MONOTHERAPY INTERVALS IN TYPE-2 DIABETIC PATIENTS – A PRELIMINARY

We observed similar findings at the 24-month follow up. In the multiple linear regression analysis, the mean CCI was 1.53, and average BMI was 37.53 kg/m². Similarly, a majority of the patients’ (68) scores were lower on the number of active social network domains (1.1, P<0.01), diversity (4.52, P<0.01), and cohesion (Perceived Cohesion Scale). Social network characteristics (Social Network Index), and disease knowledge (Diabetes Knowledge Test) were recorded at baseline and followed up at 3-months. RESULTS: Among the 136 patients recruited in the study, intervention patients’ (68) scores were lower on the number of active social network domains (1.1 vs. 1.4, P=0.09), social network cohesion, with the assumption that those variables will support behavior change and normalizing and comparing risk factors. Patterns of patients initiating EQW in a real-world setting. METHODS: This retrospective cohort study used data from the Medical Quality Improvement Collaborative, a multi-centre diabetes practice that sends a claim to the US Healthcare IT as their electronic medical record. Patients (n=2,715) receiving a prescription for EQW between February 1, 2012 and August 31, 2012 were identified. RESULTS: Of patients initiating EQW, 33.6% were female and 66.4% were male. CONCLUSIONS: This study is to describe the demographic and clinical characteristics and medication patterns of patients initiating EQW in a real-world setting. METHODS: This retrospective cohort study used data from the Medical Quality Improvement Collaborative, a multi-centre diabetes practice that sends a claim to the US Healthcare IT as their electronic medical record. Patients (n=2,715) receiving a prescription for EQW between February 1, 2012 and August 31, 2012 were identified. RESULTS: Of patients initiating EQW, 33.6% were female and 66.4% were male. CONCLUSIONS: The P2P® social networks intervention is showing improved social efficacy and integration of patients within their existing networks. These results inform the translation of diabetes education to a sustainable diabetes self-management behavior at the community level.

OBJECTIVES: To evaluate hemoglobin A1c (HbA1c) reduction in exenatide and liraglutide in a Veteran population. METHODS: Retrospective cohort study investigating exenatide and liraglutide use in a veteran population over a 24-month follow-up period. Patients were included if they were ≥18 years, eligible for veterans benefits, and initiated exenatide or liraglutide at the Veterans Health Administration (VHA). Patients were excluded if they were prescribed both medications during the follow-up period or crossed over into the other group. Clinical data were extracted from the VHA Corporate Data Warehouse. HbA1c reduction was evaluated at 12 months and 24 months. Main dependent variable was HbA1c reduction from baseline at 24 months. Linear multiple regression evaluation reduced in HbA1c controlling for potential confounders. Statistical significance was set at P<0.05. RESULTS: A total of 1318 patients were identified. The mean HbA1c at baseline was 7.37 ± 0.21. Similarly, a majority of the patients initiating exenatide (n=312) and liraglutide (n=137) were treated with combination therapy, a minority of the patients initiating liraglutide were treated with exenatide (n=126, 92%), average age was 59.8 years, average Charlson comorbidity index (CCI) was 1.53, and average BMI was 37.53 kg/m². Similarly, a majority of the patients initiating liraglutide were treated with exenatide (n=126, 92%), average age was 62.93 years, average BMI was 37.53 kg/m². Similarly, a majority of the patients initiating exenatide were treated with combination therapy (n=312, 93%), average age was 59.8 years, average Charlson comorbidity index (CCI) was 1.53, and average BMI was 34.68 kg/m². At 12 months HbA1c reduction was significant within the exenatide group (P<0.0001) and liraglutide group (P<0.0001). We observed similar findings at the 24-month follow up. In the multiple linear regression model, exenatide was associated with an HbA1c reduction of 0.093% (95% Confidence Interval [CI]: -0.55, 0.74) compared to liraglutide while controlling for confounders (R-square=0.37). CONCLUSIONS: These results have important implications regarding formulary decisions. Other factors such as dosing regimen, adherence, and side effect profile may be important attributes for formulary preference. Moreover, evaluating clinical outcomes (e.g., stroke and myocardial infarction) may reveal important differences. Generalizability may be limited to a non-veteran population.

RISK OF CARDIOVASCULAR DISEASES ASSOCIATED WITH ANTIDIABETIC MONOTHERAPY INTERVALS IN TYPE-2 DIABETIC PATIENTS – A PRELIMINARY STUDY ON TAIWAN PAY-FOR-PERFORMANCE DIABETES REGISTRY

Zhong Z1, Xu L1, Zhang F2, Li W3, Wang Y2, Zhang Z1, Zheng LH1

1University of Macau, Macau, Macau, 2University of Nottingham, Nottingham, UK

OBJECTIVES: To establish a framework assessing effects of multiple drug switching patterns on preliminary study data in Taiwan patients with type-2 diabetes (T2D) and cardiovascular diseases (CVDs) associated with anti-diabetic monotherapy intervals in type-2 diabetic (T2D) patients. METHODS: This retrospective cohort study was conducted from April 2004 to February 2009 using the Taiwan Pay-for-Performance Diabetes Registry (November 2003 to February 2009), which contains clinical indicators and claim records of diabetic patients. Adult newly-registered T2D patients who initiated antidiabetics from April 2004 to February 2009 were included. Individually anti-diabetic monotherapy intervals including metformin, sulphonylureas (SUs), meglitinides (MGs), acarbose, pioglitazone, rosiglitazone, and insulin were identified and followed to any change of interval, cardiovascular event (i.e. myocardial infarction, ischemic heart disease and congestive heart failure) or death. Cox regression was used to evaluate related CVD risk associated with different intervals groups comparing against metformin and adjusted for diabetic history (year), gender, age, body mass index, blood pressure, triglyceride, and use of anti-hypertensive and cholesterol-lowering drugs. RESULTS: Among 7,521 patients of the T2D cohort, 1,504 patients without CVDs included in the study, 150,144 intervals and 949 events were identified. The mean follow-up duration was 3.9±2.1 years per patient and the mean interval period was 338±317 days. Of the seven interval (T2D intervals was the most frequently identified and the highest CVD incidence group. All interval groups had significantly higher risk of CVDs than metformin, the Hazard Ratio (95% confidence interval) for SU, MG, acarbose, pioglitazone, rosiglitazone, metformin and insulin were 1.563 (1.31, 1.86); 1.38 (1.10, 1.74); 1.56 (1.22, 1.98); 1.53 (1.19, 1.95); 1.50 (1.18, 1.92); 1.48 (1.20, 1.83), respectively. CONCLUSIONS: The results are inconsistent with previous literature comparing CVD risk of acarbose, pioglitazone and metformin against each other. Inversely-based CVD risk may be biased by the interval definition (monotherapy, multi-therapy, multiple switching) and individual patients’ underline condition.