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‘‘To what extent do plastic strain gradients affect the strengthening resulting from the
transformation of small metastable inclusions into hard inclusions within a plastically
deforming matrix?” is the central question addressed here. Though general in the
approach, the focus is on the behavior of TRIP-assisted multiphase steels. A two-dimen-
sional embedded cell model of a simplified microstructure composed of a single metastable
austenitic inclusion surrounded by a soft ferritic matrix is considered. The cell is inserted in
a large homogenized medium. The transformation of a fraction of the austenite into a hard
martensite plate is simulated, accounting for a transformation strain, and leading to com-
plex elastic and plastic accommodation. The size of a transforming plate in real multiphase
steels is typically between 0.1 and 2 lm, a range of size in which plastic strain gradient
effects are expected to play a major role. The single parameter version of the Fleck–Hutch-
inson strain gradient plasticity theory is used to describe the plasticity in the austenite, fer-
rite and martensite phases. The higher order boundary conditions imposed on the plastic
flow have a large impact on the predicted strengthening. Using realistic values of the
intrinsic length parameter setting the scale at which the gradients effects have an influence
leads to a noticeable increase of the strengthening on top of the increase due to the trans-
formation of a volume fraction of the retained austenite. The geometrical parameters such
as the volume fraction of retained austenite and of the transforming zone also bring signif-
icant strengthening. Strain gradient effects also significantly affect the stress state inside
the martensite plate during and after transformation with a potential impact on the dam-
age resistance of these steels.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Over the last 10 years, the interest devoted to size effects in plastically deforming metals has been tremendous, motivated
by the development of different engineering areas related to micro and nano-systems and to the processing of fine grained
alloys. The focus has been primarily placed on measuring and modeling size effects in the response of small structures loaded
homogeneously such as thin films (Nicola et al., 2003; Fredriksson and Gudmundson, 2005; S�is�ka et al., 2007; Huang, 2007;
André et al., 2007; Keralavarma and Benzerga, 2007), micropillars (Uchic et al., 2004; Tang et al., 2007) or to the response
under large plastic strain gradients as promoted by nanoindentation (Delincé et al., 2006; Kizler and Schmauder, 2007; Chen
et al., 2007; Abu Al-Rub, 2007), microbending (Stölken and Evans, 1998), wire torsion (Fleck et al., 1994), or the presence of
. All rights reserved.
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grain boundaries or phase boundaries (Evers et al., 2004; Balint et al., 2006; Janssen et al., 2006; Yang and Vehoff, 2007;
Aifantis and Ngan, 2007; Liu et al., 2007; Ekh et al., 2007). Nevertheless, one important set of problems has not yet received
much attention: the size-dependent mechanics of phase transformation. Many examples of phase transformations involve
large transformation strains associated to very small scale transforming features: nanometer sized precipitates in Al alloys
(e.g., Radmilovic et al., 1999), martensitic transformation (e.g., Jacques, 2004), or carbide precipitation in steels (e.g., Wei
et al., 2007). Other examples such as twinning can also be perceived as similar to a phase transformation often occurring
at the submicron scale. Phase transformation takes place either during materials processing, especially during thermal treat-
ments, or, dynamically, under loading. The mechanics of phase transformation directly affects the phase transformation
kinetics, the development of internal stresses and the accumulation of dislocations around the transformed region (Jacques,
2004). In the case of dynamic transformation, this leads to extra hardening and strain hardening contributions. Based on the
current understanding of strain gradient plasticity theory and discrete dislocation-based modeling, it can be anticipated that
plastic strain gradient effects can play a prominent role in controlling phase transformation kinetics of submicron scale ele-
ments and in affecting the impact of mechanically induced phase transformation on the overall flow behavior.

In multiphase steels the interplay of hard and soft phases results in properties improvements related to a composite type
response. The multiphase effect can also be enhanced owing to the stabilization by heat treatment of a residual austenitic
phase: under mechanical loading the metastable austenite transforms into the harder martensitic phase. This so-called TRIP
effect induces an extra strengthening contribution through three mechanisms (e.g., Fischer and Reisner, 1998; Fischer et al.,
2000; Furnémont, 2003; Lani et al., 2007):

� the increase of the volume fraction of the harder martensitic phase contributing to an elevation of the global hardening
through a composite type effect;

� the generation of extra dislocations around the transformed regions required to accommodate the relatively large trans-
formation strain occurring in the transforming zone;

� the appearance of a new boundary impenetrable to dislocations leading during further deformation to an extra hardening
of a region surrounding the transforming zone of the material through an higher order type effect.

The composite type effect is supposed to be coupled to the change of plastic confinement as a consequence of the growth
of the martensitic region. Typical TRIP steels have austenitic grains size on the order of 1 lm with extremely good strength
versus ductility balance resulting from excellent strain hardening capacity (e.g., Van Rompaey et al., 2006; Jacques et al.,
2007). Several investigations have reported that smaller grain size tend to increase the stability of the austenite in fully
austenitic steels (Jimenez-Melero et al., 2007). It is well admitted nowadays that for such small sizes (e.g., Fleck and Hutch-
inson, 1997; Fleck et al., 2003; Ma et al., 2006), geometrically necessary dislocations, required to accommodate the mismatch
of properties and shape change as well as the appearance of an interface impenetrable to dislocations, will dominate the sta-
tistically stored dislocations. As a result, strain gradient effects can significantly affect the response leading to an additional
strengthening contribution.

This work aims at improving the understanding of the mechanics of multiphase TRIP steels which has already received
much attention in terms of numerical multi-scale cell calculations (e.g., Marketz and Fischer, 1995; Serri et al., 2005; Van
Rompaey et al., 2006; Turteltaub and Suiker, 2006; Dan et al., 2007b; Tjahjanto et al., 2007; Dan et al., 2008) and constitutive
model developments, (e.g., Reisner et al., 1998; Iwamoto and Tsuta, 2000; Fischer et al., 2000; Papatriantafillou et al., 2006;
Dan et al., 2007a; Lani et al., 2007; Delannay et al., 2008). Among others, cell calculations have shown that within classical
plasticity theory the main contribution of the TRIP effect originates from the composite effect, a conclusion that will be chal-
lenged here. To the best of the authors’ knowledge, the only study addressing size effects in TRIP steels is by Turteltaub and
coworkers (Turteltaub and Suiker, 2006) where the grain size effect is included in the model formulation.

In order to estimate the contribution of strain gradient plasticity effects through finite elements simulations, many strain
theories are available in the literature. A first class of theories was proposed by Fleck and Hutchinson (1997), involving the gra-
dients of the complete strain tensor in the formulation. It can be seen as an extension of Toupin and Mindlin higher order the-
ories to the plastic regime (Toupin, 1962; Mindlin, 1964). Although this theory is adapted to account for size effects, the
computational framework is complex since it requires the use of C1 interpolation for the displacement field or the use of two
independent interpolations for the strain gradient tensor and the displacement field with a penalty-enhanced C0 interpolation.

In a second class of theory, the strain gradient effects are included in the plastic regime only. In de Borst and Mühlhaus
(1992) and de Borst and Pamin (1996), strain gradients enter the yield condition, requiring the same interpolation scheme as
in previous works: C1 or penalty-enhanced C0 interpolation fields. Fleck and Hutchinson (2001) proposed to include the gra-
dient effects within a generalized higher order field equation, which is only activated in the plastic regime, and within a gen-
eralized effective plastic strain measure. It provides a simplified version of the former Fleck and Hutchinson (1997) higher
order theory, while preserving the key ingredients to predict size effects (Niordson and Hutchinson, 2003b; Engelen et al.,
2006). A simple case of this theory can be used to recover the initial Aifantis theory (Aifantis, 1984). A straightforward C0

implementation scheme is proposed in Niordson and Hutchinson (2003b) where the displacement rate and the effective
plastic strain rate are treated as unknowns on equal footing. Yet, the restriction on the validity of the higher order field equa-
tion is a disadvantage of using this theory: indeed, boundary conditions need to be specified at the internal and continuously
moving elasto-plastic boundary. The consequences of this aspect have been recently treated in the literature (Niordson and
Hutchinson, 2003b; Gudmundson, 2004; Polizzotto, 2007; Peerlings, 2007).
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Non-local theories constitute a third class of interest, usually adapted for the study of softening and localization (e.g.,
Engelen et al., 2006). The framework elaborated by Engelen et al. (2006) was shown to be less adapted to size effects in hard-
ening materials. The framework proposed by Peerlings (2007) is more complete regarding the detailed treatment at the mov-
ing elasto–plastic boundaries: it more rigourously clarifies the proper boundary conditions to apply at the moving elasto-
plastic boundary. The current version is, however, only applicable to linear hardening.

As a result, the theory of Fleck and Hutchinson (2001) has been selected as a good trade off between simplicity and rel-
evance for the present problem and implemented within a finite element code in order to investigate the size effects result-
ing from the TRIP mechanism.

The outline of the paper is the following. Section 2 describes the physical model, i.e., the microstructure idealization, the
phase transformation and the loading conditions while Section 3 introduces the mechanical description of the different
phases, and the strain gradient plasticity theory. A parameter study of a simplified microstructure is presented in Section
4 with a specific attention to the influence of (i) the boundary conditions on plastic flow at the elasto–plastic boundaries,
(ii) the intrinsic length parameter, (iii) the geometrical parameters such as the volume fraction of retained austenite and
of the transforming zone, (iv) the overall strain Estart

tsf at which transformation is assumed to start. The results obtained in Sec-
tion 4 are discussed in Section 5 while opening to wider perspectives in terms of material properties optimization.

2. Phase transformation modeling

Since the retained austenitic phase is metastable at room temperature, it can transform under straining into the harder
martensitic phase by successive bursts. In the next subsection, the phase transformation mechanisms are described together
with the microstructure. The following notations, classical in physical metallurgy, will be used:
a! ferrite; a0 !martensite;
c! austenite; HOM! homogenized medium:
2.1. Physical model for the transformation of a retained austenite inclusion

The simplified representative microstructure described in Fig. 1a will be treated in two dimensions, under plane strain
tensile loading conditions. It is composed of a cylindrical austenitic inclusion surrounded by a ferritic matrix. In the case
of uniaxial loading, it has been shown that the martensitic variant maximizing the mechanical driving force, and thus the
most susceptible to transform, is the closest to the 45� angle with respect to the tensile axis (Van Rompaey et al., 2006),
which corresponds to the x-axis here. Moreover, an elliptical transforming zone is chosen in this work in order to avoid stress
singularities at the tips of the transforming region which might lead to overestimating the gradients effects. The volume frac-
tion of the transforming zone is in principle controlled by the phase transformation condition, which is, in turn, directly af-
fected by the microstructure geometric confinement and the balance of driving forces and resistive forces. Modeling
explicitly the nucleation and growth of the martensitic phase in this system is extremely complex and remains a question
of debate, especially regarding nucleation. It lies outside the scope of this study, see contributions by Weschler et al. (1953),
Olson and Cohen (1975), Leblond et al. (1986), Ball and James (1987), Stringfellow et al. (1992), Bhattacharya (1993), Diani
et al. (1995), Tomita and Iwamoto (1995), Levitas and Stein (1997), Cherkaoui et al. (1998), Ganghoffer and Simonsson
(1998), Levitas et al. (1998a), Levitas (1998b), Fischer and Reisner (1998), Reisner et al. (1998) and Fischer et al. (2000). Here,
the final volume of the martensitic zone is imposed in the simulation and the transformation is assumed to occur homoge-
neously within the lenticular plate. The volume fraction of the lenticular plate is imposed to vary between 0% and 6%, which
corresponds to realistic values, see (Jacques, 2004). Note that other plates will usually transform later in the deformation
process, which is not modeled here, see Marketz and Fischer (1995). The stress-free transformation strain involves a shear
component ctsf and a dilatation component dtsf along the small axis of the plate, and has the following form in the local axis
(1,2) of the lenticular plate, see Fig. 1b:
etsf
loc ¼

0 0 0
0 0 ctsf=2

0 ctsf=2 dtsf

2
64

3
75: ð1Þ
The deformation process is modeled in three stages:

� The cell is first deformed until the overall strain E reaches the strain prescribed for the onset of transformation. This value
Estart

tsf corresponds to an average strain h�istart
tsf ;c in the austenite. Since the strength mismatch is not very large between aus-

tenite and ferrite, h�istart
tsf ;c will not differ too much from Estart

tsf . The corresponding overall stress R is noted Rstart
tsf .

� An artificial thermal loading stage is then applied: a variation of temperature DT associated to fictitious thermal expansion
coefficients aij allows imposing the transformation strain etsf

loc to the prescribed transforming region. The material proper-
ties are also changed following a linear variation with DT. As a result, the transformation is assumed to occur at constant
macroscopic strain Estart

tsf or macroscopic stress Rstart
tsf .

� The thermal loading ends and the mechanical loading is resumed.



Fig. 1. Simplified microstructure: (a) geometrical parameters; (b) embedded cell model.
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2.2. Embedded cell model

There are two extreme ways to control the loading of the unit cell during the phase transformation by keeping either the
average stress R constant and equal to Rstart

tsf or the average strain E constant and equal to Estart
tsf . These quantities can be con-

trolled from boundary tractions or displacements on the unit cell (e.g., Kouznetsova et al., 2001). For the sake of illustration,
Fig. 2 shows the response of a unit cell calculation (as described later in Section 4) with transformation occurring under
either load or displacement control. Obviously, the boundary conditions have a strong impact on the response, at least during
the transient regime following the transformation, which makes this simple unit cell model unadapted. An embedded cell
model has been considered in order to make the transformation stage independent of the mechanical control on the cell,
see also Van Rompaey et al. (2006). As shown in Fig. 1a the unit cell is embedded in a surrounding composite with the same
uniaxial behavior as the one obtained by averaging the behavior of a non-transforming unit cell. This allows the transforma-
tion behavior to be independent of the mechanical control on the cell provided the ratio lcell

L , see Fig. 1b, is sufficiently small:
typically a ratio smaller than 1

5 is advised in the literature, see Dong and Schmauder (1996). Fig. 2 shows that the response of
the embedded cell model (with lcell

L ¼ 1=6) is intermediate between the two extreme behaviors of the unit cell model, under
constant R or E. The response of the transforming unit cell is then obtained by averaging the stress and strain over the vol-
ume of the representative central unit cell:
Ecell ¼
1

Vcell

Z
Vcell

edVcell;

Rcell ¼
1

V cell

Z
Vcell

rdVcell:

ð2Þ
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Fig. 2. Influence of mechanical boundary conditions on the overall stress/strain curve along the tensile direction – l�=d=1 and unconstrained plastic flow at
elasto-plastic boundaries.

L. Mazzoni-Leduc et al. / International Journal of Solids and Structures 45 (2008) 5397–5418 5401
A uniform horizontal displacement Ux is applied on the boundary of the surrounding composite, while leaving free the
boundary transverse to the y-axis leading to overall uniaxial tension conditions (Fig. 1b).

Note that during the transient regime, significant unloading takes place in the unit cell resulting mostly from the dilata-
tion component of the transformation strain. This important feature of the TRIP process will be addressed in detail in this
paper.

3. Strain gradient plasticity theory

3.1. The generalized effective plastic strain rate

In this section, the essentials of the Fleck and Hutchinson (2001) strain gradient plasticity theory are summarized. As in
classical plasticity theories, the higher order theory is based on the usual definition of the conventional effective plastic
strain rate _�P:
_�P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 _�P

ij
_�P

ij=3
q

: ð3Þ
The von Mises effective stress is expressed as re ¼
ffiffiffiffiffiffiffiffiffiffiffi
3
2 sijsij

q
, where sij is the deviatoric part of the Cauchy stress tensor. The

direction of the plastic strain increment is defined as mij ¼ 3sij=2re and the plastic strain rate tensor is expressed as:
_�P

ij ¼ _�Pmij. In order to introduce higher order terms in the formulation, a generalized effective plastic strain rate is defined,
including gradients of effective plastic strain rate and up to three length parameters setting the scale at which gradients ef-
fects are important. In the simple case of a single length plastic strain gradient theory, the definition of the generalized effec-
tive plastic strain rate is given by:
_E2
P ¼ _�2

P þ l2� _�P;i _�P;i ð4Þ
which leads to a theory resembling the one proposed initially by Aifantis (1984).
In the implementation proposed by Niordson and Hutchinson (2003b), this single parameter theory is used with a C0

interpolation of the displacement field and of the plastic strain rates. It retains the essential ingredients of the original Fleck
and Hutchinson (2001) theory since it involves the higher order terms. However, the influence of the plastic flow direction
gradient mij;k is neglected in the definition of generalized effective plastic strain rate. This leads to an aggregate effect of plas-
tic gradients without separating extensional and rotational effects, which has already been shown to decrease the magnitude
of the size effects in specific loading configurations (see Niordson and Hutchinson, 2003b).

3.2. Governing and constitutive equations

The Fleck and Hutchinson (2001) theory is a generalization of the classical J2 flow theory. The principle of incremental
virtual work can be stated as follows, for each displacement and effective plastic strain rates:
8d _ui; 8d _�PR
V

_rijðd_ee
ij þ d_e�ijÞ þ _Qd_eP þ _sid_eP;i

n o
dV ¼

R
S

_Tid _ui þ _td_eP

� �
dS;

ð5Þ
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where a transformation strain e�ij, being non-zero only in the transforming zone, is introduced. Q is the generalized effective
stress, work conjugate to the plastic strain �P and si is the higher order stress which is the work conjugate to the gradient of
the effective plastic strain. In the absence of body forces, straightforward manipulations lead to the corresponding strong
form of the field equations:
_rij;j ¼ 0 ð6Þ
which is the equilibrium equation, and
_re ¼ _Q � _si;i ð7Þ
which is a generalized field consistency equation only valid in the plastic regime, together with associated boundary
conditions
_Ti ¼ _rijnj;

_t ¼ _sini:
ð8Þ
To close the formulation, the incremental constitutive equations are given by:
_rij ¼ Lijklð _�kl � _�Pmkl � _e�klÞ;
_si ¼ hðEPÞðl2

� _�P;iÞ;
_Q ¼ hðEPÞð _�PÞ;

ð9Þ
where Lijkl denotes the elastic stiffness tensor for an isotropic solid and h is the hardening function which is defined by:
h ¼ dryðjÞ
dj

����
EP

; ð10Þ
where ryðjÞ is the hardening law, j is the hardening parameter measuring the accumulation of dislocations. Hardening is
evaluated at j ¼ EP rather than at j ¼ �P to take into account the contribution of the geometrically necessary dislocations
associated to the plastic gradients. The consistency equation governing plastic flow is now expressed through the general-
ized effective stress by Q ¼ Qy where the evolution of Q y is given by:
_Qy ¼ hðEPÞð _�PÞ: ð11Þ
3.3. Implementation issues

In this study, an implementation of the theory similar to the one presented in Niordson and Hutchinson (2003b) is used.
The implementation is purely incremental, equilibrium is not enforced through the successive iterations. Small time steps
are therefore used to minimize the divergence to the exact solution. The convergence with respect to time step and mesh
refinement has been carefully checked. A mesh containing 11,744 elements has been used for generating the results pre-
sented here. The displacement rate and the effective plastic strain rate are treated as two independent unknowns on equal
footing. A bi-quadratic interpolation is used for the displacement rate, and a bi-linear interpolation is used for the effective
plastic strain rate in order to ensure similar variations in the calculation of the total strain rate. The elasto–plastic transition
is tested at each Gauss point: if the von Mises equivalent stress at a Gauss point in the elastic domain becomes larger than
the yield stress, the Gauss point is considered to enter the plastic regime. Elastic unloading occurs whenever the effective
plastic strain rate calculated at a plastic Gauss point is negative (see Niordson and Hutchinson, 2003b). As mentioned earlier,
the theory is implemented using an independent effective plastic strain rate field. As a result, higher order boundary condi-
tions must be specified at the external boundary of a region where plastic flow occurs. Two extreme types of conditions can
be considered (Niordson and Hutchinson, 2003b):

� At a free surface, dislocations pass through unimpeded. No constraint on the effective plastic strain rate _�P should then be
applied, which is equivalent to the natural boundary condition on the higher order traction, i.e., _sini ¼ 0.

� At a strongly bonded interface, or an interface between phases, dislocations cannot cross the interface and accumulate in
the near interface region. The essential boundary condition corresponding to a boundary impenetrable to dislocations is
_�P ¼ 0.

The incremental nature of the Fleck and Hutchinson (2001) theory is well adapted to study the phase transformation. It
allows accounting for the evolving nature of the interface between austenite and martensite, which does not exist before
transformation and becomes impenetrable to dislocations. The plastic flow is suddenly constrained along the interface by
setting the rate of effective plastic strain equal to zero, i.e., _�P ¼ 0 at the onset of the transformation.

Finally, boundary conditions must be given along the elasto–plastic boundary region. Again the two choices of boundary
conditions described above are possible at elasto–plastic boundaries. The choice is not so obvious, (e.g., Peerlings, 2007),
although the physics calls more for the natural boundary condition _sini ¼ 0.
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4. Parameter study

A study of the effect of the main parameters of the problem is performed with the embedded cell model described in Sec-
tion 2. This section starts with the selection of parameters variations. Then, the influence of the boundary conditions on the
plastic flow at the elasto–plastic boundary is analyzed. Finally, the effect of plastic strain gradients is systematically studied
by varying the main parameters affecting the martensitic transformation.

4.1. Selection of material parameters and model parameters

All the phases are assumed to follow a Swift-type hardening law
Table 1
Materia

E (GPa)
ry0

(MP
h0

N

ry ¼ ry0
ð1þ h0jÞn; ð12Þ
where ry is the current yield stress, ry0 is the initial yield stress, h0 is the hardening coefficient, n is the strain hardening
exponent and j is the hardening parameter (evaluated at j ¼ EP as explained previously).

In order to make the simulation realistic, the flow parameters used for each phases are motivated from previous exper-
imental and modeling efforts on a specific grade of TRIP-assisted multiphase steels (Furnémont, 2003). These parameters are
collected in Table 1. In addition to the elastic and plastic behavior of the phases, some of the parameters related to the trans-
formation are kept fixed in this study:

� the longitudinal transformation strain along the small axis of the lenticular plate dtsf is set equal to 3%;
� the shear component of the transformation strain ctsf is taken equal to 20% as usual.

The parameters varied in the study are:

� the volume fraction of the transforming zone with respect to the initial austenitic inclusion quantified by h=d varying
between 0 and 1=3, where h is the width of the lenticular plate and d is the diameter of the inclusion as shown in Fig. 1a;

� the volume fraction of retained austenite fc with respect to the global distribution of phases varying between 0% and 20%;
� the intrinsic length parameter, l

*
, normalized by the diameter of the inclusion d, i.e., l�=d varying between 0 and 2;

� the macroscopic strain level Estart
tsf at which transformation starts varying between 0% and 4.4%.

Four cases are considered:

� Case No. 1: No phase transformation occurs, corresponding to the response of a composite cell ferritic matrix/austenitic
inclusion.

� Case No. 2: A change of elasto-plastic properties occurs in the transforming region accompanied by evolutive boundary
conditions: the plastic flow is unconstrained during the first stage and becomes constrained during stages 2 and 3 at
the austenite–martensite interface to represent the new impenetrable phase boundary.

� Case No. 3: The transformation strain is applied on top of the change of elasto–plastic behavior and the evolutive boundary
conditions at the austenite–martensite boundary as specified in Case No. 2.

� Case No. 4: The transformation strain only is applied to the unit cell without any modification of the elasto–plastic prop-
erties of the transforming region and thus without any evolving boundary conditions on plastic flow at the interface of the
transformed region.

The stress–strain response associated to the embedded cell presented in Fig. 1a is computed from the averaging of the
microstresses and microstrains over the volume of the unit cell using Eq. (2). The contribution of the transformation to
the strengthening is described through an indicator SðEÞ which is defined at a given macrostrain E as:
SðEÞ ¼ R
Rref

ð13Þ
where Rref is the average stress corresponding to the average strain E on the stress–strain curve obtained in Case No. 1, and R
corresponds to the average strain E in either Cases No. 2, No. 3 or No. 4.
l parameters

Ferrite Austenite Martensite

200 187 200
a) 475 700 2000

55 50 800
0.27 0.3 0.05
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4.2. Preliminary study: general picture without size effect

In order to set the stage for the rest of the analysis, results obtained for the specific set of parameters fc ¼ 20%, h=d ¼ 1=3,
l�=d ¼ 0, Estart

tsf ¼ 2:25% are first given without introducing any size effects in order to briefly recall the key phenomena playing
a role in the mechanics of the TRIP effect. The overall volume fraction of the transforming zone is equal to only 3%. Fig. 3
shows the stress–strain curve obtained in Cases No. 1, No. 2 or No. 3 with the use of the classical J2 plasticity theory. After
the transient, the two curves corresponding to Cases No. 2 and No. 3 match each other, showing that most of the strength-
ening associated to the TRIP effect results from a composite type effect, i.e., comes from the introduction of a hard phase into
a softer matrix. The absence of strengthening contribution associated to the transformation strain might partly come from
the fact that the transient stage is not yet terminated at E ¼ 15% (see further). Note that the TRIP contribution is apparently
relatively small in terms of yield stress increase, even though significant enough in terms of the increase of the strain hard-
ening capacity to slightly improve both the tensile strength and the uniform elongation. This is a first indication that without
introducing strain gradient plasticity effects it is hard to see how reconciling these results with the huge effects observed in
the experiments (Jacques, 2004).

The repartition of the equivalent von Mises stress re and the equivalent strain eP are shown in Fig. 4a and b when the
macroscopic tensile strain reaches 5.5% in Case No. 3. The transformation strain and the change of plastic confinement
are accommodated by the plastic flow around the transforming zone resulting in significant plastic strain gradients in the
matrix and in the austenitic phase. A strong concentration of the equivalent stress is also detected around the lenticular plate
which is undergoing a large compressive stress state.

Fig. 5a depicts the average behavior of the three phases in terms of phase averaged microstresses hri and microstrains h�i
along the tensile loading direction. The transforming zone undergoes large compressive stresses during transformation due
to the dilatation component of the transformation strain. Fig. 5b shows the variation during the transformation of the phase
averaged microstresses hri as a function of the macroscopic strain E in the main loading direction. A state of tensile stress is
recovered only after 4.5% macroscopic strain in the martensitic transforming region. The austenitic and ferritic phases are
subjected to a shorter transient stage.

4.3. Influence of the boundary conditions at the elasto-plastic boundary

The results of simulations obtained using fc ¼ 10%, h=d ¼ 1=3, Estart
tsf ¼ 2:25%, are now reported for the case where the

intrinsic length parameter is on the order of the microstructure representative dimension, i.e., l�=d ¼ 1, using the strain gra-
dient plasticity theory presented in Section 3. The two possible boundary conditions on the plastic flow at the elasto-plastic
boundaries, except at the martensitic/austenitic interface (which is always constrained in Cases No. 2, No. 3 as from stage 2),
are considered: the plastic flow is either constrained by the essential condition _�P ¼ 0 or unconstrained; i.e., by applying
_sini ¼ 0. Fig. 6a shows the stress–strain curves obtained in the case of constrained plastic flow at every elasto-plastic bound-
aries for Cases No. 2 and No. 3. A 20% increase of the strengthening is observed at the end of the computation if only the
elasto-plastic properties are changed during the transformation (Case No. 2) whereas adding the effect of the transformation
strain (Case No. 3) leads to more than 40% increase of the flow stress with respect to the reference curve. Fig. 6b presents the
set of curves corresponding to the unconstrained plastic flow at the elasto-plastic boundaries. The strengthening brought
about by the change of material properties (Case No. 2) is significant in this case too and of the same order of magnitude
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Fig. 4. (a) Equivalent von Mises stress (MPa) and (b) equivalent plastic strain distributions at E ¼ 5:5% using fc ¼ 20%, h=d ¼ 1=3, l�=d=0, Estart
tsf ¼ 2:25% in

Case No. 3.
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as the one obtained in Fig. 6a. As shown in Fig. 6b, adding the transformation strain induces a marginal enhancement of the
overall strengthening when plastic flow is unconstrained at elasto–plastic boundaries. This strong difference between the
curves corresponding to Case No. 3 in Fig. 6b and a is directly linked to the presence of elastically unloading regions in
the ferritic phase and will be clarified in the discussion presented in Section 5.

Constraining the plastic flow at every elasto–plastic boundaries can be considered as giving an upper bound of the
strengthening that can be expected from the TRIP mechanism, while a lower bound is obtained when the plastic flow is
unconstrained at elasto–plastic boundaries (except again at the austenitic/martensitic interface). The last condition is pre-
sumably the most physical and will be used for the rest of the paper, at least to provide conservative results.

4.3.1. Influence of the intrinsic length
Fig. 7 shows the stress/strain curves corresponding to l�=d ¼ 0;0:5;1 and 2 for Case No. 3. The value of the intrinsic length

parameter and associated strain gradient plasticity effects and the higher order boundary condition at martensitic/austenitic
interface have a major impact on the strengthening, due to significant strain gradients in the matrix and in the residual aus-
tenite accommodating the transformation energy and the presence of a hard inclusion.

Fig. 8a shows the variation of the strengthening indicator S as a function of the intrinsic length parameter l�=d at a strain
Emacro ¼ 4%, which corresponds to the transient regime: the martensite is still undergoing high compression at this strain
level. As a result, the strengthening indicator is smaller than 1 in Case No. 4, and is higher in Case No. 2 compared to Case
No. 3. At Emacro ¼ 8%, the picture is different (Fig. 8b): a specific contribution of the stress free transformation strain on top of
the change of flow properties is noticeable if l�=d ranges between 0.1 and 1. On the contrary, when l�=d is larger than 1, the
transformation strain has a negative impact on the strengthening. This is due to the fact that the unit cell is still in the tran-
sient regime. A finite strain formulation of the theory would be needed to generate results valid at larger strains.

Fig. 9a and b depict the evolution of, respectively, the phase averaged stress hra0 i along the tensile loading direction as a
function of the phase averaged strain h�a0 i and of the macroscopic strain E along the tensile loading direction in the martens-
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itic phase for Case No. 3 and for l�=d ¼ 0, 0.5, 1, 2. From Fig. 9b, it appears that increasing values of the ratio l�=d amplifies the
back stress effects associated to the transformation. The transient regime also lasts longer when l�=d increases, i.e., it takes
longer for the martensite to restart undergoing tensile stresses after transformation. The stress levels attained during com-
pression are quite large. Note that no condition for cracking under compression nor tension is accounted for in the model.

Fig. 10a and b show the evolution of, respectively, the phase averaged stress hra0 i as a function of the phase averaged
strain h�a0 i or of the macroscopic strain E in the martensitic phase for Case No. 2 (i.e., no transformation strain) and for
l�=d ¼ 0, 0.5, 1, 2. As expected, the transient is much shorter and does not lead to any unloading inside the martensite. After
the transient, the stress within the martensite reaches about 1500 MPa.

4.4. Influence of the microstructural parameters

4.4.1. Influence of the volume fraction of the transforming zone
In this subsection, the influence of the volume fraction of the transforming zone, quantified by the parameter h=d, is ana-

lyzed for h=d equal to 0, 1/6 and 1/3, corresponding to a volume fraction of the transforming zone equal to 0%, 1.5% and 3%,
respectively, for Case No. 3. As expected and illustrated in Fig. 11, increasing the volume fraction of the transforming phase
enhances the strengthening resulting from the TRIP effect.

4.4.2. Influence of the volume fraction of retained austenite
The volume fraction of retained austenite fc is varied between 0% and 20% while keeping the ratio h=d equal to 1/3. As a

result, the volume fraction of the transforming phase is also varying between 0% and 6%. Fig. 12 shows that increasing fc
obviously leads to enhanced strengthening. The evolution of S as a function of fc is shown in Fig. 13a and b. When
Emacro ¼ 5%, the additional stress free transformation strain seems to have a negative impact on the hardening enhancement
because the transient regime is not yet finished (compare Cases No. 2 and No. 3). The evolution of S at Emacro ¼ 8% shows that
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the transformation strain negative impact tends to attenuate when fc > 10%. When fc ¼ 10%, the transformation strain has a
small effect on the overall hardening. Moreover, both the volume fraction of retained austenite and of the transforming zone
are varying: this leads to stronger effects than in the previous subsection.

4.4.3. Influence of the average strain at which transformation occurs Estart
tsf

Fig. 14 shows the stress/strain curves obtained when Estart
tsf is equal to 0%, 2.25% and 4.43%. The earlier the transformation

starts, the shorter the transient and the larger the strengthening.

5. Discussion

5.1. Discussion about the boundary conditions

The first important result to discuss regarding the parametric study is the first order effect of the boundary conditions on
the strengthening associated to the transformation of a portion of a soft inclusion into a hard plate. The focus being on the
contribution to the strengthening resulting from the TRIP effect, no constraint was prescribed along the inclusion matrix
interface, austenite–ferrite in the case of a multiphase TRIP steel. The austenite/ferrite interface should also, in principle, lead
to an additional Hall-Petch type hardening controlled by the size of the austenite grain. The Hall-Petch contribution resulting
from the ferrite/ferrite grain boundary is considered to be convoluted in the properties of the phase determined experimen-
tally. As explained above, the interface between the hard plate (martensite) and the surrounding softer un-transformed por-
tion of the inclusion (austenite) is always assumed impenetrable from the start of the transformation, an assumption which
has a strong physical foundation: dislocations do not cross the interface between austenite and martensite.
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Only the change of constraint exercised along the moving elasto-plastic boundary has been considered. When no con-
straint is applied at this boundary, a significant strengthening associated to the TRIP effect is observed resulting almost en-
tirely from the change of properties of the transforming region (and from the related change of confinement) and not from
the transformation strain. On the contrary, if plastic flow is constrained at the elasto-plastic boundary, an additional
strengthening associated to the transformation strain of the transforming region shows up.

The comparison of Fig. 6a and b shows that the curves corresponding to Case No. 2 (modification of material properties of
the transforming region without transformation strain) are almost identical for the constrained and unconstrained cases.

This specific effect of the transformation strain can be understood by analyzing the confinement of the plastic flow. The
effect of plastic confinement in higher order theories is frequently illustrated using the one-dimensional example of an infi-
nite shear layer embedded between one or two rigid substrates (Fleck and Hutchinson, 2001). The strengthening of such a
layer results from the plastic flow being impeded at one or both of the interfaces between the substrates and the deforming
layer. A larger strengthening is obtained when both layer boundaries are constrained (two hard substrates), instead of one
(one hard substrate, and one soft substrate). The strengthening increases when the thickness of the layer decreases.

In the present case, the key point to interpret the lack of contribution of the transformation strain in the case of uncon-
strained plastic flow at the elasto-plastic boundaries in the ferrite and the residual austenite is related to the presence of
unloading zones. These elastically unloading zones are shown in Fig. 15a and b (dark areas), for the constrained and uncon-
strained cases, at the end of the transformation. Note that in Fig. 15b, the martensite is partially elastic. It can be seen that for
both types of conditions applied at the elasto-plastic boundary, approximately the same unloading zones are found. Note
also that the boundary of the (martensitic) transforming plate is always constrained. This means that the plastically deform-
ing zones in the constrained case are completely surrounded by impenetrable boundaries (fixed or moving) on both sides.
Furthermore, these plastically deforming regions have a width on the order of the intrinsic length scale and undergo large
shear strains associated to the transformation. These confined zones lead to large strengthening such as in the shear layer
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problem described above. In the case of unconstrained elasto-plastic boundaries, the confinement is lower since the plasti-
cally deforming regions (with the same extent) are surrounded by non-constrained boundaries on one side.
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The confinement provided by the elastically unloaded regions in the constrained case (equivalent to the shear layer sur-
rounded by two hard substrates) is the main cause of the larger strengthening observed with respect to the unconstrained
case due to the presence of strong plastic gradients at these boundaries. These gradients enter the additional non-standard
term in the expression of the generalized plastic strain variation _EP. In Fleck and Hutchinson (2001), the hardness evolution is
linked to the total dislocation density which is intended to be represented by the generalized effective plastic strain EP. As a
result, the uniaxial hardening function h ¼ dr

d�P
is evaluated at EP in order to be consistent with this interpretation.

Fig. 16a and b show contour plots of the variation of the generalized effective plastic strain DEP until the end of the trans-
formation step, from the beginning of the transformation step. The combination of the unloading zones related to the trans-
formation strain and of the local deformation induced by the shear component of the transformation strain leads to the
additional plastic flow near the tips of the lenticular plate (top right and bottom left diagonals of the cell) in both constrained
(Fig. 16a) and unconstrained (Fig. 16b) cases. In the constrained case however, the additional plastic straining related to the
transformation occurs with high confinement between the elastic unloading zones. As a result large generalized plastic
strains EP develop in larger regions of the ferritic phase in the constrained case.

We believe that applying no constraint at the moving elasto-plastic boundary is closer to the physics and that the lower
bound on the strengthening effect obtained this way should not be far from the real behavior. Nevertheless, this does not
definitely mean that the transformation strain does not affect the strength. Accounting for more than one internal length
within the strain gradient plasticity theory could also affect the results significantly. Indeed, the shear component of the
transformation strain leads to rotation gradients. In Niordson and Hutchinson (2003b), a few examples show that the use
of the three parameters theory gives higher strengthening that the one parameter theory when looking at the shearing of
a finite slab. The reasons for the difference in strengthening between the one parameter theory and the multi parameters
theory are multiple. First, the measures of the gradients of plastic strain involved in both theories are not the same. As fo-
cused in the plane strain shear of a finite slab (Niordson and Hutchinson, 2003b), no gradient effects are taken into account in
the vicinity of the free edges when using the one parameter theory framework, as a consequence of the natural boundary
condition _sini ¼ _�P;i ni ¼ 0. In the three parameters theory, the gradient of the effective plastic strain is not only taken into
account but also the gradient of the complete tensor of plastic strain is involved, resulting in a non-zero contribution at
the free edges of the finite slab (Niordson and Hutchinson, 2003b). Second, a significant contribution to the strengthening
is brought in by the gradients of the direction of the deviatoric stress mij. This is illustrated by Niordson (2003a) showing
that for a composite involving a short metal fiber in a matrix, the three parameter theory compared to the one parameter
theory, leads to lower levels of plastic strain close to the fiber, where gradients of mij are the largest, and to an enhanced
strengthening. In the case of a phase transformation with additional transformation strain, strong gradients in the direction
of the stress deviator mij are expected to play a role. Finally, as explained already in Section 4, a finite strain framework is
necessary to extend the calculations to larger strains in order to provide valid results after the transient: the additional trans-
formation strain could contribute more significantly to the strengthening at larger strains.

This discussion also shows that theories including more complete boundary conditions at elasto-plastic boundary, or
avoiding the need to prescribe explicitly a constraint on the elasto-plastic boundary are desirable. This point is further dis-
cussed in the appendix.

5.2. Size-dependent strengthening from composite effect

The size-dependent strengthening effect coming from the change of properties when the soft inclusion partially trans-
forms into a hard plate is very similar to the size-dependent strengthening associated to hard particles already discussed



Fig. 15. Contour plot showing the zone undergoing elastic unloading in dark at the end of the transformation step, using fc ¼ 10%, h=d ¼ 1=3, l�=d=1,
Estart

tsf ¼ 2:25% in Case No. 3 (a) when the plastic flow is constrained at elasto–plastic boundaries and (b) when the plastic flow is unconstrained at elasto–
plastic boundaries. The plastic flow is always fully constrained at the a0=c interface.
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in the literature by many authors (Niordson and Tvergaard, 2001; Niordson, 2003a; Liu and Hu, 2005; Borg et al., 2006). For
instance, the results described in Niordson (2003a) involving a hard inclusion within a plastically deforming matrix described
by the Fleck–Hutchinson model show a strengthening which increases when the volume fraction of the inclusion increases.
With the use of the one parameter theory and a ratio l�=rf ¼ 1, rf being the radius of the fiber, and constrained plastic flow at
the interface between the fiber and the matrix, a 5% increase in strengthening is obtained with respect to the conventional
material without size effect when the volume fraction of the fiber is equal to 13% and when the tensile strain is equal to
8%. These value can be qualitatively compared to our results: Fig. 8b shows that a 7% increase in strengthening is found for
fc ¼ 10% and l�=d ¼ 0:5, at Emacro ¼ 8%. When using the multi-parameter framework, a similar strengthening enhancement
with respect to the conventional material is obtained when the three material parameters are set equal to rf=2.

5.3. Size-dependent transformation strain effect

The results of the parametric study show that, even with size-dependent plasticity effects taken into account, the trans-
formation strain seems to play only a limited direct role on the overall strengthening of the material, except if highly con-



Fig. 16. Repartition, at the end of the transformation step, of the generalized effective plastic strain increment calculated with respect to its value at the
beginning of the transformation step, using fc ¼ 10%, h=d ¼ 1=3, l�=d=1, Estart

tsf ¼ 2:25% in Case No. 3 (a) when the plastic flow is constrained at elasto–plastic
boundaries and (b) when the plastic flow is unconstrained at elasto–plastic boundaries. The plastic flow is always fully constrained at the a0=c interface.
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strained, and probably not very physical, boundary conditions are imposed on the elasto–plastic boundary. This does not
mean that the transformation strain has no effect and should not be taken into account. The transformation strain plays
two important roles in the mechanics of transformation induced plasticity. First, Fig. 2 and 9, when compared to Fig. 10,
show that the transformation strain leads to large compressive stress into the transformed region, as well as in the surround-
ing material during and after the transformation. This transient is amplified when taking into account size effects in the case
of small transforming regions. The main consequence of this compressive state is to delay the occurrence of damage within
the brittle martensite phase. Indeed, the austenite in TRIP-assisted multiphase steels is retained metastable at room temper-
ature owing to high concentration of carbon (typically 1% or more), which is a stabilizing element for the austenite. High
level of carbon makes the martensite very brittle. As soon as martensite starts undergoing large tensile stresses, on the order
of 1–2 GPa, cracking inside the inclusion or along the interface will occur, initiating the damage process. When these voids or
microcracks are nucleated, damage proceeds rapidly with limited amount of void growth and early void coalescence (see
Jacques et al., 2001; Lacroix et al., in press). Typical true fracture strains in multiphase TRIP steels are not very high, on
the order of 0.5 in a tensile test (see Lacroix et al., in press), leading sometimes to processing problems. Decreasing the aus-
tenite grain size would thus not only be beneficial for increasing the strength but also for improving the damage resistance
by enlarging the transient during which martensite is not seeing tensile stresses.1
1 As a matter of fact, we anticipate considering the results of Fig. 9, that the typical 1 lm grain size of the austenite in current TRIP-assisted multiphase steels
already contributes at improving the damage resistance with respect to a fictitious analogous material with larger grain size.
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A second important indirect effect of the transformation strain is on the transformation kinetics by controlling directly
the mechanical driving force for the transformation and the elastic and plastic accommodation in the surrounding material,
see next subsection. Hence, the transformation strain, by controlling the condition for the transformation, indirectly affects
the strengthening too.

5.4. Microstructure optimization

Generating the best TRIP-steels in terms of plastic properties not only depends on the potential extra strengthening of
the alloy but also on the kinetics of the transformation and how the transformation spreads along the deformation path.
As explained by Lani et al. (2007), if the transformation occurs too rapidly, the extra strain hardening effect resulting
from the TRIP mechanism is exhausted too quickly. Conversely, if the transformation is too slow, the extra strain-hard-
ening comes too late and does not contribute to delaying plastic localization. The stability of the retained austenite is
primarily dictated by the carbon content, but it is well known that its size (as addressed here), environment and the
stress state have also an effect (Lani et al., 2007; Jacques et al., 2007; Jimenez-Melero et al., 2007). Furthermore, better
results are always obtained when the transformation spreads for a sufficiently large range of strains to postpone necking.
The spreading of the transformation is related to a dispersion in carbon content, sizes and environment among the aus-
tenite inclusion.

The predicted enhancement of the TRIP effect when decreasing the size of the retained austenite islands provides
a motivation for developing TRIP-assisted multiphase steels with finer microstructures. Nevertheless, one must con-
sider that decreasing the inclusion size tends to delay the transformation. The main reasons are the following (see
e.g., Reisner et al., 1998). First, a small inclusion size puts a geometric constraint on the growth of the selected
martensite variant. Second, the plastic strain gradients discussed in this paper affect the stress and strain redistri-
bution during the transformation and can lead to an increase of the accommodation terms which act as a dragging
force for the transformation. The behavior of the plastic and elastic accommodation terms will be addressed in fur-
ther studies.

Hence, if a steel is optimized for one inclusion size, one should probably consider decreasing slightly the carbon con-
tent if for instance decreasing the inclusion size, in order to keep the same transformation kinetics. A model combining
the mechanical behavior of the multiphase material with size effect and a transformation kinetics model, in the vein of
the model proposed in Lani et al. (2007) and Delannay et al. (2008), but accounting also for inclusion size (motivated by
the present study), is necessary to guide this optimization. The problem becomes even more complex if optimization is
also made with respect to the size dependent and transformation kinetics dependent damage behavior of these
materials.
6. Conclusions

The effect of transformation induced plasticity (TRIP) on a simplified globular microstructure has been addressed using
the Fleck and Hutchinson strain gradient plasticity theory (Fleck and Hutchinson, 2001). A cell made of a ferrite matrix and
an austenite inclusion is embedded into an homogenized medium. A portion of the austenite is forced to transformation into
a hard martensitic plate with a change of mechanical properties as well as a transformation strain. The important outcomes
of this study are:

� The use of strain gradient plasticity theory leads to much larger strengthening related to the TRIP effect than when
using a classical plasticity theory. Similar levels of enhancement can be obtained with classical theories by using extra
adjustments (e.g., Delannay et al., 2008). Nevertheless, the present framework does not account for multigrain inter-
action effects with grains transforming at different instants making difficult a direct comparison with experimental
data.

� The boundary conditions specified on the plastic flow play a major role regarding the impact of the transformation strain
on the strength of the material. Except for the a0=c interface, the elasto–plastic boundaries have been considered as uncon-
strained for most of the analyses.

� When the plastic flow is unconstrained, the transformation strain has only a weak effect on the strengthening even with
small microstructure features and large volume fractions of austenite. Most of the strengthening comes from the evolving
composite effect associated to the presence of a new hard inclusion.

Further works will focus on extensions to finite strain framework and to a three length scale parameter theory.
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Appendix.
Among all the theories presented above, the originality of the Fleck and Hutchinson (2001) theory is that the gradients

effects are only incorporated in the plastic regime. Consequently, the second field equation (7) is only valid within the plastic
domain. A negative consequence thereof is that boundary conditions have to be specified at the elasto-plastic boundaries.
Such boundary conditions are still strongly debated in the literature (Niordson and Hutchinson, 2003b) and must be care-
fully considered. Within an implementation similar to Niordson and Hutchinson (2003b), the effective plastic strain rate _�P

or the higher order traction _sini can be prescribed alternatively at the internal elasto-plastic boundary. As a result these
boundary conditions are mutually exclusive in this type of implementation. In Gudmundson (2004), it is suggested to impose
_�P ¼ 0 at an elasto–plastic boundary to enforce the continuity of the higher order stresses. In Polizzotto (2007) it is shown,
using thermodynamical principles, that the proper boundary condition at an elasto-plastic boundary should be that both the
effective plastic strain rate and the higher order traction vanish. This is possible only in a C1 framework implementation or
with a penalty-enhanced C0 interpolation where the plastic strain gradients are interpolated independently (e.g., de Borst
and Pamin, 1996).

Finally, non-local theories were recently proposed in which a non-local effective plastic strain ��P entering the yield con-
dition is introduced and evaluated through a partial differential equation (14) incorporating an intrinsic length parameter
and the local effective plastic strain �P (Engelen et al., 2006; Peerlings, 2007):
��P � l2
���P;ii ¼ �P: ð14Þ
Since this equation is applied on the entire volume of the specimen, no specific boundary conditions need to be specified at
the elasto-plastic boundaries. Furthermore, this type of formulation naturally leads to incremental iterative schemes and al-
lows larger time steps within the computations.

In Engelen et al. (2006), the yield condition reads as:
re 6 ryðeP;�ePÞ ð15Þ
re being the von Mises effective stress, eP the effective plastic strain, �eP the non-local effective plastic strain. The equation
(14) is verified and external boundary conditions on the non-local effective plastic strain are imposed. However, this theory
was shown to be well adapted to represent softening size effects, but not for hardening problems. This type of framework
was further elaborated in Peerlings (2007) where the yield condition reads as:
re � ry0 � heP � �hðeP � �ePÞ ¼ 0 ð16Þ
with ry0 being the initial yield stress, h the hardening modulus, and �h an intrinsic parameter. The equation (14) is verified
and accompanied with a specific set of boundary conditions:

� the continuity of the effective plastic strain is ensured at the elasto-plastic boundary: �eP � l2
��eP;ii ¼ 0;

� the continuity of the von Mises equivalent stress is ensured at the elasto-plastic boundary;
� boundary conditions on the gradients of non-local effective plastic strain are imposed to respect the eventual symmetries

of the problem;
� boundary conditions on the non-local effective plastic strain are imposed at the external boundary of the solid.

Since this framework is only established for linear hardening at present, the Fleck and Hutchinson (2001) gradient
was used in the present contribution, despite the debate about boundary conditions on plastic flow at elasto-plastic
boundary. It is also strongly motivated by the incremental nature of the Fleck–Hutchinson theory which enables to im-
pose evolving boundary conditions at martensitic/austenitic interface. Since variations of the effective plastic strain and
displacements are primarily unknown, the effective plastic strain rate _�P can be easily constrained to vanish at each time
step.
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