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Effect of Heavy Water on Protein Flexibility

Patrizia Cioni and Giovanni B. Strambini
Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Area della Ricerca di Pisa, Pisa, Italy

ABSTRACT The effects of heavy water (D,O) on internal dynamics of proteins were assessed by both the intrinsic
phosphorescence lifetime of deeply buried Trp residues, which reports on the local structure about the triplet probe, and the
bimolecular acrylamide phosphorescence quenching rate constant that is a measure of the average acrylamide diffusion
coefficient through the macromolecule. The results obtained with several protein systems (ribonuclease T1, superoxide
dismutase, B-lactoglobulin, liver alcohol dehydrogenase, alkaline phosphatase, and apo- and Cd-azurin) demonstrate that in
most cases D,O does significantly increase the rigidity the native structure. With the exception of alkaline phosphatase, the
kinetics of the structure tightening effect of deuteration are rapid compared with the rate of H/D exchange of internal protons,
which would then assign the dampening of structural fluctuations in D,O to a solvent effect, rather than to stronger
intramolecular D bonding. Structure tightening by heavy water is generally amplified at higher temperatures, supporting a

mostly hydrophobic nature of the underlying interaction, and under conditions that destabilize the globular fold.

INTRODUCTION

The topic of deuterium isotope effects is usually concerned
with the effects on the rate of cleavage of covalent bonds to
hydrogen caused by the substitution with the heavier iso-
tope. Deuterium isotope effects on other, noncovalent inter-
actions are also known to occur but they are often consid-
ered to be small or insignificant, especially in biological
experiments where deuterium substituted molecules are
used as tracers or when heavy water (D,0) is the solvent
chosen for conducting biophysical studies (Jencks, 1969).
Although on individual bonds the change in free energy is
small the cumulative effect on a large macromolecule may
be significant. With proteins, whose folded structure is the
result of a delicate balance between intramolecular and
hydration interactions, D,O may alter their conformation in
solution, the dynamics of the structure, and their function.
At a macroscopic level, there is evidence suggesting that
D,O is a worse solvent than water and that polypeptides
tend to reduce the surface area in contact with the solvent by
adopting a more compact globular shape or associating into
larger aggregates. This has been inferred mainly from the
stabilizing effect of D,O on thermal, GuHCI, and urea-
induced denaturation of several proteins (Maybury and
Katz, 1956; Hermans and Sheraga, 1959; Dong et al., 1998;
Parker and Clarke, 1997; Verheul et al., 1998) and from the
promotion of aggregated states of oligomeric proteins (Bag-
hurst et al., 1972; Bonnete et al., 1994; Omori et al., 1997;
Chakrabarti et al., 1999). The consensus on the stabilizing
influence of D,O is not general, however, whereas the
thermal stability of val-tRNA"® synthetase was unaffected
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by it (Kern et al., 1980), a recent study based on the free
energy of transfer of model compounds from H,O to D,0
concluded that at ambient temperature the globular state is
expected to be even less stable in heavy water (Makhatadze
et al., 1995).

On the macroscopic level both experimental (Benjamin
and Benson, 1962) and theoretical (Scheiner and Cuma,
1996) studies have demonstrated that in water, deuterium
bonds are stronger than H bonds by ~0.1 to 0.2 kcal mol '
The increased strength of the deuterium bond is attributed to
the higher mass of the deuteron lowering the zero-point
vibrational energy of the intermolecolar mode of highest
frequency. This mode is associated with a bending motion
of the proton donor molecule distorting the linearity of the
H bond (Scheiner and Cuma, 1996). Concerning the stabil-
ity of the native protein fold, a greater enthalpic D,0O-D,0
affinity is expected to lead to a commensurate increase in
the hydrophobic interaction. In a number of cases (Parker
and Clarke, 1997; Chakrabarti et al., 1999) the stabilizing
effect of D,O has indeed been attributed to the enhancement
of hydrophobic interactions. Nemethy and Sheraga (1964)
have pointed out, however, that intrapeptide deuterium
bonds are presumably stronger than H bonds and proposed
that the greater protein stability is partly due to stronger H
bonding (Maybury and Katz, 1956; Baghurst et al., 1972).
On the other hand, Schowen and Schowen (1982) studying
the solvent isotope effect on hydrogen bonding found that
enthalpic and entropic effects cancel each other.

In contrast to the wealth of thermodynamic data little is
known about the effects of D,O on the conformational
flexibility of proteins. Knowledge of the influence of D,O
on structural fluctuations may be important both at a basic
level, to identify the nature of the underlying interactions,
and also for its possible implications on the catalytic effi-
ciency of enzymatic proteins in this medium. The present
report addresses the issue of D,O effects on protein dynam-
ics by means of sensitive parameters based on the phospho-
rescence emission of deeply buried Trp residues. In brief,
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the magnitude of the intrinsic room-temperature phospho-
rescence lifetime (7,) of Trp reports on the local flexibility
of the protein matrix around the chromophore (Strambini
and Gonnelli, 1995; Gonnelli and Strambini, 1995),
whereas the bimolecular rate constant (k,), derived from
quenching of protein phosphorescence by acrylamide, re-
lates to the diffusion of the solute through the protein fold to
the chromophore’ site and is correlated to the structural
flexibility of the macromolecule (Cioni and Strambini,
1998). The influence of D,O on the phosphorescence of
alcohol dehydrogenase (Saviotti, 1975; Kishner et al., 1979;
Vanderkooi et al., 1987) and alkaline phosphatase (Schlyer
et al., 1996; Fischer et al., 2000) have reported an increase
of 7, in D,0, but the lengthening of the lifetime was not
unanimously attributed to a decreased protein flexibility.
The present report examines the influence of D,O on both 7,
and k, on multiple protein systems and across a wide
temperature range. The proteins chosen are monomeric ri-
bonuclease T1, apo- and Cd-azurin (Az, CdAz), dimeric
alcohol dehydrogenase (LADH), B-lactoglobulin (3-LG),
superoxide dismutase (SOD), and alkaline phosphatase
(AP). In each case the crystallographic structure is known
and the phosphorescence emission in fluid solution is due to
a single, well-identified Trp residue buried within the glob-
ular fold (Gonnelli and Strambini, 1995; Cioni et al., 2001).
Further, the potentially quenching side-chains of Cys, His,
and Tyr (Gonnelli and Strambini, 1995) are in each case
removed from the chromophore environment assuring,
thereby, that 7 is not influenced intramolecular reactions.
Both 7, and k, concur in indicating that with most proteins
D,O0 increases the rigidity of the native structure. Whereas
no apparent correlation is found between the magnitude of
the change and the degree of burial of the probe or the actual
flexibility of the polypeptide, the effect is generally en-
hanced at high temperature and by conditions that destabi-
lize the folded state.

MATERIAL AND METHODS

All chemicals were of the highest purity grade available from commercial
sources. N-acetyltryptophanamide (NATA) was purchased from Sigma (St.
Louis, MO) and before use was recrystallized three times from ethanol/
water. Acrylamide (>99.9% electrophoretic purity) was from Bio-Rad
Laboratories (Richmond, CA). Water, doubly distilled over quartz, was
purified by Milli-Q Plus system (Millipore Corporation, Bedford, MA).
The D,O was purchased from Sigma and was 99.9% pure. Deuterated
buffers were titrated to the appropriate pD (—log[D*]) with DCI (99%
pure) and NaOD (99% pure), both of which were purchased from Sigma.
All pDs were determined at room temperature using the relationship pD =
pH + 0.4. All glassware used for sample preparation was conditioned in
advance by standing for 24 h in 10% HCI suprapur (Merck, Darmstadt).
The protein horse liver alcohol dehydrogenase(LADH) was supplied by
Boehringer (Mannheim, Germany). AP from Escherichia coli, and B-LG
were obtained from Sigma. Monomeric ribonuclease T1 was purchased
from Calbiochem Co. (San Diego, CA). Copper-free azurin (Az) from
Pseudomonas aeruginosa was a gift of Prof. Finazzi-Agro (University of
Roma, Tor Vergata, Italy) and copper-free SOD from Photobacterium
leiognathi was a gift of Prof. Desideri, (University of Roma, Tor Vergata,
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Italy). CdAz was formed from apoazurin by the addition of CdCl, in the
Cd:protein molar ratio of 2:1. Complex formation was verified by looking
at the Trp fluorescence intensity in competition experiments with Cu* as
Cu-azurin is strongly quenched (Strambini and Gabellieri, 1991).

Fully deuterated proteins were prepared by mixing 10 uL of concen-
trated protein stock in H,O buffer with 990 uL of the D,O buffer (ex-
change solution). To complete the exchange process these mixtures were
incubated overnight at different temperatures depending on the thermal
stability of each protein: 30°C for SOD and Az + 0.5 M GuHCl, 40°C for
LADH, B-LG, and Az, 60°C for AP, 75°C for CdAz. Longer incubation
times, up to 36 h, did not modify the phosphorescence characteristics of the
sample. Fully deuterated CdAz was also prepared by the addition of Cd**
to deuterated apoazurin.

For phosphorescence measurements in fluid solutions, it is paramount to
rid the solution of all O, traces. The samples were placed in 5 X 5 square
quartz cuvette especially designed to allow thorough removal of O, by the
alternative application of moderate vacuum and inlet of ultra pure N,
(Strambini and Gonnelli, 1995). In all experiments the concentration of
protein was ~5 uM. Acrylamide quenching experiments were carried out
as described before (Cioni and Strambini, 1998).

Luminescence measurements

Phosphorescence decays in fluid solutions were measured on an apparatus
described before (Strambini and Gonnelli, 1995). Pulsed excitation is
provided by a frequency-doubled, Nd/Yag-pumped dye laser (Quanta
Systems, Milano, Italy) (A, = 292 nm) with pulse duration of 5 ns and a
typical energy per pulse of 0.1 mJ. Phosphorescence and delayed fluores-
cence, emitted at 90° from the excitation, are selected by filter combina-
tions with a transmission windows 420 to 460 nm and 320 to 400 nm,
respectively. A gating circuit (Kao and Verkman, 1996) that inverts the
polarity of dynodes 1 and 3, for up to 1.5 ms after the laser pulse, protects
the photomultiplier (EMI 9235QA, Middlesex, UK) from the intense
prompt fluorescence light pulse. Alternatively, for lifetimes shorter than 5
ms the photomultiplier was protected by a chopper blade that closes the
emission slit during the excitation pulse (Strambini and Gonnelli, 1995).
The time resolution of this apparatus is typically 10 us. The photocurrent
was amplified by a current to voltage converter (SR570, Stanford Research
Systems) and digitized by a computerscope system (ISC-16, RC Electron-
ics) capable of averaging multiple sweeps. All phosphorescence decays
were analyzed in terms of a sum of exponential components by a nonlinear
least squares fitting algorithm (Global Unlimited, LFD, University of
Illinois). Lifetime data used in the analysis are averages of two or more
independent measurements. The reproducibility of phosphorescence life-
times between samples was typically better than 5%.

RESULTS

Phosphorescence lifetime of NATA and of
proteins in D,O

In ordinary phosphate buffer, 5 mM, pH 7, the phosphores-
cence lifetime (1) of NATA, measured by its delayed fluo-
rescence, is 1.0 to 1.1 ms, at 20°C (Strambini and Gonnelli,
1995). On replacement of H,O with D,O the mean lifetime,
obtained with different D,O stocks, is 0.95 = 0.02 ms,
~10% smaller than in water. It would appear that neither
D,0 as a solvent nor deuteration of the indole ring nitrogen
has significant effects on the radiationless deactivation of
the excited triplet state, the process responsible for the
shortening of the phosphorescence lifetime in fluid media
(Strambini and Gonnelli, 1995). Naturally, one cannot rule
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Effects of D,O on the phosphorescence decay of azurin (4) and on the lifetime Stern-Volmer plot for the quenching of azurin

phosphorescence by acrylamide (B). The sample is 3 uM azurin in Tris-HCI (50 mM, pH 7.5) at 50°C. In B each point is the average of at least
three independent experiments, and the error bars indicate the range of 7 variations.

out the possibility that traces of quenching impurities in the
D,O supply mask a potentially larger intrinsic lifetime in
heavy water. Phosphorescence decays measurements on
NATA were also carried out in viscous propylene glycol/
D,0 (50/50, v/v) mixtures, down to 140 K where 7 reaches
the limiting value of 6.5 s. The results indicate that also in
viscous solutions, where bimolecular quenching reactions
are inhibited, deuteration of the ring nitrogen does not affect
the lifetime of NATA. The same conclusion was drawn
from comparing 7, in ice formed by light and heavy water,
at 140 K.

In contrast to the free chromophore, in the set of proteins
examined the phosphorescence decay of internal Trps is
generally slowed down in D,O. An example of raw data and

of the typical lifetime variation in proteins is given in Fig.
1 4 for Az at 50°C. The intrinsic lifetime of each protein in
water (1) and in D,O (7p), at selected temperatures be-
tween 0°C and 50°C, is given Table 1, whereas its variation
is shown by the lifetime ratio, /7y, in Fig. 2. The phos-
phorescence of LADH, SOD, and B-LG is intrinsically
heterogeneous and the multiplicity of phosphorescence life-
times reflects the presence of more than one stable confor-
mation of the macromolecule, each with its own 7 (Cioni et
al., 1994). The lifetime heterogeneity is found to be pre-
served in D,O, and the statistical analysis indicates that the
fractional intensities of the lifetime components are largely
unchanged relative to water, suggesting that heavy water
does not alter the equilibrium between the different confor-

TABLE 1 Intrinsic phosphorescence lifetime (ms) of native proteins in H,0/D,0
T (°C)
Protein Ty (10\)* Buffer/pH 0 10 20 30 40 50

RNase T, 2 Na phosph. 100/101 55/60 28/36 15.3/22.2 7.14/12.11 3.12/5.92
10 mM/6

SOD 3 Tris-HC1 32/33 17/17 8.92/9.1 4.21/4.1 2.28/2.31 1.14/1.18
10 mM/7.5

B-LG 6 Na phosph. 53/61 44/55 30/44 19/30 8.5/14.5 2.5/4.5
10 mM/6

LADH 4.5 Tris-HCI 1520/2128 1150/1564 630/819 311/379 129/156 51.1/61.3
10 mM/7.5

Az 8 Tris-HC1 1550/1612 1182/1217 564/603 271/304 100/125 45.3/58.9
10 mM/7.5

Az+0.5 M GuHCI 8 Tris-HC1 1410/1495 1093/1170 501/571 213/253 77.3/111.3 17.2/28.4
10 mM/7.5

CdAz 8 Tris-HCI 1336/1330 954/960 479/476 204/208 100/101 57.9/56.8
10 mM/7.5

AP 11 Tris-HC1 3302/3300 2843/2900 2060/2142 1117/1218 600/732 270/540
10 mM/7.5

*Shortest distance of phosphorescing Trp (indole ring) from the aqueous interface.

The range of 7 variations is typically of 2 to 3%.
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FIGURE 2 Temperature dependence of the phosphorescence lifetime
ratio T/ 1; for LADH, AP, RNase T, and B-LG (4) and for Az, CdAz, and
Az + 0.5 M GuHCI (B). The buffers used and their pH are reported in
Table 1.

mations. Throughout, heterogeneous decays were ade-
quately fitted in terms of two lifetime components and the
magnitude reported in Table 1 and Fig. 2 refer to the
averaged lifetime (7,, = a; 7, + a,7,). Lastly, a comparison
with previous studies, shows that both 7; and 7, are sub-
stantially longer for LADH (Saviotti, 1975; Kishner et al.,
1979; Vanderkooi et al., 1987) but are similar, under
equivalent experimental conditions, in the case of AP
(Fischer et al., 2000). The shorter lifetimes reported
previously for LADH presumably reflects incomplete
sample deoxygenation.

With the exception of SOD, where the lifetime is practi-
cally unchanged in D,O, for the other proteins the ratio
/Ty increases from 5% to over 50%, depending on the
protein and temperature. From the empirical correlation
between 7 and solvent viscosity, observed with Trp deriv-
atives in viscous solutions (Strambini and Gonnelli, 1995),
the increment of T attests to a greater rigidity of the protein
structure in D,0, corresponding to a roughly 10% to 100%
reduction in local fluidity. In this respect the effect of D,O
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on protein dynamics is similar to that of cooling the solu-
tion, and one can estimate the equivalent temperature re-
duction from the temperature variation of 7 in water (Table
1) and the difference 67 = 7, — 7; At 50°C, this amounts
to a cooling of ~7.5°C for monomeric ribonuclease T1, 3°C
for B-LG, 2.5°C for Az, and 7°C for AP. For LADH at 10°C
it is 3.5°C. Interestingly, these magnitudes are in the same
range of the increase in the thermal unfolding temperature
reported for some proteins in D,O (Bonnete et al., 1994;
Verheul et al., 1998).

There is considerable variability of the D,O effects
among the proteins examined, and an analysis of the data
based on crystallographic structures and 7 (Table 1) indi-
cates that the magnitude of the lifetime change in D,O is not
simply related to the degree of burial of the chromophore
(7> the shortest distance of the indole ring from the aqueous
phase) nor to the local fluidity of the protein structure as
inferred by 7. The only emerging trend is for larger /7
ratios at higher temperatures, although the behavior is op-
posite in the case of LADH. Because of the marked protein/
site specificity any enquiry on a possible correlation be-
tween the effects D,O on 7 and the thermodynamic stability
of the globular fold need to refer to the same protein system.
To this end Az was destabilized by the addition of 0.5 M
GdnHClI and stabilized upon binding of Cd*™ to the copper-
binding site (Tm increases from 65°C to 95°C (Engeseth
and McMillin, 1986)). The results (Fig. 2 B) show that the
change in Az stability does modulate the deuterium effect,
the /7 ratio becoming significantly larger in the presence
of denaturant as opposed to being practically abolished in
the stable CdAz.

Acrylamide quenching of
protein phosphorescence

The phosphorescence lifetime is a local probe reporting on
the structure about the indole ring and, therefore, provides a
limited, site specific picture of conformational dynamics.
Moreover, there is the possibility, even if remote, that 7 be
affected by D,O induced changes in protein conformation
that bring intramolecular quenching residues (Cys, His, and
Tyr) within interaction distance of Trp or that, as suggested
recently by Fischer et al. (2000) for AP, H/D exchange at
the ring nitrogen play a role in the 7 increase in D,0. An
independent monitor of protein flexibility is the permeabil-
ity of the macromolecule to small solutes like acrylamide
that quench the phosphorescence emission (Cioni and
Strambini, 1998). Quenching experiments determine the
excited lifetime as a function of quencher concentration in
solution, [(Q], and evaluate the bimolecular quenching rate
constant from the gradient of the Stern-Volmer plot, 1/7 =
Uty + kg[Q], in which 7, is the unperturbed lifetime.
Measurements were conducted at 20°C for most proteins
and at 50°C for Az and AP, which have relatively small
quenching constants at ambient temperature. In these ex-
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TABLE 2 Second order acrylamide-quenching constants in
H,O and in D0, at selected temperatures

Protein T (°C) k{: M s k];/qu) P/t
RNase T, 20 6.0 =1Xx10* 1.1 1.3
SOD 0 1.4 +0.3 % 10* 1.0 1.0
B-LG 20 42 +1x10* 1.5 1.5
LADH 20 1.2+ 0.4 X 10* 1.1 1.5
Az 50 8.8 + 1 X 102 1.4 13
CdAz 50 0.86 = 0.2 1.0 1.0
AP 50 72+ 1 1.8 2.0

*Estimate of the local viscosity obtained from the empirical correlation
between T and solvent viscosity in model studies (Strambini and Gonnelli,
1995).

periments the acrylamide concentration was increased until
the lifetime decreased by at least fivefold. The decays of
SOD, B-LG, and LADH, which are intrinsically heteroge-
neous, were found to remain so even when the quencher
considerably reduces the average 7. This implies that the
lifetime conformers have distinct acrylamide quenching
constants. For convenience, lifetime Stern-Volmer plots
were all constructed from the average lifetime obtained, in
general, from a biexponential fitting of phosphorescence
decays. Thus, the value of k, derived from the gradient of
these plots is an average quantity.

For every protein, 1/7 increased linearly with acrylamide
concentration, as should be expected for a dynamic quench-
ing reaction. Representative Stern-Volmer plots are shown
in Fig. 1 B for acrylamide quenching of Az in H,O and in
D,0 at 50°C. The accessibility of acrylamide to the core of
Az is clearly reduced when the protein is placed in heavy
water, the bimolecular quenching rate constant, k,, decreas-
ing by 1.4-fold. The greater viscous drag to acrylamide
migration to the site of W48 (k, a 7/m, m the frictional drag
to acrylamide diffusion inside the protein) is consistent with
a deuterium-induced stiffening of the globular structure.
The same conclusion was reached from oxygen quenching
of AP phosphorescence (Schlyer et al., 1996). In heavy
water, k. is smaller also for B-LG, AP, and LADH, but not
for SOD and CdAz. The magnitude of k, and its variation in
D,0 is given in Table 2. In this table the ratio kg/ki!, which
is proportional to the change in frictional coefﬁ01ent to
acrylamide diffusion, is compared with the change in local
“viscosity” inferred from 7, under the same conditions.
Except for RNase T1 and LADH, the correlation between
the two dynamic parameters is surprisingly good. It con-
firms that the 7 increase in heavy water reflects a more rigid
protein environment and also indicates that the dampening
of structural fluctuations by D,0O extends to beyond the
proximity of the phosphorescence probe. The mismatch
noted for RNase T1 is probably due to the superficial
location of W59 that makes acrylamide quenching possible
directly from the solvent (Cioni and Strambini, 1998),
whereas distinct structural fluctuations may govern the pa-
rameters 7 and & in the case of LADH. Again, as for the
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intrinsic lifetime, there is no apparent relationship between
the effectiveness of D,O in tightening the structure and the
actual flexibility of the polypeptide inferred from k.

Kinetics of 7 and k_ variations in D,O

The above phosphorescence results refer to samples equil-
ibrated with D,O for at least 18 h. To test how rapid is the
onset of the 7 and k, variations H/D exchange was slowed
by equilibrating the sample at ambient temperature for a
period as short as 10 min, the minimal dead time for
deoxygenation. Except for AP, equilibration times longer
than 10 min did not change the phosphorescence results. For
this set of proteins it can therefore be concluded that the
H/D substitution of medium and slowly exchanging protons
has no detectable influence on 7 and k,. Consequently, the
observed tightening of the globular fold is due to either the
substitution of superficial, rapidly exchanging protons or to
a solvent effect of D,0. To help discriminate between the
two we note that exchange by the EX2 mechanism, which
apparently applies to most protons (Bai et al., 1994), is
sharply pH dependent the rate increasing by a factor of 10
per pH unit on either side of the minimum at approximately
pH 5. For Az and RNase T1 the increase of 7 after 10 min
equilibration in D,O (at 30°C) was found to be equivalent at
pH 7 and 5. Thus, despite 100-fold reduction in exchange
rate the influence of D,O on 7 is rapid and complete within
the dead time of the measurement. Such pH invariance is
more consistent with a solvation-based mechanism.
Among the proteins examined, AP is the only case of
slow induction of deuterium effects on 7. The time course of
7and of k, (Fig. 3) shows that contrary to the increase in &,
which occurs within the dead time of the measurement, 7
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reaches a steady value only after a couple of hours (at
50°C). Divergent kinetics indicate that, for this most deeply
buried protein site, migration of acrylamide and 7 are de-
termined by distinct structural fluctuations not necessarily
involving the same region of the protein. During the lifetime
transition the phosphorescence decay is not exponential and
can be fitted reasonably well in terms of two components
having the lifetime of the protein in water and in D,0,
respectively. Both the kinetics of the process and the mag-
nitude of the lifetime components are in accord with the
results reported before by Fischer et al. (2000). The authors
have proposed that H-D exchange at the indole ring nitrogen
is responsible for the increase of 7 but provided no evidence
of concomitant ring deuteration. Alternative explanations
for the slow increase of 7 are: tightening of the structure
about the probe (W109) as a result of slow deuteration of
protected H bonds or, slow structural isomerization to-
ward a more compact, D,O stabilized conformation of the
macromolecule.

DISCUSSION
Influence of D,O on protein flexibility

The slowing down of acrylamide diffusion through the
globular fold provides unequivocal evidence that for the
majority of the proteins examined heavy water has the effect
of stiffening the polypeptide structure. The conclusion is
also strongly supported by the concomitant lengthening of
the phosphorescence lifetime, which is interpreted in terms
of a more rigid local structure about the triplet probe, in
accord with the very first phosphorescence studies of Savi-
otti (1975) and Kishner et al. (1979). The correlation be-
tween 7 and the local flexibility of the protein matrix is
based on the sharp dependence of 7 (Trp derivatives) on
solvent viscosity (Strambini and Gonnelli, 1995) as well as
on the numerous examples of protein systems and experi-
mental conditions in which modulation of protein flexibility
resulted in a corresponding variation of 7. It should be
mentioned that, in principle, in deuterated matrices 7 may
also be affected proton exchange at the indole ring nitrogen
or even by indirect effects of the deuterated protein matrix
(Busel and Burshtein, 1970). Indeed, Fischer et al. (2000)
have argued that, by analogy to the increase of 7 with
perdeuterated aromatic hydrocarbons (Lower and El-Sayed,
1966), the lengthening of T of AP is probably caused by
deuteration of the indole ring nitrogen, modifying the pho-
tophysics of the chromophore. The authors even foresee that
the lifetime increase should be universal in proteins and that
it may serve as a selective monitor of H-D exchange at the
aromatic ring. Although Busel and Burshtein (1970) find a
modest 10% increase of 7 of Trp in a fully deuterated glass
at 77 K, multiple evidence from this study does not support
this hypothesis. We note that the magnitude of the lifetime
increase on deuteration varies considerably among proteins
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(the effect lacks completely in SOD and CdAz) and with
temperature. Most significantly, however, the lifetime of the
free chromophore (NATA) in fluid solutions was found to
be similar between H,O and D,0. Even more stringent, the
lifetime increment in D,O was found to correlate closely
with increased structural rigidity of the protein monitored
independently by the rate of acrylamide diffusion to the site
of the chromophore. Table 2 shows in fact that in five of
seven cases the enhancement in internal protein viscosity
estimated by k, is quite similar to that derived by 7. Natu-
rally, the conformational flexibility estimated by T and £,
needs not match perfectly if the two parameters are domi-
nated by different structural fluctuations (Cioni and Stram-
bini, 1998). This appears to be the case with LADH and AP.

A lengthening of the RTP phosphorescence lifetime of
proteins after equilibration with D,O has been reported
before for LADH (Saviotti, 1975; Kishner et al., 1979;
Vanderkooi et al., 1987) and for AP (including two mutants)
(Fischer et al., 2000). The present study, although confirm-
ing this trend for other proteins and for a wider range of
experimental conditions, emphasizes also a marked vari-
ability among protein systems. Following the initial goal of
enquiring on the effects of heavy water on protein dynam-
ics, the present investigation also sought for potential cor-
relations between the effectiveness of D,O tightening and
certain specific features of the polypeptide structure such as:
the proximity of the region to the aqueous phase (r,, Table
1), the tightness of the structure (7, k,), and the thermody-
namic stability of the macromolecule to unfolding. Appar-
ently, the disparity among proteins is related to neither the
proximity of the probe to the water interface nor to the
actual flexibility of the local structure (7). Indeed, a simi-
larly large flexibility reduction is found for superficial
(Rnase T1, r, = 1-2 A) and very internal (AP, r, =115 A)
sites, as well as for regions characterized by either very
loose (1 = 3 ms, for RNAse T1) or tight (7 = 270 ms, for
AP) local structures. It is instructive to note, however, that
when differences in sequence and three-dimensional struc-
ture are largely taken into account, as in the internal com-
parison between stabilized/destabilized Az, the response to
D,0 appears to be inversely proportional to the stability of
the globular structure. Binding of Cd to Az increases its Tm
from 65°C to 95°C (Engeseth and McMillin, 1986) and
drastically reduces &, (Cioni and Strambini, 1998), both
responses implying a more compact and stable structure for
the metal complex. An opposite effect on stability is ex-
pected from the addition of nondenaturing concentrations of
GndHCI. Interestingly, the increase in intrinsic lifetime by
D,0 was found to be largest for the looser state of azurin
and to be negligible for the Cd complex. Altogether, these
findings suggest that the influence of D,O in dampening
structural fluctuations may vary substantially with protein
sequence/fold/site, but is likely to be enhanced by condi-
tions, such as high temperature, that destabilize the globular
structure. Because our monitor reports essentially on the
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local structure we cannot distinguish the extent to which the
variability is site-to-site or protein-to-protein. A degree of
protein-to-protein variability of the D,O effects has also
been found with thermal unfolding equilibria (Hermans and
Sheraga, 1959; Bonnete et al., 1994; Dong et al., 1998;
Verheul et al., 1998).

Nature of the interactions underlying the
D,0 effect

It is generally accepted that segmental rigidity to polypep-
tides is conferred primarily by the intramolecular network
of cooperatively formed H bonds and that changes in flex-
ibility involve an alteration in either their number or
strength. Thus, enhanced structural rigidity in D,O can be
accounted for by both stronger intrapeptide D bonds over H
bonds or formation of extra intramolecular bonds at the
expense of hydrogen bonds with the solvent, through addi-
tional folding/compaction of the structure. It has been pro-
posed that the greater propensity of D,O, relative to water,
to form solvent-solvent H bonds (Scheiner and Cuma, 1996)
should make an important contribution to the latter process.
To help discriminate between these two possibilities,
strength or number of intrapeptide H bonds, one criterion
can be the time dependence of the flexibility changes after
dilution in D,O. Solvent effects are expected to be imme-
diate, or as rapid as any eventual change in conformation
that might be induced by the new solvent. By contrast,
isotopic exchange of internal protons is generally slow and
pH dependent, taking from hours to days, particularly for
protons engaged in H bonds (Milne et al., 1998). Kinetic
runs showed that, with the exception of AP, the structure
tightening effect of deuteration was complete after the 10-
min dead time of sample preparation. It remained short even
when in two proteins the exchange rate has been slowed
down 100-fold by lowering the pH from 7 to 5. Based on
these observations, the dampening of structural fluctuations
in D,O should be assigned to a solvent effect, although a
role of rapid deuteration in the periphery cannot be ruled out
completely. Slow isotopic exchange, according to Fischer et
al. (2000), or an unusually sluggish conformational isomer-
ization could instead be implicated in tightening the inner
core of AP where the increase of T, after dilution with D,0,
requires hours to reach equilibrium. In this respect it should
be recalled that during AP refolding the transition from
quasinative to native conformations monitored by T was
found to be extremely slow (days) (Subramanian et al.,
1995).

Overall, the generally short induction time of the D,O
effects on protein dynamics is more consistent with a
change in the solvation properties of heavy water, presum-
ably leading to an increase in the number of intramolecular
bonding interactions and additional compaction of the
polypeptide. This conclusion was also reached by a molec-
ular dynamics simulation study on plastocyanin where di-
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minished protein hydration in D,0 promoted closer packing
of the polypeptide and an increase in the number of intra-
protein hydrogen bonds (Guzzi et al., 1999). Similarly,
Kreshech et al. (1965), from the free energy of transfer of
model compounds between the two solvents, have con-
cluded that the increased strength of solvent-solvent hydro-
gen bonds in D,O stabilizes the folded state of proteins
predominantly through the enhancement of the hydrophobic
interaction. In other words, the free energy gain in burying
nonpolar amino acid side-chains is greater the larger the
cohesive property of bulk solvent is. The observation that,
for most of the proteins examined here, the tightening effect
of heavy water increases significantly with temperature
(Fig. 2) lends support to the hydrophobic nature of the
underlying interaction (Parker and Clarke, 1997). On the
other hand, an inverted temperature dependence with
LADH as well as the slow induction of D,O effects in AP
could reflect stronger intramolecular deuterium bonds.

In summary, the present study demonstrates that D,O
significantly increases the rigidity of most protein struc-
tures, the effect being generally amplified by temperature as
well as by the destabilization of the folded state. The com-
monly observed inverse correlation between structural flex-
ibility and stability to thermal denaturation (Tang and Dill,
1998) would suggest that the folded state is also more stable
in D,0 than in water. This is in accord with the observation
that subunit aggregation is promoted in D,O (Chakrabarti et
al., 1999) but not with the prediction that at ambient tem-
perature proteins will be less stable in D,O than in water
(Lopez and Makhatadze, 1998). Finally, these isotope ef-
fects on protein dynamics/stability have also practical im-
plications for the interpretation of biophysical studies (nu-
clear magnetic resonance, H-D exchange of amide protons)
conducted in heavy water, particularly when attempting to
elucidate small changes in protein conformation. Likewise,
in the use of solvent isotope effects on the kinetics of
enzymatic reactions for mechanistic purposes, consideration
should be given to the fact that the reduction in protein
flexibility reported here, or changes in conformation, may in
part account for the slowing down of catalytic rates.

The authors thank Prof. Finazzi-Agro and Prof Desideri for the generous
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