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Abstract In this paper, we discuss the graphical aspects of fuzzy algebra. Let M be
an R — module with zero element 6 and F(M) be collection of all fuzzy submodules
of M. The intersection graph of F(M) is an undirected graph G with vertex set as
F(M) and two vertices « and 3 are adjacent if and only if @ N B # yy, where g is the
characteristic function on 6. We find the girth of G and also study some properties of
center of G — yg.
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1. Introduction

This paper is motivated by the profound concept, zero divisor graph. In 1988, Ist-
van Beck [6], introduced the motivating insight zero divisor graph of commutative
ring. This prominent introduction has been well expanded in various dimensions
in the field of graphical aspects of algebraic structures. The significance of graph-
ical aspects of algebraic structures is observed in comaximal graph of commutative
ring by Sharma and Bhatwadekar [21], total graph of commutative ring by Ander-
son and Badawi [3], intersection graph of ideals of a ring by Chakrabarty et al. [7]
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etc. These types of correspondences sense the same of graph and fuzzy set. In 1975,
Rosenfeld [19] interpreted the concept of fuzzy graph which has been influencing
the researchers gradually. The idea of fuzzy graph automatically touches its relation
with fuzzy algebra as in the same of graph and algebra. But before going to this gen-
eralized correlation, an intermediate insight arises, i.e., the correspondence between
graph and fuzzy algebra. Having taken this intention, we proceed to the correlation
of graph and fuzzy algebra. We study characteristics of center of intersection graph
of fuzzy submodules of a module and establish its existence by establishing some
results relating with corresponding crisp concepts. This intersection graph of fuzzy
submodules of a module is an infinite graph.

Now we state some definitions from [4-5, 8-15] and [17], which are needed in the
sequel.

Throughout this discussion M is a left module over a ring R, 6 is the zero element
of M. A fuzzy subset @ is a mapping from a set X into [0,1]. For x € X, a(x) is called
membership value of x. The collection of all fuzzy subsets of X is denoted by [0, 1]*.
Let @, € [0,1]X. Then «a is contained in B, if a(x) < B(x),Yx € X and is denoted
by @ C B. The intersection and union of @ and 8 are denoted by @ U 8 and @ N g3,
are defined as (@ U B)(x) = a(x) V B(x) and (@ N B)(x) = a(x) A B(x), for all x € X,
respectively. If # € (0, 1], then the set @, = {x € X | a(x) > 1} is called level subset of
a. Also the set " = {x € X | a(x) > 0} is called the support of a. The sum of & and
P is defined as

(@+B)x) = VieM ABR) |y +z=x;y,z€ X}

for x € X. Similarly, for @; € [0, 11%,i € I, where [ is an index set, Y «; is defined as
iel

2 @i(x) = V{Nigai(xi) | 2 xi = x; x; € X, Vi}

i€l iel
for x € X. Now we give the definition of fuzzy point from [16], which is an important
one for this discussion. A fuzzy subset @ of X of the form

t, ify=x,
a(y) = .
0, ify+x

is said to be a fuzzy point with support x and value ¢ and is denoted by x,. We write
x; € « if and only if x € «,. To avoid confusion of fuzzy point with level subset we
use the notation (x), for fuzzy point in place of x;. Let @ be a member of [0, 1]%. Then
« is said to be an F-ideal of R if a(x —y) > a(x) A a(y) and a(xy) > a(x) V (y), for
x,yin R. Let @, 8 be two F-ideals of R. We define @, which is also an F-ideal of R,
as

(@B)(x) = V{a(y) AB(2) | yz = x}

for x in R. An F-ideal y of R is called prime if y is non-constant and a3 C y implies
@ C yorf C vy, for F-ideals a,8 of R. Again if a is a member of [0, 1]¥, then « is
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said to be an F-submodule of M if a(0) = 1, a(x +y) > a(x) A a(y) and a(rx) > a(x),
for x,y in M and r in R. The collection of all F-submodules of M is denoted by
F(M). Let a,B € F(M). Then a is an F-submodule of B if « is contained in 8 and
we write @ < 3. In this discussion, the notation F(«) is used for the collection of all
F-submodules of a.

An undirected graph G consists of a set V(G) of vertices or points and a collection
E(G) of unordered pairs of vertices called edges or lines. If u and v are two vertices
of a graph and if unordered pair u, v is an edge denoted by e, we say that e is an edge
between u and v or u and v are adjacent. In this case, the vertices u and v are said
to be incident on e and e is incident to both # and v. Two or more edges that join
the same pair of distinct vertices are called parallel edges. An edge represented by
an unordered pair in which the two elements are not distinct is known as a loop. A
simple graph is a graph with no parallel edges and loops. In our discussion, all graphs
are simple. The degree of a vertex v in a graph is the number of edges incident on that
vertex. It is denoted by deg(v). If deg(v) is O, then v is said to be an isolated vertex
of G. The graph H = (W, F) is a subgraph of the graph G = (V, E) if W is a subset of
V and F is a subset of E. If H = (W, F) is a subgraph of the graph G = (V, E) such
that an edge exists in F' between two vertices in W if and only if an edge exists in E
between those two vertices, the subgraph H is said to be induced by the set W, which
is maximal subgraph of G with respect to the set. A walk in a graph is an alternating
sequence of vertices and edges vox;v; - - - x,v, in which each edge x; is vi_1v;. A walk
is said to be closed if its beginning and ending vertices are same, otherwise open.
The length of a walk is n, the number of occurrences of edge in it. A path is a walk
in which all vertices are distinct. A closed walk is said to be a circuit or cycle, if
all, other than the beginning and ending vertices are distinct. For vertices x and y of
G, we define d(x,y) to be the length of any shortest path from x to y. G is said to
be connected, if there exists a path between every pair of vertices of it, otherwise it
is said to be disconnected. The girth, girth(G) of G is the length of a shortest cycle
(if any). The eccentricity e(v) of a vertex v in G is the distance from v to the vertex
farthest from v in G. A vertex with minimum eccentricity in G is called a center of G.

Now, we are going to remember the definition of intersection graph from Harary
[11]. Let F = {§1,82,---,S,} be a nonempty family of distinct nonempty subsets
of a non empty set S such that S| U S, U--- = §. Then the intersection graph of F
is denoted by Q(F). The vertex set of Q(F) is F with two distinct vertices S; and S ;
are adjacent if §; NS ; # . Whenever there is a family F of subsets of S for which
a graph G and Q(F) are isomorphic, G is an intersection graph on S. An interesting
result on intersection graph is-every graph is an intersection graph. Chakrabarty et
al. [7] in 2009 introduced intersection graph of ideals of a ring. According to them,
the intersection graph of ideals of a ring is an undirected graph with vertex set as the
collection of nontrivial ideals of the ring such that any two vertices are adjacent if their
intersection is not zero. They studied some enjoyable characteristics of intersection
graph of ideals of a ring. This concept is also extended to module. The intersection
graph of submodules of a module was discussed by Akbari et al. in [1].

In our discussion, we first define intersection graph of submodules of a module in
slightly different way than in [7]. The intersection graph Gy, of submodules of M is
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an undirected graph with vertex set V(Gy,) is the collection of all submodules of M
and any two distinct A, B € V(Gy), A and B are adjacent if and only if AN B # 0.
In the same sense, the intersection graph Gi,,(= G) of F(M) is an undirected graph
with V(G) = F(M) and any two distinct @, € F(M), @ and S are adjacent if and
only if @ N B # xp, and we write @B or @ adj . If @ and B are not adjacent, we write
a nadj . Henceforth, G is the intersection graph of F(M). We consider the symbol
G,,, for the intersection graph of F'(M) as any fuzzy submodule of M is contained in
1, where 1,,(x) = 1 for all x € M. We say « is an F-submodule of 1, rather than o
is an F-submodule of M. In the same sense, the intersection graph of F(«) is denoted
by G, and so is for crisp concept.

‘We observe that G contains all the F-submodules of 1,, as vertices rather than
the collection of nontrivial ideals of rings, defined by Chakrabarty et al. [7]. This
utilization provides the prospect in the interdisciplinary study for graphical aspects
for essential fuzzy submodules of modules. Clearly, the submodule yy is an isolated
vertex of G. Thus, G is a disconnected graph. But, the induced subgraph G-y, which
does not contain that the vertex yy, of G is a connected graph, as 1, is adjacent to
every vertex of G — y,. This observation leads that the eccentricity of 1y, e(1y) = 1.
So, connectedness of G — yy concludes 1, is a center of it. From this onward, the
notation G — x; stands for the induced subgraph of G which does not contain the
vertex yg.

Any undefined terminology is available in [4-5, 8-15] and [17].

2. Center of Intersection Graph of F(1,,)

‘We start this section with the following examples. Consider two fuzzy subsets @ and

B of 1g where R = {0,1,2,---, 11} under addition and multiplication modulo 12 as
follows
I, ifx=0, I, ifx=0,
a(x) =41, ifxe{4,38}, Bx) =<t if x€{2,4,6,8,10}, where r > 0.
0, ifxe¢{0,4,8}, 0, ifx¢{0,2,4,6,8,10}.

Then B € V(Gi,—xo) and a € V(Gg—yx4). Again consider the vertex y € V(Gg—xy)
as follows

1, ifx=0,
y(x) =41, ifx=6,
0, if x¢{0,6}.

We observe that « is not a center in Gg — xy as y nadj a. It can be easily noticed
that 8 is a center in G, — y, but not a.

The minimum length of all cycles in G is the extremum one. This is established in
the immediate succeeding theorem. In [1], an exact result is observed for the concept
of crisp set theory. We, in our next establishment, follow the same way.

Theorem 2.1 If G contains a cycle, then girth(G) = 3.
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Proof Toward a contradiction, assume that girth(G) > 4. Then every pair distinct
non-trivial fuzzy submodules of 1, with non-zero intersection should be comparable.
If not, G will contain cycle of length 3, a contradiction. Suppose a; — @z — @3 — a4
is a path in G, as girth(G) > 4. Since any two fuzzy submodules are comparable and
chain of non-trivial fuzzy submodules of length 2 induces a cycle of length 3 in G,
the only possible cases are a; C @3, @3 C @z, @3 C a4 Or @, C @1, @, C @3. From the
first case, we get @3 € a» N a4 and hence @, Nay # xp. Thus @y —a3 —as —az isa
triangle, a contradiction. Similarly, by the second case, @, C @; N a3, from which we
obtain the triangle o) — a2 — @3 — @ as @ N @3 # yp. Again a contradiction toward
the assumption. Therefore girth(G) = 3 and this completes the proof.

In [18], Saikia and Kalita introduced the concept of essentiality in fuzzy set the-
ory. The following results show the graphical aspects of their discussion. It is well
observed that the center plays the role of essentiality in the corresponding graphical
character. We first urge in the correlation of fuzzy set and crisp set, which is clearly
noticed in Theorems 2.2, 2.3, 2.5 and 2.6.

Theorem 2.2 A is a center in Gy — 0 if and only if x4 is a center in G — .

Theorem 2.3 If A and B are two submodules of M, then A is a center in Gg — 0 if
and only if x4 is a center in G, — xy.

Theorem 2.4 If M = R is prime (ring) then every vertex of G — xy is center.

Proof  If possibly suppose that « is not a center in G — yy, then there exists a vertex
Bin G — yp with 8 nadj @, then a8 C xy as ¢ € @ N S by Theorem 3.1.32 [5]. Also
0 is prime since M is prime . This implies that y, is a prime F-ideal of 1,. But then
we get @ = yg or B = x4, a contradiction. This contradiction implies that « is a center
in G — yy. Hence the theorem is obtained.

Theorem 2.5 « is a center in G — yy if and only if a* is a center in Gy — 6 for
a € V(G — xp).

Proof First we assume « is a center in G — yy. Let A € V(Gy — 6). Then y4 €
V(G — xp) and so @ adj x4 since a is a center in G — . Then we get (@ N y4)(x) > 0,
for some x # #. From this we have a(x) > 0, y4(x) > 0 and thus ¢* N A # 6. Hence
a* is a center in G, — 6. Conversely, suppose that a” is a center in Gy, — 6. Consider
a vertex Bin G — yy, then the support 8* € V(Gy — 6). We show that @ N3 # yg. Now
a* is a center in Gy — 6 and so " adj 5*, i.e., @* N B* # 6. This means that a(x) > 0
and B(x) > 0 for some x # 0. Thus @ N B # yy and so the proof is complete.

Theorem 2.6 « is a center in Gg — xp if and only if * is a center in Gg- — 0 for
@B € V(G - o).

Proof  First suppose that a is a center in Gg— xg, then * is a non-zero submodule of
M, as a is non-zero and also o™ C 8*. Let A be a vertex in Gg- — 6. We define a fuzzy
submodule y as y(x) = B(x), if x € A and y(x) = 0, if x ¢ A. It is clear that y* = A.
Now, y(x) = B(x) > 0 for some non-zero x € A, as A is non-zero. This implies that
7y is non-zero and also y C . But « is a center in Gg — xy therefore a adj v, i.e.,
a Ny # yg. This gives for some non-zero y, we have a(y) > 0 and y(y) > 0. Thus
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a*NA # 0,ie., o adj A. Hence " is a center in Gg- — . Conversely, let a* be a
center in Gg- — 6. Consider a vertex y in Gg — 4. It is easy to check that y* is a vertex
in Gg- — 6. Since a* is a center in G- — 6 and so o adj y*. Using this, it is obtained
that a adj y. This concludes that « is a center in G — x4. The proof is complete.

Now, we consider the vertices @, (n = 2,3,4,---) in G — yy, where M = Z is
module over Z, as follows

1, iifx=0,
ay(x) =4t, ifxenZ-0,
0, ifx¢nz,

where ¢ > 0.

It is easy to check that @, = nZ is a center in Gz — 6. Therefore @, is a center in
G — yy. But we see that ("\nZ)* is not a center in Gz — 6. Thus NnZ is not a center in
G- X0-

Theorem 2.7

(a) Ifa <B <1y, then ais a center in G — xy if and only if @ and 3 are centers in
Gg — xg and G — xg, respectively.

(b) Let,B < 1y. If a and o’ are centers in Gg — xg and Gg — xy, respectively;
then so is a N &’ in Ggrp = X0

(c) Let f: M — N be amodule homomorphism. If a is center in G, — 0, then so
is f Y (@) in Gy, — 6.

Proof (a) First, we assume that « is a center in G -y, consider a vertex y of Gg—xy,
then vy is also a vertex of G — yy. From the assume condition, we have e(a) = 1 in
G — xy. Using this, we get d(a,y) = 1, and so e(@) = 1 in Gg — ys. Hence a is a
center in Gg — yy. Again, if we consider a vertex 6 of G — xy, then a adj 6. This
immediately implies that 8 adj 6, and so e(8) = 1 in G — y4. Thus S is also a center
in G — 4. Conversely, we suppose that o and 8 are centers in Gz — xg and G — yg,
respectively. Now, for a vertex n of G — yy, we have B adj n, as § is a center in G — yp.
Then, we notice that & adj n, since « is a center in Gg — yy. From this, it is observed
that e(a) = 1in G — yy. Thus, a is a center in G — yy. This completes the proof.

(b) Assume that @ and o’ are centers in Gg — xy and Gz — xj, respectively. By
Theorem 2.6, we have o” and " are centers in Gg- —6 and Gg- —#6, respectively. Also
using Theorem 1.1 (b) [10], a* Na’* is a center in Gg-p- — 0. Again by Theorem 2.6,
it follows that @ N o’ is a center in Ggng — xy. The proof is complete.

(c) It can be easily verified that f~'(a*) = (f~!(@))*. Suppose that « is a center
in G, — xp. It follows from that Theorem 2.6 that @ is a center in Gy — 6. By
Theorem 1.1 (c) [10], f~'(a*) is a center in G,; — 6. Thus again by Theorem 2.6 we
get f~!(a) is a center in G| w — 0. Hence the result is obtained.
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The following example asserts that the converse of the preceding theorem is not
true. Consider the ring R = {0, 1,2,3,4,5,6,7} under addition and multiplication
modulo 8 and the mapping f : R — R is defined by

o) 0, if x=0and xis even,
X) =
4, if xis odd.

It is easy to check that f is a module homomorphism. Consider the vertex « in
Gi, — xo with @(0) = 1,a(4) = s,a(2) = a(6) = t,a(x) = 0; otherwise, where
s, (=)t € (0, 1]. Clearly, o* = {0,2,4, 6} is a center in Gg — 0. Thus by Theorem 2.6,
ais a center in G, — yo. But f(a) is not a center in Gy, — xo.

For the continuation of our discussion, we give the definition of disconnected set
of vertices of G.

Definition 2.1 A set {a,as, - ,a,} of vertices of G is said to be a disconnected set
of vertices if ajnadj () +as+---+ @1 + @iy +-- - +ay) foreveryi e {1,2,---  n}.

Theorem 2.8 If {a;}], is a disconnected set of vertices of G, and «; is a center
in Gg, — xo for each i € {1,2,--- ,n}, then {8} is also a disconnected set and
)+ + -+ is acenter in Gg,1p,+..48, — Xo-
Proof  First we show that the theorem is true for n = 2. We consider a disconnected
set {a1, @z} of vertices of G such that @ and a, are centers in Gg, — x4 and Gg, — s,
respectively. Using Theorem 2.6, @} and a; are centers in Gg;, — 6 and Gg; — 0,
respectively. Again by Theorem 2.3 (b) [10], we have @] Na; is a center in Gg;rp; — 0.
By the given condition, a1 N @z = xy which concludes that o] N @5 = 6. Thus
B} NB; = 0 and from this we see that {;, 5>} is also a disconnected set of vertices.
Now take the projection maps « : 5] +8; — B} and n : 8] +5 — ;. With the help
of Theorem 2.3 (c) [10], it can be easily seen that 71’1(0/[) (= a} +B;) and 77’1((13)
(= a; + ) are centers in Gg:4p; — 6. Observe that ] nadj B, and @; nadj 8}. Again
using Theorem 2.3 (b) [10], we get @] +a; is a center in Gg; .5, —0. Hence by Theorem
3.3.7[17], (@1 +a>)" is a center in Gg, 15,)- —6. Observe that & nadj a; and 8y nadj j3>.
Next assume that the theorem is true for n—1, then {8y, 82, - - - , B,—1} is a disconnected
set of vertices and @y + @3 + -+ + @,_1 is a center in Gg, 1,145, , — Xo. Now by the
above case it is clear that (8; + 82 + - -+ + B,-1) nadj B, and () + a2+ - -+ @) + @y
is a center in Gg,+p,+--+p,.1)+5, — Xo- Hence {B;}7, is also a disconnected set and
) +ay + -+ @, is acenter in Gg,4p,+..45, — Xo- The proof is complete.

Now we define maximal non-adjacent (MNA) vertex of G.

Definition 2.2 Let @ € V(G). Then 8 € V(G) is said to be the MNA vertex if B is
maximal with respect to the property a nadj .

We observe the role of MNA vertex in our discussion. It is noticed that the com-
plemented fuzzy submodule takes necessary role in the concept of essential fuzzy
submodules of modules in [18]. We first give the definition of complemented inter-
section graph to study its graphical aspects.
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Definition 2.3 Let a € V(G). Then a vertex 3 € V(G) is said to be a complement of
aifanadjpand a + B = 1y. G is said to be a complemented graph if every vertex
of G has a complement.

Xo and 1, are the trivial complements of G.

Theorem 2.9 For any @ € V(G), there is a non-adjacent vertex y to « such that @ +7y
is a center in G — xg.

Proof We consider that @ is a non-zero F-submodule of 1. Let & = {8 < 1y |
a NS = yq). Clearly, § # ¢. By Zorn’s lemma § has a maximal element y (MNA
vertex), say, with respect to @ Ny = . Thus we obtain a non-adjacent vertex y to a.
Now, we show that @ + is a center in G — y4. Suppose @ +y is not a center in G — y4,
this means e(a + ) > 1, then, there is a non-zero § € V(G) such that (@ + y) nadj 9,
and this gives a nadj (y + §). But, maximality of y with respect to @ Ny = y, implies
that y + 6 = . Therefore, we get § = 6 N (@ + ¥) = x4, Which is absurd. Hence the
theorem is obtained.

In the same way, the following theorem can be obtained.

Theorem 2.10 For any @ € V(Gp), there is a non-adjacent vertex 'y to « such that
a + 7 is a center in Gg — .

Theorem 2.11 If G is a complemented graph, then so is G, for any F-submodule o
()f 1 M-

Proof LetfB € V(G,). Then 8’ N « is a complement of 8 in G,, where g’ is a
complement of B in G. The proof is complete.

Remark 1 [2] A fuzzy submodule @ of 1, is called maximal if @ is a maximal
element in the set of all non-constant fuzzy submodules of 1,,, with respect to the set
inclusion.

Remark 2 [18] Let a,f,y be three fuzzy submodules of 1. If 8 C y, then y N (o +
B =na)+p.

Theorem 2.12 Let a be a vertex in G. If G, is a complemented graph, then there is
a non-trivial maximal F-submodule of a which is not a center in G, — xy.

Proof 1t is sufficient to show that for # € (0, 1] and for each (x),(# yg) ¢ @, we
have a maximal fuzzy submodule y of @ such that (x), ¢ u. We consider (x), ¢ a.
Let§ = {8 | B € F(a),(x); ¢ B}). Then § # ¢. By Zorn’s lemma, § has a maximal
element y (say) with (x), ¢ p. We show that i is a maximal F-submodule of a. Let
U € v: € ap. Since y; C a4, 0y C @. As F(a) is complemented, therefore there
exists ¥ € F(a) with @ =y +y" and y nadj y’. Now

YNu+y)=u+@yny)
=Mt Xe
:'L[.
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Thus (x), ¢ p implies either (x), ¢ y or (x), € (u +7v’). If (x), ¢ y, theny = u, as u is
maximal with (x), € u. So y, = y,. Alsoif (x), ¢ (u+7y’), then u +y" = u. This gives
My + v, = py. Therefore @ = y + 7y’ gives a; = y,. Thus u is maximal with (x); ¢ p.
From this, we get that there exists a maximal F-submodule y of @ with (x), ¢ p if
(x)/(# xs) € . We observe that ({u | u is a maximal submodule of a} = yy. Hence
the theorem is obtained.

The uniqueness character of center in intersection graph follows from the immedi-
ate succeeding theorem. Before this, we state the definition of simple F-submodule
from [18].

Definition 2.4 An F-submodule v of M is said to be simple F-submodule if u C v,
where u € F(M) implies either p = yg or pt = v.

Theorem 2.13 If 1), is the sum of simple F-submodules of 1y, then 1y is the only
center in G — xy.

Proof If possible, we assume that « is a center in G — {y,} which is distinct from
1. But 1, is the sum of simple F-submodules of 1y, let {a;};; be the collection of
all simple F-submodules of 1,,. Then 1, = Z a;. Since e(M) = 1, therefore « adj «;

1
for every i. As for every i, a; is a simple F-submodule of 1y, thus e N @; < @;
gives @ N @; = ;. That means a contains all simple F-submodules of 1,,. From this
1y < @, which is absurd. The proof is complete.

Theorem 2.14 If 1, is the only center in G — yq, then the intersection of maximal

proper F-submodules of 1 is .

Proof Leta < 1y. Then by Theorem 2.9, there is a non-adjacent vertex 8 with
a + 3 is a center in G. From the given condition @ + 8 = 1j,. This means that 8 is a
complement of @. Thus G is a complemented graph. Now, following the same way
of Theorem 2.12, we get the result.

Theorem 2.15 If 1, is the only center in G — xy, then 1y is the sum of all F-
submodules of 1.

Proof  Since 1), is the only center in G — yj, therefore, from proof of Theorem 2.8,
G is a complemented graph. Let {a;};e; be the collection of all simple F-submodules
of 1. Then Y @; < ly gives that there is a vertex 8 such that Ya; nadj 8 and

v i
2 @; +p = ly. Then, we have Gg is complemented. Therefore, using Theorem 2.8,

1
we can show that 1, is the sum of all F-submodules of 1,,. This completes the proof.

The next definition is nothing but the graphical aspect of closed submodule of
module of crisp concept.

Definition 2.5 A vertex @ of G is said to be an isolated center if « is a center only in
Go — X e, if ais a center in Gg — x, then @ = 5.

Theorem 2.16 If a nadj B with'y = a + B, then a is an isolated center in G,.

Proof Towards a contradiction assume that « is not an isolated center in G,. So
we have a vertex o’ in G,, — yy with @ is a center in G, — xy. Then it can be easily
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obtained that (¢’ N B) nadj a, which gives o’ nadj . Nowy =a+BCa +BCy
and so @’ + 8 = y(= a + B). Observe that a; nadj 5, for any t > 0. Also it is easy to
see that (@ + B); = a; + ;. Our claim is @ = @, and for this we assume (x), € @/,
t#0,1i.e., a'(x) > t. Now, if x+y = z+w, where y,w € B,z € @, then we notice that
x—z = {6}. Thus x = 7 € a;, so we have (x); € a. Nextif a’(x) = p(# 0), then x, € @’
and this gives a(x) = p. Also it is well known that (¢’*)¢ C (@*)‘, as @ C ’. Observe
that (@) = {x € M | a(x) = 0}. If &’(y) = 0, then we obtain y € (a*)‘. Therefore
a(y) = 0 and hence @ = . Thus the proof is complete.

Theorem 2.17 If B is an MNA vertex for a in G, then 3 is an isolated center in G.

Proof Suppose 3 is a center in Gg — {xg¢}, where 8’ € V(G). Since 8 is an MNA
vertex for « in G, therefore a nadj /. This implies that (¢ NB') nadj B. As S is a
center, so @ nadj 8. But 8 is an MNA vertex gives 8/ = . The proof is complete.

3. Conclusion

In this paper, we observe a new direction that is the graphical aspects of fuzzy alge-
bra. The center plays a vital role in our discussion. In fact, the concept of essential
submodule plays this role in graphical characterizations.
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