A note on optimal point distributions in $[0, 1)^s$

Gerhard Larcher, Friedrich Pillichshammer,*1

Institut für Finanzmathematik, Universität Linz, Altenbergerstraße 69, A-4040 Linz, Austria

Received 1 June 2006; received in revised form 10 August 2006

Abstract

In this note we determine the infimum of the L_2-, the star- and the extreme discrepancy taken over all 2-element point sets in the s-dimensional unit cube. Moreover we give very good bounds on the infimum of the isotropic discrepancy taken over all $(s + 1)$-element point sets in $[0, 1)^s$.

© 2006 Elsevier B.V. All rights reserved.

MSC: 11K38; 52A40

Keywords: L_2-, star, extreme- and isotropic discrepancy

1. Introduction

In [6] the authors investigate where to place a point x in the s-dimensional unit cube $[0, 1)^s$ in order to minimize the L_2-discrepancy $L(\mathcal{P})$ and to minimize the star discrepancy $D^*(\mathcal{P})$ of the point set \mathcal{P} consisting of the single point x. They used their results for a quick testing of programs for the calculation of the discrepancy of a point set.

In this note we extend these investigations and we will give optimal values for $L(\mathcal{P})$, $D^*(\mathcal{P})$ and also for the extreme discrepancy $D(\mathcal{P})$ for point sets \mathcal{P} consisting of two points x and y in $[0, 1)^s$.

We remind the definitions of these classical distribution measures, see also [1,3,5].

For a point set \mathcal{P} of N points in $[0, 1)^s$ and a subset Q of $[0, 1)^s$ let $A_N(Q)$ denote the number of points of \mathcal{P} in Q and by $\lambda(Q)$ we denote the s-dimensional volume of Q. Then the L_2-discrepancy of \mathcal{P} is given by

$$L(\mathcal{P}) := \left(\frac{1}{N^2} \int_{[0,1]^s} \left(A_N \left(\prod_{i=1}^s [0, u_i) \right) - N \prod_{i=1}^s u_i \right)^2 \, du_1 \ldots du_s \right)^{1/2}$$

the star discrepancy of \mathcal{P} is given by

$$D^*(\mathcal{P}) = \sup_B \left| \frac{A_N(B)}{N} - \lambda(B) \right|,$$
where the supremum is taken over all boxes B in $[0, 1)^s$ with sides parallel to the axes and one corner in the origin, and the extreme discrepancy of \mathcal{P} is given by

$$D(\mathcal{P}) = \sup_B \left| \frac{A_N(B)}{N} - \lambda(B) \right|,$$

where the supremum is taken over all boxes B in $[0, 1)^s$ with sides parallel to the axes.

A further important distribution measure which we consider here is the isotropic discrepancy of \mathcal{P} given by

$$J(\mathcal{P}) = \sup_C \left| \frac{A_N(C)}{N} - \lambda(C) \right|,$$

where the supremum is taken over all convex subsets C of $[0, 1)^s$.

We will determine explicitly

$$L_2^{(s)} := \inf_{\mathcal{P}} L(\mathcal{P}), \quad D_2^{(s)} := \inf_{\mathcal{P}} D^*(\mathcal{P}) \quad \text{and} \quad D_2^{(s)} := \inf_{\mathcal{P}} D(\mathcal{P}),$$

where the infimum is taken over all point sets $\mathcal{P} = \{x, y\}$ of two points in $[0, 1)^s$.

We note here that the exact values for the minimal star discrepancy of $N \in \{1, 2, \ldots, 6\}$ points in the two-dimensional unit square have been given in Ref. [7].

The determination of $\inf_{\mathcal{P}} J(\mathcal{P})$ for 2-point sets is trivial, since $J(\mathcal{P}) = 1$ for every point set \mathcal{P} in $[0, 1)^s$ with $|\mathcal{P}| \leq s$. This can be seen easily by considering an $(s - 1)$-dimensional hyperplane containing \mathcal{P}. So the first non-trivial object to study is

$$J_{s+1}^{(s)} := \inf_{\mathcal{P}} J(\mathcal{P}),$$

where the infimum is taken over all point sets \mathcal{P} of $s + 1$ points in $[0, 1)^s$. We will determine $J_{s+1}^{(2)}$ explicitly, and we will give good bounds for $J_{s+1}^{(s)}$ in general. It certainly will be very hard to determine $J_{s+1}^{(s)}$ for $s \geq 3$ explicitly.

2. Results and proofs

First we consider the problem of minimizing the L_2-discrepancy of a 2-element point set.

Theorem 1. We have

$$L_2^{(s)} = \left(\frac{1}{3^s} - \frac{(1 - \zeta_s)^{s+1}}{8\zeta_s} - 3 \frac{(1 - \eta_s)^{s+1}}{8\eta_s} \right)^{1/2},$$

where ζ_s is the unique positive real solution of $x(1 + x)^{s-1} - 2^{s-3} = 0$ and where η_s is the unique positive real solution of $y(1 + y)^{s-1} - 3 \cdot 2^{s-3} = 0$.

Proof. As in [6, Proof of Theorem 4] we use the well-known formula for the L_2-discrepancy of a point set (see, for example, [4]) which states that for $\mathcal{P} = \{x_0, \ldots, x_{N-1}\}$ in $[0, 1)^s$ the squared L_2-discrepancy is given by

$$L^2(\mathcal{P}) = \frac{1}{3^s} - \frac{2^{1-s}}{N} \sum_{n=0}^{N-1} \prod_{i=1}^{s} (1 - x_{n,i}^2) + \frac{1}{N^2} \sum_{n,m=0}^{N-1} \prod_{i=1}^{s} (1 - \max\{x_{n,i}, x_{m,i}\}),$$

where $x_{n,i}$ is the ith component of the point x_n. If \mathcal{P} consists only of two points $x = (x_1, \ldots, x_s)$ and $y = (y_1, \ldots, y_s)$, this formula reduces to

$$L^2(\mathcal{P}) = \frac{1}{3^s} - \frac{1}{2^s} \left(\sum_{i=1}^{s} (1 - x_i^2) + \sum_{i=1}^{s} (1 - y_i^2) \right) + \frac{1}{4} \left(\sum_{i=1}^{s} (1 - x_i) + 2 \sum_{i=1}^{s} (1 - \max\{x_i, y_i\}) + \sum_{i=1}^{s} (1 - y_i) \right).$$
Now we minimize the function
\[
 f(x, y) := -\frac{1}{2s} \left(\prod_{i=1}^{s} (1 - x_i^2) + \prod_{i=1}^{s} (1 - y_i^2) \right) + \frac{1}{4} \left(\prod_{i=1}^{s} (1 - x_i) + 2 \prod_{i=1}^{s} (1 - \max[x_i, y_i]) + \prod_{i=1}^{s} (1 - y_i) \right).
\]

We proceed in an analogous manner as the authors did in [6]. First one assumes that the infimum is reached if the points \(x \) and \(y \) are in the interior of the unit cube. In this case all partial derivatives \(\partial f(x, y) / \partial x_i \) and \(\partial f(x, y) / \partial y_i \) need to be zero for \(1 \leq i \leq s \). We first show, that we always can assume \(x_i \leq y_i \) for all \(1 \leq i \leq s \).

Assume that the points \(x \) and \(y \) for which the minimum is reached have \(\rho \in \{0, 1, \ldots, s\} \) equal components, w.l.o.g. \(x_1 = y_1, \ldots, x_\rho = y_\rho, x_\rho+1 \neq y_\rho+1, \ldots, x_s \neq y_s \).

Especially for all \(\rho + 1 \leq j \leq s \) we must have
\[
 \frac{\partial f(x, y)}{\partial x_j} = \frac{2x_j}{2s} \prod_{i \neq j} (1 - x_i^2) - \frac{1}{4} \prod_{i=1}^{\rho} (1 - x_i) \left(\prod_{i=\rho+1}^{s} (1 - x_i) + 2 \cdot 1_{(y_j, 1)}(x_j) \prod_{i=\rho+1}^{s} (1 - \max[x_i, y_i]) \right) = 0
\]
and
\[
 \frac{\partial f(x, y)}{\partial y_j} = \frac{2y_j}{2s} \prod_{i \neq j} (1 - y_i^2) - \frac{1}{4} \prod_{i=1}^{\rho} (1 - y_i) \left(\prod_{i=\rho+1}^{s} (1 - y_i) + 2 \cdot 1_{(x_j, 1)}(y_j) \prod_{i=\rho+1}^{s} (1 - \max[x_i, y_i]) \right) = 0.
\]

Hence, for \(\rho + 1 \leq j < k \leq s \) we obtain
\[
 x_j = \frac{2^{s-3}}{\prod_{i=1}^{\rho}(1 + x_i)} \left[\frac{1}{\prod_{i \neq j}^{s}(1 + y_i)} + 2 \cdot 1_{(y_j, 1)}(x_j) \prod_{i=\rho+1}^{s} (1 - \max[x_i, y_i]) \right]
\]
and (note that \(x_i = y_i \) for \(i \in \{1, \ldots, \rho\} \))
\[
 y_j = \frac{2^{s-3}}{\prod_{i=1}^{\rho}(1 + y_i)} \left[\frac{1}{\prod_{i \neq j}^{s}(1 + y_i)} + 2 \cdot 1_{(x_j, 1)}(y_j) \prod_{i=\rho+1}^{s} (1 - \max[x_i, y_i]) \right].
\]

Assume now that there are \(j, k \in \{\rho + 1, \ldots, s\} \) such that \(x_j < y_j \) and \(x_k < y_k \). Then we have
\[
 x_j = \frac{2^{s-3}}{\prod_{i=1}^{\rho}(1 + x_i) \prod_{i \neq j}^{s}(1 + x_i)} \quad \text{and} \quad x_k = \frac{2^{s-3}}{\prod_{i=1}^{\rho}(1 + x_i) \prod_{i \neq k}^{s}(1 + x_i)}
\]
and it follows that
\[
 x_j (1 + x_k) = \frac{2^{s-3}}{\prod_{i \neq [j, k]} (1 + x_i)} = x_k (1 + x_j).
\]
This implies \(x_j = x_k \).
Further we have

\[
y_j = \frac{2^{s-3}}{\prod_{i=1}^{\rho} (1 + x_i)} \left[\frac{1}{\prod_{i=\rho+1}^{s} (1 + y_i)} + 2 \cdot \frac{1 - \max\{x_i, y_i\}}{1 - y_i^2} \right]
\]

and

\[
y_k = \frac{2^{s-3}}{\prod_{i=1}^{\rho} (1 + x_i)} \left[\frac{1}{\prod_{i=\rho+1}^{s} (1 + y_i)} + 2 \cdot \frac{1 - \max\{x_i, y_i\}}{1 - y_i^2} \right].
\]

Then

\[
y_j(1 + y_k) = \frac{2^{s-3}}{\prod_{i=1}^{\rho} (1 + x_i)} \left[\frac{1}{\prod_{i=\rho+1}^{s} (1 + y_i)} + 2 \cdot \frac{1 - \max\{x_i, y_i\}}{1 - y_i^2} \right]
\]

where

\[
y_k(1 + y_j).
\]

Again we obtain \(y_j = y_k \).

In the same way we obtain \(x_j = x_k \) and \(y_j = y_k \) if \(x_j > y_j \) and \(x_k > y_k \). Therefore \((x_{\rho+1}, \ldots, x_s)\) has at most two different components \(x \) and \(\overline{x} \) and also \((y_{\rho+1}, \ldots, y_s)\) has at most two different components \(y \) and \(\overline{y} \).

Let \(x < y \) and \(\overline{x} > \overline{y} \) and let \(k \in \{0, \ldots, s - \rho\} \) be the number of components of \((x_{\rho+1}, \ldots, x_s)\) equal to \(x \) (this is of course also the number of components of \((y_{\rho+1}, \ldots, y_s)\) equal to \(y \)). Then

\[
f(x, y) = -\frac{1}{2^s} \prod_{i=1}^{\rho} (1 - x_i^2)((1 - x_i^2)^k(1 - x_i^2)^{s - \rho - k} + (1 - y_i^2)^k(1 - y_i^2)^{s - \rho - k})
\]

\[
+ \frac{1}{4} \prod_{i=1}^{\rho} (1 - x_i)((1 - x_i)^k(1 - \overline{x})^{s - \rho - k} + (1 - y_i)^k(1 - \overline{y})^{s - \rho - k})
\]

\[
+ \frac{1}{2} \prod_{i=1}^{\rho} (1 - x_i)(1 - y_i)^k(1 - \overline{x})^{s - \rho - k}
\]

\[
= g(x, \overline{x}) + g(y, \overline{y}) + \frac{1}{2} \prod_{i=1}^{\rho} (1 - x_i)(1 - y_i)^k(1 - \overline{x})^{s - \rho - k},
\]

where

\[
g(a, b) := -\frac{1}{2^s} \prod_{i=1}^{\rho} (1 - x_i^2)(1 - a^2)^k(1 - b^2)^{s - \rho - k} + \frac{1}{4} \prod_{i=1}^{\rho} (1 - x_i)(1 - a)^k(1 - b)^{s - \rho - k}.
\]

Considering the partial derivatives of the function \(g \) one can show that \(g(a, b) \) can only be minimal for \(a = b \).

Therefore, the minimum of \(f(x, y) \) can only be attained for the points \(x = (x_1, \ldots, x_{\rho}, x, \ldots, x) \) and \(y = (x_1, \ldots, x_{\rho}, y, \ldots, y) \). W.l.o.g. assume \(x < y \).

Hence, it follows that the minimum of \(f(x, y) \) can only be attained for the points \(x = (x_1, \ldots, x_s) \) and \(y = (y_1, \ldots, y_s) \) with \(x_i \leq y_i \) for all \(i \in \{1, \ldots, s\} \). In this case our function \(f(x, y) \) becomes

\[
f(x, y) = -\frac{1}{2^s} \left(\prod_{i=1}^{s} (1 - x_i^2) + \prod_{i=1}^{s} (1 - y_i^2) \right) + \frac{1}{4} \left(\prod_{i=1}^{s} (1 - x_i) + 3 \prod_{i=1}^{s} (1 - y_i) \right).
\]
We can now proceed as before. Setting the partial derivatives of \(f \) zero we find that we must have \(x_1 = \cdots = x_s =: x \) and \(y_1 = \cdots = y_s =: y \) where
\[
x = \frac{1}{8} \frac{2^s}{(1 + x)^{s-1}} \quad \text{and} \quad y = \frac{3}{8} \frac{2^s}{(1 + y)^{s-1}}.
\]
In this case we have
\[
L^2(\mathcal{P}) - \frac{1}{3^s} = \frac{1}{4} (1 - x)^s - \frac{1}{2^s} (1 - x^2)^s + \frac{3}{4} (1 - y)^s - \frac{1}{2^s} (1 - y^2)^s
\]
\[
= (1 - x)^s \left(\frac{1}{4} - \frac{1}{2^s} (1 + x)^s \right) + (1 - y)^s \left(\frac{3}{4} - \frac{1}{2^s} (1 + y)^s \right)
\]
\[
= (1 - x)^s \left(\frac{1}{4} - \frac{1}{2^s} \frac{2^s (1 + x)}{8x} \right) + (1 - y)^s \left(\frac{3}{4} - \frac{1}{2^s} 3 \cdot 2^s (1 + y) \frac{8y}{8y} \right)
\]
\[
= - \left(\frac{(1 - x)^{s+1}}{8x} + 3 \frac{(1 - y)^{s+1}}{8y} \right).
\]
Finally, we show, that the squared \(L_2 \)-discrepancy of a 2-element point set in \([0, 1]^s\) with at least one of the points on the boundary of the unit cube is not smaller than this value.

Assume that both points have a component which is equal to 1. Then we have \(L^2(\mathcal{P}) = 1/3^s \) and thus this cannot give a minimum.

Assume that only one point, say \(y \), has a component which is equal to 1 and that no component of \(x \) is zero. Then we find that
\[
L^2(\mathcal{P}) = \frac{1}{3^s} - \frac{1}{2^s} \prod_{i=1}^s (1 - x_i^2) + \frac{1}{4} \prod_{i=1}^s (1 - x_i).
\]
In the same way as above this becomes minimal for \(x = (x, x, \ldots, x) \) with \(x = (2^s/8) (1/(1 + x)^{s-1}) \). Inserting this in the formula for the \(L_2 \)-discrepancy we obtain
\[
L^2(\mathcal{P}) - \frac{1}{3^s} = - \frac{(1 - x)^{s+1}}{8x}
\]
and thus this cannot give a minimum.

If one component of \(x \) is zero, say \(x_j \) and the other components are not 1, then \(\partial_x f(x, y)/\partial x_j < 0 \) and thus this cannot give a minimum. If \(x \) has zero and one components, then
\[
L^2(\mathcal{P}) = \frac{1}{3^s} - \frac{1}{2^s} \prod_{i=1}^s (1 - y_i^2) + \frac{1}{4} \prod_{i=1}^s (1 - y_i).
\]
Again here we cannot attain a minimum.

Similar for \(y \). \(\square \)

In the sequel we use the following notation: for sequences \((a_s)_{s \geq 1}\) and \((b_s)_{s \geq 1}\) we write \(a_s \sim b_s \) if \(a_s/b_s \to 1 \) as \(s \to \infty \).

Corollary 2. We have \(L_2^{(s)} \sim 3^{-s/2} \).

Proof. This follows from Theorem 1 and some simple calculations. \(\square \)

We turn to the star discrepancy.
Theorem 3. We have
\[D_2^{\ast}(s) = \delta_s, \]
where \(\delta_s \) is the unique positive real solution of \(x^s + x - \frac{1}{2} = 0 \).

Proof. Let \(\mathcal{P} = \{x, y\} \) with \(x = (x_1, \ldots, x_s) \) and \(y = (y_1, \ldots, y_s) \). First we show that we can assume \(x_i \leq y_i \) for all \(i = 1, \ldots, s \).

If there exist indices \(1 \leq i < j \leq s \) (w.l.o.g. \(i = 1 \) and \(j = 2 \)) such that \(x_1 \leq y_1 \) and \(x_2 \geq y_2 \), then consider two boxes
\[B_1 := [0, y_1) \times [0, x_2) \times [0, 1)^{s-2} \quad \text{and} \quad B_2 := [0, y_1] \times [0, x_2] \times [0, 1)^{s-2}. \]

For the discrepancy function \(R(B) := \frac{1}{2} A_2(B) - \lambda(B) \) of these sets we have \(R(B_1) = -y_1 x_2 \) and \(R(B_2) = 1 - y_1 x_2 \), hence \(D^\ast(\mathcal{P}) \geq \max(y_1 x_2, 1 - y_1 x_2) \geq \frac{1}{2} > \delta_s \).

So let in the following \(x_i \leq y_i \) for all \(i = 1, \ldots, s \).

Further we may assume \(x_i < \frac{1}{2} \) for all \(1 \leq i \leq s \), since otherwise \(D^\ast(\mathcal{P}) \geq \frac{1}{2} > \delta_s \) (consider the box \(B = [0, 1)^{j-1} \times [0, \frac{1}{2}) \times [0, 1)^{s-j} \)) and \(y_i > \frac{1}{2} \) for all \(1 \leq i \leq s \), since otherwise \(D^\ast(\mathcal{P}) \geq \frac{1}{2} > \delta_s \) (consider the box \(B = [0, y_1] \times \cdots \times [0, y_s] \) with \(R(B) = 1 - \prod_{j=1}^{s} y_j \geq \frac{1}{2} \)).

To determine \(D^\ast(\mathcal{P}) \) we have to consider the following boxes:

(a) as large as possible, containing neither \(x \) nor \(y \), i.e., the boxes
\[B_i = [0, 1)^{j-1} \times [0, x_i) \times [0, 1)^{s-i} \]

with \(R(B_i) = -x_i \).

(b) as small as possible, containing only \(x \), i.e., the box
\[B = \prod_{i=1}^{s} [0, x_i] \]

with \(R(B) = \frac{1}{2} - \prod_{i=1}^{s} x_i \).

(c) as large as possible, containing only \(x \), i.e., the boxes
\[B_i = [0, 1)^{j-1} \times [0, y_i) \times [0, 1)^{s-i} \]

with \(|R(B_i)| = y_i - \frac{1}{2} \).

(d) as small as possible containing both \(x \) and \(y \), i.e., the box
\[B = \prod_{i=1}^{s} [0, y_i] \]

with \(R(B) = 1 - \prod_{i=1}^{s} y_i \).

Hence,
\[D^\ast(\mathcal{P}) \geq \max \left\{ \max_{1 \leq i \leq s} \max \left\{ x_i, \frac{1}{2} - \prod_{j=1}^{s} x_j \right\}, \max_{1 \leq i \leq s} \max \left\{ y_i, \frac{1}{2} - \prod_{j=1}^{s} y_j \right\} \right\} \]
\[= \max \left\{ \delta_s, \delta'_s - \frac{1}{2} \right\}, \]

(Note that \(\max\{x_i, \frac{1}{2} - \prod_{j=1}^{s} x_j\} \) is symmetric in \(x_1, \ldots, x_s \) and the maximum is attained for \(x_1 = \cdots = x_s = x \) and \(x = \frac{1}{2} - x^s \). Similar arguments hold for the “\(y \)-part”) where \(\delta'_s \) is the only positive real solution of \(x^s + x - \frac{3}{2} = 0 \). It is easily shown that \(\delta_s > \delta'_s - \frac{1}{2} \), hence \(D_2^{\ast}(s) \geq \delta_s \).
Of course (consider again the boxes from items (a)–(d)) for the set
\[\mathcal{P} = \{ (\delta_s, \ldots, \delta_s), (\delta'_s, \ldots, \delta'_s) \} \]
we have \(D^*(\mathcal{P}) = \delta_s \) and the result follows. \(\square \)

Remark 1. Note that \(\lim_{s \to \infty} D^*_2(s) = \frac{1}{2} \).

For the extreme discrepancy we have the following result.

Theorem 4. We have
\[D^*_2 = \tilde{\delta}_s, \]
where \(\tilde{\delta}_s \) is the unique positive real solution of \(x^s + x - 1 = 0 \).

Proof. To show that \(D^*_2 \geq \tilde{\delta}_s \) it suffices to consider \(\mathcal{P} \subseteq (0, 1)^s \) and intervals contained in \((0, 1)^s\).

Let
\[\vec{x}^{(i)} := (x_1, \ldots, x_{i-1}, 1 - x_i, x_{i+1}, \ldots, x_s) \]
and
\[\vec{y}^{(i)} := (y_1, \ldots, y_{i-1}, 1 - y_i, y_{i+1}, \ldots, y_s) \]
and for \(B = \prod_{j=1}^s [a_j, b_j] \) let
\[\vec{B}^{(i)} := \prod_{j=1}^{i-1} [a_j, b_j] \times [1 - a_i, 1 - b_i] \times \prod_{j=i+1}^s [a_i, b_i]. \]

We use an analogous notation for other, i.e., open, closed, \ldots intervals as well.

Then for the set \(\{ x, y \} \) the expression \(\frac{1}{2} A_2(B) - \lambda(B) \) has the same value as the expression \(\frac{1}{2} A_2(\vec{B}^{(i)}) - \lambda(\vec{B}^{(i)}) \) for the set \(\{ \vec{x}^{(i)}, \vec{y}^{(i)} \} \). Hence, we may restrict to consider point sets \(\mathcal{P} = \{ x, y \} \) with \(x_i \leq y_i \) for all \(i = 1, \ldots, s \).

Consider now the intervals
\[B_0 := \prod_{j=1}^s [x_j, y_j] \quad \text{and} \quad B_i := (0, 1)^{i-1} \times (x_i, y_i) \times (0, 1)^{s-i} \]
for \(i = 1, \ldots, s \). We have
\[R(B_0) = 1 - \prod_{j=1}^s (y_j - x_j) \]
and
\[R(B_i) = y_i - x_i = d_i \quad \forall i = 1, \ldots, s. \]

Hence,
\[D(P) \geq \max \left\{ d_1, \ldots, d_s, 1 - \prod_{j=1}^s d_j \right\} \geq \tilde{\delta}_s. \]

(Note that again because of symmetry reasons the maximum is attained for \(d_1 = \cdots = d_s = d \) and \(d = 1 - d^s \).) We now consider the point set \(\mathcal{P} = \{ x, y \} \) with \(x = (0, \ldots, 0) \) and \(y = (\tilde{\delta}s, \ldots, \tilde{\delta}s) \). It is easy to see, that for this point set we have \(D(\mathcal{P}) = \tilde{\delta}_s \) and the result follows. \(\square \)
Corollary 5. We have $D_2^{(s)} = 1 - \varepsilon(s)$ with $\varepsilon(s) \sim \log s/s$.

Proof. This follows from Theorem 4 and simple analysis of the equation $x^4 + x - 1 = 0$. □

For the analysis of the isotropic discrepancy we will make use of the following fact.

Lemma 6. Let \mathcal{P} be a set of $s + 1$ points in $[0, 1]^s$. Let $V(\mathcal{P})$ denote the s-dimensional volume of the simplex $S(\mathcal{P})$ generated by \mathcal{P} and let $W(\mathcal{P})$ denote the s-dimensional volume of the largest convex set $C(\mathcal{P})$ contained in $[0, 1]^s$ which contains no point of \mathcal{P}. Then we have

$$J(\mathcal{P}) = \max \left\{ \frac{s}{s+1}, 1 - V(\mathcal{P}), W(\mathcal{P}) \right\} \text{ for } s = 2, 3$$

and

$$J(\mathcal{P}) = \max \{1 - V(\mathcal{P}), W(\mathcal{P})\} \text{ for } s \geq 4.$$

Proof. Of course $J(\mathcal{P}) \geq \max \{1 - V(\mathcal{P}), W(\mathcal{P})\}$. From [2, Theorem 2.8] we obtain that in arbitrary dimension we always have

$$V(\mathcal{P}) \leq \frac{(s + 1)(s + 1)^{s+1/2}}{2^s \cdot s!}$$

and this right-hand side is at most $1/(s + 1)$ for $s \geq 4$.

Let $C \subseteq [0, 1]^s$ be any convex subset of $[0, 1]^s$ containing exactly i points from \mathcal{P} with $1 \leq i \leq s$, then

$$|R(C)| = \left| \frac{i}{s+1} - \lambda(C) \right| \leq \max \left\{ \frac{i}{s+1}, 1 - \frac{i}{s+1} \right\} \leq \frac{s}{s+1}.$$

If H is a hyperplane containing (at least) s points of \mathcal{P}, then we have $R(H) = s/(s+1)$ (or even $R(H) = 1$, when $H = S(\mathcal{P})$). Hence $|R|$ attains its maximum for H, $S(\mathcal{P})$ or $C(\mathcal{P})$. For $s \geq 4$ (as mentioned above) we have $V(\mathcal{P}) \leq 1/(s + 1)$, hence $H = S(\mathcal{P})$ or $1 - V(\mathcal{P}) \geq R(H)$ and so the maximum if $|R|$ is attained by $S(\mathcal{P})$ or $C(\mathcal{P})$. The result follows. □

Theorem 7. We have

$$J_3^{(2)} = \frac{2}{3}.$$

Proof. It follows from Lemma 6, that $J_3^{(2)} \geq \frac{2}{3}$. Consider the point set

$$\mathcal{P} = \{(0, 0), (1, 0), (\frac{1}{2}, \frac{2}{3})\}.$$

Here $V(\mathcal{P}) = \frac{1}{3}$ and $W(\mathcal{P}) = \frac{2}{3}$ which is attained for the grey trapezoid in Fig. 1. Using Lemma 6 again we find that $J(\mathcal{P}) = \frac{2}{3}$ and the result follows. □

Fig. 1. Three points with isotropic discrepancy $\frac{2}{3}$.

Theorem 8. For every $s \geq 2$ we have
\[
1 - \frac{(s + 1)^{s+1}/2}{2^s \cdot s!} \leq J_s(s) \leq 1 - \varepsilon(s)(\max\{0, 1 - 2\varepsilon(s)\})^s,
\]
where
\[
\varepsilon(s) := \left(\frac{(s + 1)^{(s+1)/2}(1-(\log(4/3)/\log(s+1)))}{2^s \cdot s!}\right)^{1/s}.
\]

Proof. By [2, Theorem 2.8] the largest simplex generated by $s + 1$ points in $[0, 1]^s$ has volume at most
\[
\frac{(s + 1)^{(s+1)/2}}{2^s \cdot s!},
\]
hence the lower bound holds by Lemma 6.

If $\varepsilon(s) \geq \frac{1}{2}$, then the upper bound is trivial. Let s such that $\varepsilon(s) < \frac{1}{2}$ (this is satisfied for $s \geq 5$). Consider the interval
\[
I_s(s) := [\varepsilon(s), 1 - \varepsilon(s)]^s.
\]

Let $\tilde{\mathcal{P}}$ be any set of $s + 1$ points in $[0, 1]^s$ such that the volume of the simplex $S(\tilde{\mathcal{P}})$ spanned by $\tilde{\mathcal{P}}$ is maximal. Then again by [2, Theorem 2.8] we have that the volume of $S(\tilde{\mathcal{P}})$ is at least $\varepsilon(s)$. Hence, if \mathcal{P} is any set of $s + 1$ points in $I_s(s)$ such that the volume of the simplex $S(\mathcal{P})$ spanned by \mathcal{P} is maximal we have that the volume of $S(\mathcal{P})$ is at least $\varepsilon(s)(1 - 2\varepsilon(s))^s$.

Let $C(\mathcal{P})$ be the largest convex set in $[0, 1]^s$ containing none of the points of \mathcal{P}. Consider all the cubes $T_1 \times \cdots \times T_s$ with $T_i \in [[0, \varepsilon(s)), [1 - \varepsilon(s), 1]]$ for all $1 \leq i \leq s$. There must be at least one of these cubes such that $(T_1 \times \cdots \times T_s) \cap C(\mathcal{P})$ is empty, otherwise $C(\mathcal{P})$ would contain $I_s(s)$ and hence \mathcal{P}, a contradiction.

Therefore the volume of $C(\mathcal{P})$ is at most $1 - \varepsilon(s)$. From Lemma 6 we obtain
\[
J(\mathcal{P}) \leq 1 - \varepsilon(s)(1 - 2\varepsilon(s))^s.
\]
The result follows. □

Corollary 9. For every $\kappa > 0$ and every s large enough we have
\[
1 - \frac{(s + 1)^{(s+1)/2}}{2^s \cdot s!} \leq J_{s+1}(s) \leq 1 - \frac{(s + 1)^{(s+1)/2}(1-\kappa)}{2^s \cdot s!}.
\]

Proof. This follows from Theorem 8 and simple analysis. □

References