is the set of all positive integers. Unexplained notions and terminology are the same as in [7].

For a space \(X \), let \(F[X] \) be the space of all nonempty finite subsets of \(X \) with the Pixley–Roy topology [14]: for \(A \in F[X] \) and an open set \(U \subseteq X \), let

\[
[A, U] = \{ B \in F[X] : A \subseteq B \subseteq U \};
\]

the family \([A, U] : A \in F[X], U \text{ open in } X\) is a base for the Pixley–Roy topology. It is known that for a \(T_1 \)-space \(X \), \(F[X] \) is always zero-dimensional, completely regular and every subspace of \(F[X] \) is metacompact: see van Douwen [6]. For each \(n \in \mathbb{N} \), we put \(F_n[X] = \{ F \in F[X] : |F| \leq n \} \). Each \(F_n[X] \) is closed in \(F[X] \), and each \(F_n[X] \setminus F_{n-1}[X] \) is a discrete space.

The following facts are used in the next section.

Lemma 1.1. ([15, Proposition 1.2]) Let \(Y \) be a subspace of a space \(X \). Then \(F[Y] \) is homeomorphic to the closed subspace \(\{ A \in F[X] : A \subseteq Y \} \) of \(F[X] \).

Lemma 1.2. ([11, Theorem 2.8]) For spaces \(X_1, \ldots, X_k \), \(F[X_1] \times \cdots \times F[X_k] \) can be embedded as a closed subspace of \(F[X_1 \times \cdots \times X_k] \).

E-mail address: sakaim01@kanagawa-u.ac.jp.

1 Supported by KAKENHI (No. 22540154).
2. The tightness of $\mathcal{F}[X]$

Definition 2.1. For a space X and a point $x \in X$, let $t(x, X)$ be the smallest cardinal number $\kappa \geq \omega$ with the property that if $A \subset X$ and $x \in A \setminus \overline{A}$, then there is a subset $B \subset A$ such that $x \in B$ and $|B| \leq \kappa$. The cardinal number $t(X) = \sup\{t(x, X) : x \in X\}$ is called the tightness of X.

Concerning cardinal functions of Pixley–Roy hyperspaces, the following question was posed in [18, Question 2], where $\Psi(X)$ (resp., $\psi_\Delta(X)$) is the closed pseudocharacter (resp., the diagonal degree) of a space X.

Question 2.2. Determine exactly t, Ψ and ψ_Δ on $\mathcal{F}[X]$ in terms of those on X.

Answering this question, Tanaka [20] gave the equalities $\Psi(\mathcal{F}[X]) = \psi_\Delta(\mathcal{F}[X]) = \psi(X)$. In this section, we answer the case of $t(\mathcal{F}[X])$.

For a space X and a point $x \in X$, a family \mathcal{P} of nonempty subsets of X is said to be a π-network at x if every neighborhood of x contains some member of \mathcal{P}.

Definition 2.3. ([13]) For a space X and a point $x \in X$, let $st(x, X)$ be the smallest cardinal number $\kappa \geq \omega$ with the property that if \mathcal{P} is a π-network at x consisting of finite subsets of X^n, then there is a subfamily $\mathcal{Q} \subset \mathcal{P}$ such that \mathcal{Q} is a π-network at x and $|\mathcal{Q}| \leq \kappa$. The cardinal number $st(x, X) = \sup\{st(x, X) : x \in X\}$ is called the supertightness of X.

The supertightness of a space X was denoted by $p(X)$ in [13]. Obviously $t(X) \leq st(X)$ holds. There is a supercompact Fréchet–Urysohn space Z with $st(Z) = 2^\omega$ [13, Example 2.6].

Theorem 2.4. For a space X, the equality $t(\mathcal{F}[X]) = \sup\{st(X^n) : n \in \mathbb{N}\}$ holds.

Proof. Assume $t(\mathcal{F}[X]) = \kappa$, and fix an $n \in \mathbb{N}$ and a point $x = (x_1, \ldots, x_n) \in X^n$. We show $st(x, X^n) \leq \kappa$. Let \mathcal{P} be a π-network at x consisting of finite subsets of X^n. We take an open neighborhood U_1 of x_1 such that $U_i = U_j$ if $x_i = x_j$, and $U_1 \cap U_j = \emptyset$ if $x_1 \neq x_j$. Let $A = \{x_1, \ldots, x_n\}$ and $U = U_1 \cup \cdots \cup U_n$. Let

$$\mathcal{D} = \{F \in [A, U] : \text{there is a member } P \in \mathcal{P} \text{ with } P \subset (U_1 \times \cdots \times U_n) \cap F^n\}.$$

We observe $A \in \mathcal{D}$. Take any basic open neighborhood $[A, V]$ of A. Since \mathcal{P} is an open neighborhood of x, there is a member $P \in \mathcal{P}$ with $P \subset (U_1 \times \cdots \times U_n) \cap (V \cap F^n) \neq \emptyset$. Let

$$F = A \cup p_1(P) \cup \cdots \cup p_n(P),$$

where p_i is the projection of X^n to the i-th coordinate. Obviously $F \in [A, V] \cap [A, U]$. Since F^n contains P, $P \subset (U_1 \times \cdots \times U_n) \cap F^n$, thus $F \in [A, V] \cap \mathcal{D}$. Since $t(\mathcal{F}[X]) = \kappa$, there is a subfamily $\{F_\alpha : \alpha < \kappa\} \subset \mathcal{D}$ such that $A \in \{F_\alpha : \alpha < \kappa\}$. For each $\alpha < \kappa$, take a member $P_\alpha \in \mathcal{P}$ such that $P_\alpha \subset (U_1 \times \cdots \times U_n) \cap (F_\alpha \cap F^n)$. We observe that $\{P_\alpha : \alpha < \kappa\}$ is a π-network at x. Let $W_1 \times \cdots \times W_n$ be an open neighborhood of x, where W_i is an open neighborhood of x_i such that $W_i \subset U_i$, and $W_i = W_j$ if $x_i = x_j$. Take some $\alpha < \kappa$ with $F_\alpha \in [A, W_1 \cup \cdots \cup W_n]$. Then we have

$$P_\alpha \subset (U_1 \times \cdots \times U_n) \cap (F_\alpha \cap F^n) \subset (U_1 \times \cdots \times U_n) \cap (W_1 \cup \cdots \cup W_n)^n = W_1 \times \cdots \times W_n.$$

Thus $st(x, X^n) \leq \kappa$.

Conversely assume $\sup\{st(X^n) : n \in \mathbb{N}\} = \kappa$. We show $t(\mathcal{F}[X]) \leq \kappa$. Let $A = \{x_1, \ldots, x_n\} \in \mathcal{F}[X]$ and assume $A \in \overline{A} \setminus \overline{A}$ for $A \subset \mathcal{F}[X]$. Take an open neighborhood U_1 of x_1 such that $U_i \cap U_j = \emptyset$ if $i \neq j$. Since $[A, U_1 \cup \cdots \cup U_n]$ is an open neighborhood of A, we may assume $A \subset [A, U_1 \cup \cdots \cup U_n]$. Let

$$\mathcal{P} = \{(U_1 \cap B) \times \cdots \times (U_n \cap B) : B \in \mathcal{A}\}.$$

Obviously each member of \mathcal{P} is nonempty and finite. We observe that \mathcal{P} is a π-network at the point $x = (x_1, \ldots, x_n) \in X^n$. Let $W_1 \times \cdots \times W_n$ be an open neighborhood of x, where $W_i \subset U_i (1 \leq i \leq n)$. Take a point $B \in [A, W_1 \cup \cdots \cup W_n] \cap \mathcal{A}$. Then

$$(U_1 \cap B) \times \cdots \times (U_n \cap B) = (W_1 \cap B) \times \cdots \times (W_n \cap B) \subset W_1 \times \cdots \times W_n.$$

Thus \mathcal{P} is a π-network at x. By $st(x, X^n) \leq \kappa$, there is a subfamily $\mathcal{B}_\alpha : \alpha < \kappa \subset \mathcal{A}$ such that $\{(U_1 \cap B_\alpha) \times \cdots \times (U_n \cap B_\alpha) : \alpha < \kappa\}$ is a π-network at x. We observe $A \in \{B_\alpha : \alpha < \kappa\}$. Take a basic open neighborhood $[A, V]$ of A. Since $(U_1 \cap V) \times \cdots \times (U_n \cap V)$ is an open neighborhood of x, there is some $\alpha < \kappa$ such that

$$(U_1 \cap B_\alpha) \times \cdots \times (U_n \cap B_\alpha) \subset (U_1 \cap V) \times \cdots \times (U_n \cap V).$$

Since B_α is contained in $U_1 \cup \cdots \cup U_n$ (remember $\mathcal{A} \subset [A, U_1 \cup \cdots \cup U_n]$),

$$B_\alpha = (U_1 \cap B_\alpha) \cup \cdots \cup (U_n \cap B_\alpha) \subset (U_1 \cap V) \cup \cdots \cup (U_n \cap V) \subset V.$$

Hence $B_\alpha \subset [A, V]$. Thus we have $t(A, \mathcal{F}[X]) \leq \kappa$. □
Lemma 2.5. If a family \(\{X_n: n \in \mathbb{N}\} \) of spaces has the property that \(st(X_1 \times \cdots \times X_n) \leq \kappa \) for all \(n \in \mathbb{N} \), then \(st(\prod_{n \in \mathbb{N}} X_n) \leq \kappa \).

Proof. Let \(x = (x_n)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} X_n \) and \(\mathcal{P} \) be a \(\pi \)-network at \(x \) of finite subsets of \(\prod_{n \in \mathbb{N}} X_n \). For each \(n \in \mathbb{N} \), let \(\mathcal{Q}_n = \{p_n(P): P \in \mathcal{P}\} \), where \(p_n: \prod_{n \in \mathbb{N}} X_n \to X_1 \times \cdots \times X_n \) be the projection. Then \(\mathcal{Q}_n \) is a \(\pi \)-network at \((x_1, \ldots, x_n) \). For each \(n \in \mathbb{N} \), take a subfamily \(\mathcal{P}_n \subset \mathcal{P} \) such that \(|\mathcal{P}_n| \leq \kappa \) and \(\{p_n(P): P \in \mathcal{P}_n\} \) is a \(\pi \)-network at \((x_1, \ldots, x_n) \). Let \(\mathcal{P}' = \bigcup \{\mathcal{P}_n: n \in \mathbb{N}\} \), then \(|\mathcal{P}'| \leq \kappa \) and \(\mathcal{P}' \) is a \(\pi \)-network at \(x \). \(\square \)

By Theorem 2.4 and the preceding lemma, we have the following.

Corollary 2.6. For a space \(X \), the equality \(t(\mathcal{F}[X]) = st(\mathcal{X}^X) \) holds.

For a space \(X \), let \(\mathcal{F}^1[X] = \mathcal{F}[X] \), and let \(\mathcal{F}^n[X] = \mathcal{F}[\mathcal{F}^{n-1}[X]] \) for \(n \geq 2 \). The \(n \)-times power of \(\mathcal{F}[X] \) is denoted by \(\mathcal{F}^n[X] \).

Proposition 2.7. The following statements hold:

1. \(t(\mathcal{F}[X]) = st(\mathcal{F}[X]) \).
2. \(t(\mathcal{F}[X]) = t(\mathcal{F}^2[X]) \) for all \(n \in \mathbb{N} \).
3. \(t(\mathcal{F}[X]) = t(\mathcal{F}^n[X]) \) for all \(n \in \mathbb{N} \).
4. \(t(\mathcal{F}[X]) = t(\mathcal{F}^n[X]) \) for all \(n \in \mathbb{N} \).

Proof. (1): Assume \(t(\mathcal{F}[X]) = \kappa \). Let \(A \in \mathcal{F}[X] \) and let \(\mathcal{P} \) be a \(\pi \)-network at \(A \) consisting of finite subsets of \(\mathcal{F}[X] \). Without loss of generality, we may assume \(A \subset [A, X] \) for all \(A \in \mathcal{P} \) (i.e., every member of \(\bigcup \{A: A \in \mathcal{P}\} \) contains \(A \)). For each \(A \in \mathcal{P} \), let \(F(A) = \bigcup A \). Note that for a basic open neighborhood \([A, U] \in \mathcal{F} \), \(F(A) \in [A, U] \) if and only if \(A \subset [A, U] \). We observe \(A \in [F(A): A \in \mathcal{P}] \). Take any basic open neighborhood \([A, U] \in \mathcal{F} \). Then \(A \subset [A, U] \) for some \(A \in \mathcal{P} \), hence \(F(A) \in [A, U] \). By \(t(\mathcal{F}[X]) = \kappa \), there is a subfamily \(\mathcal{Q} \subset \mathcal{P} \) such that \(|\mathcal{Q}| \leq \kappa \) and \(A \in [F(A): A \in \mathcal{Q}] \). This implies \(\mathcal{Q} \) is a \(\pi \)-network at \(A \). Thus we have \(st(\mathcal{F}[X]) \leq \kappa \).

(2): Fix an \(n \in \mathbb{N} \). Using Lemma 1.1, we immediately have \(t(\mathcal{F}[X]) \leq t(\mathcal{F}^n[X]) \). Conversely let \(t(\mathcal{F}[X]) = \kappa \). Then, by Theorem 2.4, the supertightness of every finite power of \(X \) is less than or equal to \(\kappa \), so is the supertightness of every finite power of \(X^n \). By Theorem 2.4, we have \(t(\mathcal{F}^n[X]) \leq \kappa \).

(3): This follows from the previous statement (2) and Lemma 1.2.

(4): First we show the equality \(t(\mathcal{F}[X]) = t(\mathcal{F}^2[X]) \). By Theorem 2.4,

\[
\text{Then obviously } \sup \{st(\mathcal{F}^n[X]): n \in \mathbb{N}\} \geq \sup \{st(\mathcal{F}^n[X]): n \in \mathbb{N}\} \geq t(\mathcal{F}[X]). \]

Thus we have \(t(\mathcal{F}^2[X]) \geq t(\mathcal{F}[X]) \). On the other hand, using Lemma 1.2 and the statements (1), (2) in this proposition, we have \(\sup \{st(\mathcal{F}^n[X]): n \in \mathbb{N}\} \leq \sup \{st(\mathcal{F}^n[X]): n \in \mathbb{N}\} \leq t(\mathcal{F}^2[X]) \). Thus \(t(\mathcal{F}^2[X]) \leq t(\mathcal{F}[X]) \). Inductively we have \(t(\mathcal{F}^n[X]) \leq t(\mathcal{F}^{n+1}[X]) \).

We denote by \(hd(X) \) (resp., \(hl(X) \)) the hereditary density (resp., hereditary Lindelöf degree) of a space \(X \).

Proposition 2.8. For a space \(X \), \(t(\mathcal{F}[X]) \leq \sup(\text{hd}(X^n)): n \in \mathbb{N} \) holds.

Proof. Let \(\kappa = \sup(\text{hd}(X^n)): n \in \mathbb{N} \). First we show \(st(X) \leq \kappa \). Let \(x \in X \) and \(\mathcal{P} \) be a \(\pi \)-network at \(x \) of finite subsets of \(X \). For each \(n \in \mathbb{N} \), let \(\mathcal{P}_n = \{P \in \mathcal{P}: |P| = n\} \). For each \(P \in \mathcal{P}_n \), put \(P = (x_1(P), \ldots, x_n(P)) \) and \(x(P) = (x_1(P), \ldots, x_n(P)) \in X^n \). By \(\text{hd}(X^n) \leq \kappa \), we can take a subfamily \(\mathcal{Q}_n \subset \mathcal{P}_n \) such that \(|\mathcal{Q}_n| \leq \kappa \) and \(x(Q) = (x_1(P), \ldots, x_n(P)) \). On the other hand, using Lemma 1.2 and the statements (1), (2) in this proposition, we have \(\sup(\text{hd}(X^n)): n \in \mathbb{N} \) \leq \sup(\text{hd}(X)): n \in \mathbb{N} \) \leq t(\mathcal{F}^2[X]) \). Thus \(t(\mathcal{F}^2[X]) \leq t(\mathcal{F}[X]) \). In the equality \(t(\mathcal{F}^2[X]) = t(\mathcal{F}[X]) \), replacing \(X \) by \(\mathcal{F}[X] \), we have \(t(\mathcal{F}^2[X]) = t(\mathcal{F}^2[X]) \). Inductively we have \(t(\mathcal{F}^n[X]) = t(\mathcal{F}^n[X]) \).

We denote by \(hd(X) \) (resp., \(hl(X) \)) the hereditary density (resp., hereditary Lindelöf degree) of a space \(X \).

Remark 2.9. For a Tychonoff space \(X \), we denote by \(C_p(X) \) the space of all real-valued continuous functions on \(X \) with the topology of pointwise convergence. Let \(l(X) \) be the Lindelöf degree of a space \(X \). In [17, Theorem 2.1], the inequality \(\text{sup}(\text{hd}(X^n)): n \in \mathbb{N} \) \leq l(C_p(X)) \) was proved for a Tychonoff space \(X \). Moreover, Zenor gave the equality \(hl(C_p(X)) = \text{sup}(\text{hd}(X^n)): n \in \mathbb{N} \) in [23, Theorem 4*]. Hence, for a Tychonoff space \(X \), we have

\[
t(\mathcal{F}[X]) \leq l(C_p(X)) \leq hl(C_p(X)) = \text{sup}(\text{hd}(X^n)): n \in \mathbb{N} \).
\]

Now we show the second equality.
Lemma 2.10. Let \(k \in \mathbb{N} \) and assume \(t(X^k) \leq \lambda \). If \(x \in X \) and \(\mathcal{P} \) is a \(\pi \)-network at \(x \) such that \(|P| = k \) for all \(P \in \mathcal{P} \), then there is a subfamily \(\mathcal{P}^* \subset \mathcal{P} \) such that \(|\mathcal{P}^*| \leq \lambda \) and \(\mathcal{P}' \) is a \(\pi \)-network at \(x \).

Proof. For each \(P \in \mathcal{P} \), let \(P = \{x_1(P), \ldots, x_k(P)\} \) and \(x(P) = (x_1(P), \ldots, x_k(P)) \). Then the point \((x, \ldots, x) \in X^k \) is in the closure of \(\{x(P) : P \in \mathcal{P}\} \subset X^k \). Using \(t(X^k) \leq \lambda \), we have a subfamily \(\mathcal{P}^* \subset \mathcal{P} \) such that \(|\mathcal{P}^*| \leq \lambda \) and the point \((x, \ldots, x) \in X^k\) is in the closure of \(\{x(P) : P \in \mathcal{P}^*\} \). Obviously \(\mathcal{P}' \) is a \(\pi \)-network at \(x \).

Lemma 2.11. Let \(m, k \in \mathbb{N} \) and assume \(t(X^{mk}) \leq \lambda \). If \(x \in X^m \) and \(\mathcal{P} \) is a \(\pi \)-network at \(x \) in \(X^m \) such that \(|P| = k \) for all \(P \in \mathcal{P} \), then there is a subfamily \(\mathcal{P}' \subset \mathcal{P} \) such that \(|\mathcal{P}'| \leq \lambda \) and \(\mathcal{P}' \) is a \(\pi \)-network at \(x \).

Proof. In Lemma 2.10, replace \(X \) by \(X^m \).

Theorem 2.12. For a space \(X \), the equality \(\sup(t(F_n[X])) : n \in \mathbb{N} \) = \(\sup(t(X^n)) : n \in \mathbb{N} \) holds.

Proof. Assume \(\sup(t(F_n[X])) : n \in \mathbb{N} \leq \lambda \). We show \(t(X^n) \leq \lambda \) for all \(n \in \mathbb{N} \). Fix an \(n \in \mathbb{N} \). Let \(x = (x_1, \ldots, x_n) \in X^n \), and \(x \in Y \) \(\setminus \{Y\} \). Take an open neighborhood \(U_1 \) of \(x \) such that \(U_1 = U_1 \) if \(x_1 = x_2 \), and \(U_1 \cap U_2 = \emptyset \) if \(x_1 \neq x_2 \). We may assume \(Y \subset U_1 \times \cdots \times U_n \). Let \(A = \{x_1, \ldots, x_n\} \). For each \(y = (y_1, \ldots, y_n) \in Y \), we put \(F(y) = A \cup \{y_1, \ldots, y_n\} \in F_{2n}[X] \). Let \(A = \{y : y \in Y\} \). We observe \(A \notin \lambda \). Obviously \(A \notin \mathcal{A} \), because of \(x \notin Y \). Take a basic open neighborhood \([A, V] \) of \(A \). Since \(x \in V^n \), there is a \(y = (y_1, \ldots, y_n) \in Y \). Using \(t(F_{2n}[X]) \leq \lambda \), we have a subset \(\lambda \subset Y \) such that \(|\lambda| \leq \lambda \) and \(A = \{F(y) : y \in \lambda\} \). We observe \(x \in \lambda \). Take a basic open neighborhood \(W_1 \times \cdots \times W_m \) of \(x \), where \(W_1 \subset U_1 \), and \(W_i = W_j \) if \(x_i = x_j \). By \(\mathcal{A} \), there is a \(y \in Y \) such that \(F(y) \in [A, W_1 \cup \cdots \cup W_n] \). Then \(y_1, \ldots, y_n \in W_1 \cup \cdots \cup W_n \), and \(y_i \in U_i \cap (W_1 \cup \cdots \cup W_n) \). Thus \(y \in W_1 \times \cdots \times W_n \), consequently \(t(X^n) \leq \lambda \).

Conversely assume \(\sup(t(X^n)) : n \in \mathbb{N} = \sup(t(F_n[X])) : n \in \mathbb{N} \leq \lambda \). Since \(F_1[X] \) is discrete, obviously \(t(F_1[X]) \leq \lambda \). Fix any \(n > 1 \), and assume \(t(F_{n-1}[X]) \leq \lambda \). Let \(A \in F_n[X] \). \(A \subset F_n[X] \) and \(A \in \mathcal{A} \). Since every point in \(F_n[X] \setminus F_{n-1}[X] \) is isolated in \(F_n[X] \), there is a \(1 \leq m \leq n \) such that \(A \not\in F_n[X] \setminus F_{m-1}[X] \). If \(A \not\in \mathcal{A} \setminus (F_{m-1}[X] \setminus F_{m-1}[X]) \), then by \(t(F_{m-1}[X]) \leq \lambda \) there is nothing to prove. Assume \(A \not\in \mathcal{A} \setminus (F_{m-1}[X] \setminus F_{m-1}[X]) \). Let \(A = \{a_1, \ldots, a_m\} \) and take an open neighborhood \(U(a_i) \) of \(a_i \) such that \(U(a_i) \cup U(a_j) = \emptyset \) if \(i \neq j \). Considering the basic open neighborhood \([A, U_1 \cup \cdots \cup U_m] \) of \(A \), we may assume \(A \subset [A, U_1 \cup \cdots \cup U_m] \). Let \(A = \{a_1, \ldots, a_m\} \) and take an open neighborhood \(U(a_i) \) of \(a_i \) such that \(U(a_i) \cup U(a_j) = \emptyset \) if \(i \neq j \). Let \(P = \{a_i : 1 \leq i \leq k \} \subset X^m \) and \(\mathcal{P} = \{P : F \in \mathcal{A}\} \). Note that \(|P| = k \) for all \(P \in \mathcal{A} \). We observe that \(\mathcal{P} \) is a \(\pi \)-network at \((a_1, \ldots, a_m) \). Take a basic open neighborhood \(V_1 \times \cdots \times V_m \) of \((a_1, \ldots, a_m) \), where \(V_i \subset U_i \) for all \(i \). By \(\mathcal{A} \), there is an \(\mathcal{F} \in [V_1 \cup \cdots \cup V_m] \cap \mathcal{A} \). Then for each \(1 \leq i \leq k \), \(x_i \in U(a_i) \). Thus \(x_i \in U_i \cap (V_1 \cup \cdots \cup V_m) \). Hence \(P = \{x_i : 1 \leq i \leq k \} \subset W \) and \(\mathcal{P} = \{P : F \in \mathcal{A}\} \). This implies \(\mathcal{F} \in [A, W] \), consequently \(t(F_n[X]) \leq \lambda \).

Lemma 2.13. ([7, p. 227]) If a family \(X_0 : n \in \mathbb{N} \) of spaces has the property that \(t(X_1 \times \cdots \times X_0) \leq \kappa \) for all \(n \in \mathbb{N} \), then \(t(\prod_{n \in \mathbb{N}} X_0) \leq \kappa \).

By Theorem 2.12 and the preceding lemma, we have the following.

Corollary 2.14. For a space \(X \), the equality \(\sup(t(F_n[X])) : n \in \mathbb{N} = t(X^n) \) holds.

Let \(Z \) be the supercompact space in [13, Example 2.6]. This space satisfies \(t(Z) = \omega \) (indeed, Fréchet–Urysohn) and \(st(Z) = 2^\omega \). Since \(Z \) is compact, \(t(Z^n) = \omega \) for all \(n \in \mathbb{N} \) [7, 3.12.8(f)]. Therefore \(\sup(t(F_n[Z])) : n \in \mathbb{N} = \omega \), but \(t(F[Z]) = 2^\omega \). Let \(S_\kappa \) be the quotient space obtained by identifying all limit points of \(\kappa \) many convergent sequences. It is well known that \(t(S_\kappa \times S_\omega) \) is uncountable. Hence we can see that \(t(F_3[S_\omega]) \) is uncountable.

3. DCCC and CCC of Pixley–Roy hyperspaces

Definition 3.1. A space \(X \) satisfies the discrete countable chain condition (shortly, DCCC) [22] if every discrete family of nonempty open subsets of \(X \) is countable. A space \(X \) satisfies the countable chain condition (shortly, CCC) if every pairwise disjoint family of nonempty open subsets of \(X \) is countable.
In this section, we investigate some properties concerning DCCC and CCC of Pixley–Roy hyperspaces. For convenience of the readers, first of all we give a diagram of the notions appeared in this section, where hl (resp., hd) is hereditary Lindelöf degree (resp., hereditary density).

$$
\mathcal{F}[X] : \sigma \text{-centered} \rightarrow \text{precaliber } \omega_1 \rightarrow \text{CCC} \rightarrow \text{weakly Lindelöf} \rightarrow \text{DCCC}
$$

$X : \text{cosmic} \rightarrow (C) \rightarrow (C^*) \rightarrow (\text{WS}_f) \rightarrow ? \rightarrow ? \rightarrow ?$

$$
l(h(X^\omega)) = hd(X^\omega) = \omega \quad \text{WS} \rightarrow h(X) = hd(X) = \omega
$$

Definition 3.2. A space (X, τ) is σ-centered if $\tau \setminus \{\emptyset\}$ is the union of countably many centered subfamilies. A space X has precaliber ω_1 if for every family $\mathcal{U} = \{U_\alpha : \alpha < \omega_1\}$ of nonempty open subsets of X, there is an uncountable subset $I \subset \omega_1$ such that the family $\{U_\alpha : \alpha \in I\}$ is centered. A space X is weakly Lindelöf if every open cover \mathcal{U} has a countable subfamily $V \subset \mathcal{U}$ such that $\bigcup V$ is dense in X.

For an arbitrary space, each implication of "σ-centered $\rightarrow \cdots \rightarrow \text{DCCC}$" holds obviously, or follows from a simple observation. Note that regularity is needed to show "weakly Lindelöf $\rightarrow \text{DCCC}$".

Definition 3.3. A space is cosmic if it has a countable network. A space X satisfies condition (C) [9, Definition 2] if for every subspace $Y \subset X$ of cardinality ω_1, every open family \mathcal{U} in Y of cardinality ω_1 has a countable network (i.e., there is a countable family N' of subsets of Y such that every member of \mathcal{U} is the union of certain members of N').

Obviously a cosmic space satisfies condition (C). The following two theorems are due to van Douwen, Hajnal and Juhász respectively.

Theorem 3.4. ([6, Lemma 2.2, Theorem 3.3(b)]) A space X is cosmic if and only if $\mathcal{F}[X]$ is σ-centered.

Theorem 3.5. ([9, Theorems 1, 2]) The following hold:

1. If a space X satisfies condition (C), then $\mathcal{F}[X]$ satisfies CCC.
2. Under MA_{ω_1}, $\mathcal{F}[X]$ satisfies CCC if and only if X satisfies condition (C).
3. Under CH, there is a space X such that $\mathcal{F}[X]$ satisfies CCC, but X does not satisfy condition (C).

We introduce condition (C') and recall a weakly separated subset.

Definition 3.6. A space X satisfies condition (C') if for every subset $\{x_\alpha : \alpha < \omega_1\} \subset X$ and a family $\{U_\alpha : \alpha < \omega_1\}$ of open subsets of X with $x_\alpha \in U_\alpha$, there is an uncountable subset $I \subset \omega_1$ such that $\{x_\alpha : \alpha \in I\} \subset \bigcap\{U_\alpha : \alpha \in I\}$. A subset Y of X is weakly separated [21] if for each point $y \in Y$, one can assign an open neighborhood U_y of y such that for distinct $y, y' \in Y$, $y \not\in U_{y'}$ or $y' \not\in U_y$ holds. If a space X has no uncountable weakly separated subset, then we say that X satisfies (WS). If no finite power of a space X has an uncountable weakly separated subset, then we say that X satisfies (WS$_f$).

Condition (C) obviously implies (C'). We can easily see that (C') implies (WS), and that (C') is closed under finite powers. Hence (C') implies (WS$_f$). It is known that, if a space X satisfies (WS$_f$), then $\mathcal{F}[X]$ satisfies CCC [12, Theorem]. Moreover, we can easily see that, if $\mathcal{F}[X]$ satisfies CCC, then X satisfies (WS).

Lemma 3.7. ([23, Theorems 3, 3*]) If a family $\{X_n : n \in \mathbb{N}\}$ of spaces has the property that $X_1 \times \cdots \times X_n$ is hereditarily Lindelöf (resp., hereditarily separable) for all $n \in \mathbb{N}$, then $\prod_{n \in \mathbb{N}} X_n$ is also hereditarily Lindelöf (resp., hereditarily separable).

A weakly separated subset is a common generalization of a left-separated subset and a right-separated subset. Therefore, if a space satisfies (WS), then it is hereditarily Lindelöf and hereditarily separable. In particular, if $\mathcal{F}[X]$ satisfies CCC, then X is hereditarily Lindelöf and hereditarily separable. If a space X satisfies (WS$_f$), then every finite power of X is hereditarily Lindelöf and hereditarily separable, hence X^ω is hereditarily Lindelöf and hereditarily separable by Lemma 3.7.

A cover C of a set X is said to be an ω-cover [8] if every finite subset of X is contained in some member of C.

Lemma 3.8. ([8, Proposition]) Every finite power of a space X is Lindelöf if and only if every open ω-cover of X has a countable ω-subcover.

Lemma 3.9. Let \mathcal{U} be an open family of a space X. Let $V(\mathcal{U}) = \{F \in \mathcal{F}[X] : F \subset U$ for some $U \in \mathcal{U}\}$, then it is open-and-closed in $\mathcal{F}[X]$.

Proof. If \(F \in V(\mathcal{U}) \), then \(F \subseteq U \) for some \(U \in \mathcal{U} \). Obviously \(\{ F, U \} \subseteq V(\mathcal{U}) \), thus \(V(\mathcal{U}) \) is open in \(\mathcal{F}(X) \). On the other hand, if \(F \in \mathcal{F}(X) \setminus V(\mathcal{U}) \), then \(\{ F, X \} \cap V(\mathcal{U}) = \emptyset \), thus \(V(\mathcal{U}) \) is closed in \(\mathcal{F}(X) \). \(\square \)

Theorem 3.10. If \(\mathcal{F}(X) \) satisfies DCCC, then the following hold:

1. \(X \) is hereditarily Lindelöf, in particular \(|X| \leq 2^\omega \).
2. For finitely many open subsets \(U_1, \ldots, U_n \) of \(X \), \(U_1 \times \cdots \times U_n \) is Lindelöf.

Proof. First of all we show that every finite power of \(X \) is Lindelöf. By Lemma 3.8, we have only to show that every open \(\omega \)-cover of \(X \) has a countable \(\omega \)-subcover. Let \(U = \{ U_\alpha : \alpha < \kappa \} \) be an open \(\omega \)-cover of \(X \). For each \(\alpha \in \kappa \), let

\[
V_\alpha = V(\{ U_\alpha \}) \setminus V(\{ U_\beta : \beta < \alpha \}).
\]

By Lemma 3.9, each \(V_\alpha \) is open-and-closed in \(\mathcal{F}(X) \). The family \(\{ V_\alpha : \alpha < \kappa \} \) is a cover of \(\mathcal{F}(X) \). Indeed, let \(F \in \mathcal{F}(X) \) and put \(\gamma = \min\{ \alpha < \kappa : F \subseteq U_\alpha \} \), then \(F \subseteq V_\gamma \). Moreover, \(V_\alpha \cap V_\beta = \emptyset \) if \(\alpha < \beta < \kappa \). Indeed, \(F \in V_\alpha \) implies \(F \subseteq U_\alpha \), and \(F \in V_\beta \) implies \(F \setminus U_\beta \neq \emptyset \), this is a contradiction. Since \(\{ V_\alpha : \alpha < \kappa \} \) is a pairwise disjoint cover consisting of open-and-closed subsets of \(\mathcal{F}(X) \), by DCCC of \(\mathcal{F}(X) \) the set \(\Gamma = \{ \alpha < \kappa : V_\alpha \neq \emptyset \} \) must be countable. Let \(\Gamma = \{ \alpha_n : n \in \omega \} \). We observe that \(\{ U_{\alpha_n} : n \in \omega \} \) is an \(\omega \)-cover of \(X \). Let \(F \in \mathcal{F}(X) \), then there is an \(n \in \omega \) with \(F \subseteq V_{\alpha_n} \). This obviously implies \(F \subseteq U_{\alpha_n} \).

To show that \(X \) is hereditarily Lindelöf, it suffices that every open subset of \(X \) is Lindelöf. Let \(U \) be an open subset of \(X \). It is easy to see that \(\mathcal{F}(U) \) is homeomorphic to the open-and-closed subset \(V(U) \) in \(\mathcal{F}(X) \). Hence \(\mathcal{F}(U) \) also satisfies DCCC, by the argument in the preceding paragraph, \(U \) is Lindelöf. The fact \(|X| \leq 2^\omega \) is well known for hereditarily Lindelöf spaces: see [10, Remark, p. 13].

Let \(U_1, \ldots, U_n \) be open subsets of \(X \). Since \(X \) is hereditarily Lindelöf, every open subset of \(X \) is an \(F_\sigma \)-set. Hence \(U_1 \times \cdots \times U_n \) is an \(F_\sigma \)-subset of the Lindelöf space \(X^n \), therefore it is Lindelöf. \(\square \)

Example 3.11. Let \(X \) be the two arrows space [7, 3.10.C]. This space \(X \) is compact, first-countable, hereditarily Lindelöf and hereditarily separable. Hence \(X \) satisfies (1) and (2) in Theorem 3.10. But we show that \(\mathcal{F}(X) \) does not satisfy DCCC. For convenience of the readers, we recall the two arrows space. Let \(X = (\{0,1\} \times \{0,1\}) \setminus \{(0,0), (1,1)\} \), consider the order \(\prec \) on \(X \) defined as follows: \((x,i) \prec (y,j)\) if \(x < y \), or \(x = y \) and \(i < j \). The two arrows space is the space \(X \) with the order topology induced by \(\prec \). In the sequel, to avoid confusion, a point \((r,i) \in X \) is denoted by \(\langle r,i \rangle \), and \((a,b)\) stands for an open interval. For each \(r \in (0,1/4) \), let

\[
U_r = \{(r,1), (1-r,1)\} \cup \{p(i) : p \in (r,1/4) \cup (1-r,1), i = 0,1\}.
\]

Each \(U_r \) is open in \(X \). Let \(\mathcal{O}_r = \{(r,1), (1-r,1)\}, U_r \) for \(r \in (0,1/4) \). Obviously \(\mathcal{O}_r \cap \mathcal{O}_{r'} = \emptyset \) if \(r \neq r' \). Assume that \(\{ \mathcal{O}_r : r \in (0,1/4) \} \) is first-countable, there are \(r_0 \in (0,1/4) \) and \(A_n \in \mathcal{O}_{r_n} \) \((n \in \omega)\) such that \(A \subseteq A_0 \) and \(A_n \to A \) in \(\mathcal{F}(X) \). By \(\langle r_0,1 \rangle, (1-r_0,1) \in A_n \), there are distinct two points \(x, y \in A \) and an infinite subset \(J \subseteq \mathcal{C}(A) \) such that \(\langle r_0,1 \rangle \to x \), \((1-r_0,1) \to y \) \((n \in J)\). For simplicity, we may assume \(J = \omega \). Then \(x, y \in A \subseteq A_0 \subseteq U_{rn} \) for all \(n \in \omega \). Assume \(x = (p,1) \) for some \(p \in (0,1/4) \). By the condition \(\langle r_0,1 \rangle \to x \), \((1-r_0,1) \to y \) \((n \in J)\). This is a contradiction. So let \(x = (0,p) \) for some \(p \in (0,1/4) \). Then \(r_n < p \) for all but finitely many \(n \in \omega \) and \(y = (1-p,1) \) holds. This means \(y = (1-p,1) \in U_{rn} \) for only finitely many \(n \in \omega \). This is also a contradiction. We conclude that \(\{ \mathcal{O}_r \} : r \in (0,1/4) \) is a discrete family in \(\mathcal{F}(X) \).

Daniels [5, Theorem 1A] noted that, if \(\mathcal{F}(X) \) is weakly Lindelöf, then every finite power of \(X \) is Lindelöf. The statement (2) in Theorem 3.10 is an improvement of Daniels’ result.

A space \(X \) is said to be semi-stratifiable [4] if for each open set \(U \subseteq X \), one can assign a sequence \(\{ U_n : n \in \omega \} \) of closed subsets of \(X \) such that \(\{ U_n : n \in \omega \} = U \). Moreover since a semi-stratifiable Lindelöf space is hereditarily separable [4, Theorem 2.8], \(X^n \) is hereditarily separable. Our conclusion follows from Lemma 3.7. \(\square \)

Concerning weak Lindelöfness of \(\mathcal{F}(X) \), we note the following.

Proposition 3.13. If \(\mathcal{F}(X) \) is weakly Lindelöf, then every closed subset of \(X \) is separable. If \(t(X) = \omega \) holds additionally, then \(X \) is hereditarily separable.
Proof. Let Y be a closed subset of X. Consider the open cover
\[\left\{ \left[\left\{ y \right\} \times X \right] : y \in Y \right\} \cup \left\{ \left\{ F, X \setminus Y \right\} : F \in \mathcal{F}[X], F \cap Y = \emptyset \right\} \]
of $\mathcal{F}[X]$. Take countable subsets $\{y_n : n \in \omega\} \subset Y$ and $\{F_n : n \in \omega\} \subset \mathcal{F}[X]$ with $F_n \cap Y = \emptyset$ ($n \in \omega$) such that the union of the family $\{\left[\left\{ y_n \right\} \times X \right] : n \in \omega\} \cup \{\left[F_n, X \setminus Y \right] : n \in \omega\}$ is dense in $\mathcal{F}[X]$. Assume that there is a point $y \in Y \setminus \{y_n : n \in \omega\}$. Take the open set $\left[\left\{ y \right\} \times G \right]$, where $G = X \setminus \{y_n : n \in \omega\}$. Obviously $\left[\left\{ y \right\} \times G \right] \cap \{F_n : n \in \omega\} \notin \emptyset$, so $\left[\left\{ y \right\} \times G \right] \notin \emptyset$ for some $n \in \omega$. This implies $y \in G$, a contradiction. Hence $\{y_n : n \in \omega\}$ is dense in Y. Additionally assume $t(X) = \omega$ and let Y be a subset of X. Then \mathcal{F} has a countable dense subset $\{y_n : n \in \omega\}$. For each $n \in \omega$, take a countable set $Y_n \subset Y$ with $y_n \in Y_n$. Then $\bigcup \{y_n : n \in \omega\}$ is countable and dense in Y. □

The author does not know if there is a non-separable regular space X such that $\mathcal{F}[X]$ satisfies DCCC. But we show that there is such a space among T_2-spaces.

Lemma 3.14. Assume $2^\omega > \omega_1$. If K is an uncountable compact metric space, and A is a subset of X such that $|A| = \omega_1$, then the set $B = \{x \in K : |A \cup \{x\}| = \omega_1\}$ for any neighborhood U of x has cardinality 2^ω.

Proof. Recall that every uncountable compact metric space has cardinality 2^ω. For each $x \in K \setminus (A \cup B)$, take an open neighborhood U_x of x such that $|A \cup U_x| \leq \omega$. Since $K \setminus (A \cup B)$ is Lindelöf, $K \setminus (A \cup B) \subset \bigcup \{U_x : \alpha \in \omega\}$ for a countable subset $\{x_\alpha : \alpha \in \omega\} \subset K \setminus (A \cup B)$. Then
\[A \setminus \bigcup \{U_{x_\alpha} : \alpha \in \omega\} = \left(A \setminus \bigcup \{U_{x_\alpha} : \alpha \in \omega\} \right) \cup B, \]
and it is an uncountable compact metric space. Hence we have $|B| = 2^\omega$. □

Lemma 3.15. If a space X has cardinality ω_1 and every countable subset of X is closed in X, then $\mathcal{F}[X]$ does not satisfy DCCC.

Proof. Let $X = \{x_\alpha : \alpha < \omega_1\}$. Since every countable subset is closed, $U_\alpha = \{x_\beta : \beta \geq \alpha\}$ is open in X. Let $O = \{\{x_\alpha, U_\alpha\} : \alpha < \omega_1\}$. Obviously O is pairwise disjoint. Let $F = \{x_\alpha, \ldots, x_{\alpha_n}\} \in \mathcal{F}[X]$, where $\alpha_1 < \cdots < \alpha_n$, then $F \in \{\{x_\alpha, U_\alpha\} : \alpha < \omega_1\}$. Thus O is a cover. Therefore $\mathcal{F}[X]$ does not satisfy DCCC. □

Let $I = [0, 1]$ be the closed unit interval, and τ be the usual topology on I. We consider a finer topology $\tau' = \{U \setminus D : U \in \tau, D$ is a countable subset of $I\}$ than τ. Obviously (I, τ') is a non-separable T_2-space which is not regular. In Proposition 3.13, regularity was not used. Therefore $\mathcal{F}([I, \tau'])$ is not weakly Lindelöf.

Theorem 3.16. The following are equivalent:

(1) $2^\omega > \omega_1$ holds,
(2) $\mathcal{F}([I, \tau'])$ satisfies DCCC.

Proof. (1) \Rightarrow (2): Let O be a family of nonempty open subsets of $\mathcal{F}([I, \tau'])$ such that $|O| = \omega_1$. We show that O is not discrete. We may put $O = \{\{F_\alpha, U_\alpha \setminus D_\alpha\} : \alpha < \omega_1\}$, where $F_\alpha \in \mathcal{F}([I, \tau])$, $\alpha < \omega_1$, D_α is a countable subset of I and $F_\alpha \subset U_\alpha \setminus D_\alpha$. Let \mathcal{B} be a countable base for $([I, \tau])$ closing under finite unions. For each $\alpha < \omega_1$, take $A_\alpha, B_\alpha \in \mathcal{B}$ such that $F_\alpha \subset A_\alpha \subset \overline{A_\alpha} \subset B_\alpha \subset U_\alpha$, where the closure is taken in τ. Then there are a countable set $J_1 \subset \omega_1$ and $A, B \in \mathcal{B}$ such that $F_\alpha \subset A \subset \overline{A} \subset B \subset U_\alpha$ for all $\alpha \in J_1$. By Δ-system lemma [7, 2.7.10(c)], there are an uncountable set $J_2 \subset J_1$ and a finite set $R \subset I$ such that $F_\alpha \cap F_\beta = \emptyset$ for distinct $\alpha, \beta \in J_2$. Moreover, there are an uncountable set $J_3 \subset J_2$ and a $k \in \mathbb{N}$ such that $|F_\alpha| = k$ for all $\alpha \in J_3$. From these observations, replacing $U_\alpha(\alpha \in J_3)$ by B, we may put $O = \{\{F_\alpha, B \setminus D_\alpha\} : \alpha < \omega_1\}$ and this family satisfies
(i) $|F_\alpha| = k$ for all $\alpha < \omega_1$,
(ii) $\bigcup \{F_\alpha : \alpha < \omega_1\} \subset B$, where the closure is taken in τ,
(iii) $F_\alpha \cap F_\beta = \emptyset$ for distinct $\alpha, \beta < \omega_1$.

Let $|F_\alpha \setminus R| = m$, and put $F_\alpha \setminus R = \{x_\alpha,1, \ldots, x_\alpha,m\}$ and $x_\alpha = (x_\alpha,1, \ldots, x_\alpha,m) \in \mathbb{I}^m$. Let $X = \{x_\alpha : \alpha < \omega_1\}$ and let
\[Y = \{y \in \mathbb{I}^m \setminus X : |X \cap W| = \omega_1 \text{ for any neighborhood } W \text{ of } y \text{ in } [I, \tau'] \}. \]

By Lemma 3.14, $|Y| = 2^\omega$. Hence we can take a point $y = (y_1, \ldots, y_m) \in Y \setminus \left(\bigcup \{F_\alpha \cup D_\alpha : \alpha < \omega_1\} \right)^m$. Let $F_y = \{y_1, \ldots, y_m\}$. Then obviously $F_y \cap (\bigcup \{F_\alpha \cup D_\alpha : \alpha < \omega_1\}) = \emptyset$, and $F_y \subset B$ because of (ii) above. We see that every neighborhood of $F_y \cup R$ intersects with uncountably many members of O. Let $[F_y \cup R, V \setminus D]$ be a basic open neighborhood of $F_y \cup R$, where $V \subset \tau$, D is a countable set in I and $F_y \cup R \subset V \setminus D$. Since $y \in Y \cap (V \times \cdots \times V)$ and D is countable, there is an uncountable
set \(J \subset \omega_1 \) such that \(F_\alpha \setminus R \subset V \) and \((F_\alpha \setminus R) \cap D = \emptyset \) for all \(\alpha \in J \). Then \(F_\alpha \subset V \setminus D \) and \(F_\alpha \cup R \subset B \setminus D_\alpha \) for all \(\alpha \in J \). This means \(\{ F_\alpha \cup R, V \setminus D \} \cap \{ F_\alpha, B \setminus D_\alpha \} \neq \emptyset \) (\(\alpha \in J \)). Thus \(\mathcal{O} \) is not discrete, so \(\mathcal{F}(L, \tau') \) satisfies DCCC.

(2) \(\rightarrow \) (1): This follows from Lemma 3.15. \(\square \)

Remark 3.17. In ZFC, there is a non-separable \(T_1 \)-space \(X \) such that \(\mathcal{F}(X) \) satisfies DCCC. Let \(X \) be a set of cardinality \(\omega_2 \). We give \(X \) the topology \(\tau = \{ \emptyset \} \cup \{ X \setminus D : D \) is a countable set in \(X \} \). DCCC of \(\mathcal{F}(X) \) can be proved by the same argument as in Theorem 3.16(1) \(\rightarrow \) (2).

We give a characterization for \(\mathcal{F}(X) \) to have precaliber \(\omega_1 \).

Theorem 3.18. For a space \(X \), the following are equivalent:

1. \(\mathcal{F}(X) \) has precaliber \(\omega_1 \).
2. \(X \) satisfies condition (C').

Proof. (1) \(\rightarrow \) (2): Let \(\{ x_\alpha : \alpha < \omega_1 \} \subset X \) and \(\{ U_\alpha : \alpha < \omega_1 \} \) be an open family in \(X \) with \(x_\alpha \in U_\alpha \). Consider the open family \(\{ [x_\alpha, U_\alpha'] : \alpha < \omega_1 \} \) in \(\mathcal{F}(X) \). Then, using the condition (1), we have an uncountable subset \(I \subset \omega_1 \) such that \(\{ [x_\alpha, U_\alpha'] : \alpha \in I \} \) is centered. Fix any \(\alpha \in I \). Then, for every \(\beta \in I \), \([x_\alpha, U_\alpha'] \cap [x_\beta, U_\beta'] \neq \emptyset \), hence \(x_\alpha \in U_\beta' \). Therefore we have \(\{ x_\alpha : \alpha \in I \} \subset \bigcap U_\alpha' : \alpha \in I \} \).

(2) \(\rightarrow \) (1): Let \(\{ U_\alpha : \alpha \in \omega_1 \} \) be a family of cardinality \(\omega_1 \) consisting of nonempty open subsets of \(\mathcal{F}(X) \). We may assume that every member of \(\{ U_\alpha : \alpha < \omega_1 \} \) satisfies condition (2) to \(x_\alpha, U_\alpha \) and \(\{ U_\alpha : \alpha < \omega_1 \} \), we have an uncountable subset \(I_1 \subset \omega_1 \) such that \(\{ x_\alpha, U_\alpha : \alpha \in I_1 \} \subset \bigcap U_\alpha \). Continuing this operation, inductively we have an uncountable subset \(I_k \subset I_{k-1} \) such that \(\bigcup I_k \). Therefore \(\{ x_\alpha, U_\alpha : \alpha \in I_k \} \) is centered. \(\square \)

Corollary 3.19. If \(\mathcal{F}(X) \) has precaliber \(\omega_1 \), then \(X^{\omega} \) is hereditarily Lindelöf and hereditarily separable.

Recall the diagram above. Using Theorem 3.5(2), we have the following.

Corollary 3.20. Under MA\(\omega_1 \), if \(\mathcal{F}(X) \) satisfies CCC, then \(X^{\omega} \) is hereditarily Lindelöf and hereditarily separable.

The following questions look interesting.

Question 3.21. Let \(X \) be a regular space. If \(\mathcal{F}(X) \) satisfies DCCC, then \(X \) (hereditarily) separable? In particular, if \(L \) is a Souslin line, does \(\mathcal{F}(L) \) satisfy DCCC?

Question 3.22. Let \(X \) be a regular space. If \(\mathcal{F}(X) \) satisfies DCCC, then \(\mathcal{F}(X) \) weakly Lindelöf?

Question 3.23. If \(\mathcal{F}(X) \) is weakly Lindelöf, then \(X \) is hereditarily separable (equivalently, of countable tightness)?

4. An application of Pixley–Roy hyperspaces

We give an application on DCC with Pixley–Roy hyperspaces. According to [2], a space \(X \) is said to be feebly Lindelöf if every locally finite family of nonempty open subsets of \(X \) is countable, and a space \(X \) is said to be star Lindelöf if for every open cover \(\mathcal{U} \) of \(X \), there is a Lindelöf subspace \(L \subset X \) such that \(st(L, \mathcal{U}) = X \), where \(st(L, \mathcal{U}) = \bigcup \{ U \in \mathcal{U} : U \cap L \neq \emptyset \} \). For a regular space, DCCC and feebly Lindelöf property are equivalent [22, Theorem 2.6]. A star Lindelöf space is feebly Lindelöf [2, Theorem 2.7]. Alas et al. asked whether a \(T_4 \) (normal \(T_1 \)) feebly Lindelöf space is star Lindelöf [2, p. 626]. Answering this question, under \(2^{\omega} = 2^{\omega_1} \) Song gave a counterexample [19, Example 2.2]. We show that under \(MA + 2^{\omega} > \omega_1 \) (Martin’s axiom plus the negation of the continuum hypothesis) there is a \(T_4 \) DCCC (hence, feebly Lindelöf) metacompact Moore space which is not star Lindelöf.

Lemma 4.1. ([11, Theorem 2.3]) For a space \(X \), \(\mathcal{F}(X) \) is the union of countably many closed discrete subspaces if and only if every point of \(X \) is \(G_\delta \).

Proposition 4.2. For a space \(X \), \(\mathcal{F}(X) \) is star Lindelöf if and only if \(X \) is countable.

Proof. Assume that \(\mathcal{F}(X) \) is star Lindelöf, and consider the open cover \(\mathcal{U} = \{ [x] : x \in X \} \) of \(\mathcal{F}(X) \). Take a Lindelöf subspace \(L \subset \mathcal{F}(X) \) such that \(st(L, \mathcal{U}) = \mathcal{F}(X) \). Since a star Lindelöf space is feebly Lindelöf (DCCC), by Theorem 3.10(1)
X is hereditarily Lindelöf, hence every point of X is Gδ. Therefore, by Lemma 4.1, F[X] is the union of countably many closed discrete subspaces. This implies that L is countable. Let L = {Fk : n ∈ ω}. If x ∈ X, then [x] ∈ st(L, U), so there are a point y ∈ X and a k ∈ ω such that Fk ∈ [{y}, X] and [x] ∈ [{y}, X]. Then obviously x = y, so we have x ∈ Fk. Thus X = ∪{Fk : n ∈ ω}.

The converse is trivial. □

Lemma 4.3. ([6, Proposition 2.5]) A space X is first-countable if and only if F[X] is a Moore space.

Theorem 4.4. ([Przymusiński and Tall [16]]) Under MA + 2ω > ω1, if X is a subspace of the real line with |X| = ω1, then F[X] is normal.

Example 4.5. Assume MA + 2ω > ω1, and let X be a subspace of the real line with |X| = ω1. Then, by Proposition 4.2, Lemma 4.3 and Theorem 4.4, F[X] is a T4 CCC (hence, feebly Lindelöf) metacompact Moore space which is not star Lindelöf.

Song’s counterexample in [19] is neither CCC, metacompact nor a Moore space, because it contains the space ω1 with the order topology as an open-and-closed subspace.

Alas et al. asked also whether a first-countable star Lindelöf space is star countable [2, p. 625], where a space X is said to be star countable if for every open cover U of X, there is a countable set A ⊆ X such that st(A, U) = X. This question was solved in the negative [1, Example 3]. Aiken’s counterexample is not pseudocompact. We comment that there is a pseudocompact counterexample. Bell [3, Example 5.1] showed that if a Tychonoff space X is a first-countable, zero-dimensional, locally compact, meta-Lindelöf, non-compact space in which all nonempty open sets have π-weight 2ω, then X has a first-countable, meta-Lindelöf, non-compact pseudocompactification. Let C be the usual Cantor set in the closed unit interval. Let K be the space C[2 with the topology induced by the lexicographic order on it. Let X be the topological sum of ω many copies of Kω. Then, by Bell’s result above, we have a first-countable, meta-Lindelöf, non-compact pseudocompactification Y of X. Since Y has a dense σ-compact space X, obviously it is star Lindelöf. On the other hand, since a meta-Lindelöf star countable space is Lindelöf, Y is not star countable.

References