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Abstract

A stochastic version of the porous medium equation with coloured noise is studied. The corresponding
Kolmogorov equation is solved in the space L2(H, ν) where ν is an infinitesimally excessive measure. Then
a weak solution is constructed.
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1. Introduction

The porous medium equation

∂X

∂t
= �

(
Ψ (X)

)
, m ∈ N, (1.1)

on a bounded open set D ⊂ R
d with Dirichlet boundary conditions for the Laplacian � and

with Ψ in a large class of functions has been studied extensively (see, e.g., [1], [2, Section 4.3]).
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Recently, there has been also several papers on the stochastic version of (1.1), i.e.,

dX(t) = �
(
Ψ

(
X(t)

))
dt + √

C dW(t), t � 0 (1.2)

(cf. [3,6,10,11]).
In this paper we continue the study of the stochastic partial differential equation (SPDE) (1.2).

Before we describe our new results precisely, let us fix some notation and our exact conditions.
The appropriate state space on which we consider (1.2) is H := H−1(D), i.e., the dual of

the Sobolev space H 1
0 := H 1

0 (D), with inner product 〈·,·〉H . Below we shall use the standard
L2(D)-dualization 〈·,·〉H between H 1

0 (D) and H = H−1(D) induced by the embeddings

H 1
0 (D) ⊂ L2(D)′ = L2(D) ⊂ H−1(D) = H

without further notice. Then for x ∈ H one has

|x|2H =
∫
D

(
(−�)−1x

)
(ξ)x(ξ) dξ.

Let (Wt)t�0 be a cylindrical Brownian motion in H and let C be a positive definite bounded
operator on H of trace class. To be more concrete below we assume:

(H1) There exist numbers λk ∈ [0,∞), where k ∈ N, such that for the eigenbasis {ek} of � in H

(with Dirichlet boundary conditions) we have Cek = λkek for all k ∈ N.
(H2) For αk := supξ∈D |ek(ξ)|2, k ∈ N, we have K := ∑∞

k=1 αkλk < +∞.
(H3) There exist Ψ ∈ C1(R), r ∈ (1,∞), κ0, κ1,C1 > 0 such that

κ0|s|r−1 � Ψ ′(s) � κ1|s|r−1 + C1 for all s ∈ R (cf. [6]).

Our general aim in studying SPDE (1.2) is to construct a strong Markov weak solution for
(1.2), i.e., a solution in the sense of the corresponding martingale problem (see [21] for the
finite-dimensional case), at least for a large set H of starting points in H which is invariant
for the process, i.e., with probability one Xt ∈ H for all t � 0. We follow the strategy first
presented in [17] (and already carried out in cases with bounded C−1 in [9]). That is, first we
want to construct a solution to the corresponding Kolmogorov equations in L2(H,μ) for suitably
chosen reference measures μ (see below), and then a strong Markov process with continuous
sample paths having transition probabilities given by that solution to the Kolmogorov equations.
As in [9] we also aim to prove that this process is for μ-a.e. starting point x ∈ H a unique
(in distribution) continuous Markov process whose transition semigroup consists of continuous
operators on L2(H,μ), which is, e.g., the case if μ is one of its excessive measures.

Before we summarize the specific new results of this paper in relation to those obtained in
[6,10,11], let us describe this programme more precisely.

Applying Itô’s formula (at a heuristic level) to (1.2) one finds what the corresponding Kol-
mogorov operator, let us call it N0, should be, namely

N0ϕ(x) = 1

2

∞∑
λkD

2ϕ(ek, ek) + Dϕ(x)
(
�

(
Ψ (x)

))
, x ∈ H, (1.3)
k=1
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where Dϕ, D2ϕ denote the first and second Fréchet derivatives of ϕ :H → R. So, we take ϕ ∈
C2

b(H).
In order to make sense of (1.3) one needs that �(Ψ (x)) ∈ H at least for “relevant” x ∈ H .

Here one clearly sees the difficulties since Ψ (x) is, of course, not defined for any Schwartz
distribution in H = H−1, not to mention that it will not be in H 1

0 (D). So, a way out of this is to
think about “relevant” x ∈ H . Our approach to this is first to look for an invariant measure for
the solution to Eq. (1.2) which can now be defined “infinitesimally” (cf. [5]) without having a
solution to (1.2) as a solution to the equation

N∗
0 μ = 0 (1.4)

with the property that μ is supported by those x ∈ H for which Ψ (x) makes sense and with
�(Ψ (x)) ∈ H . Equation (1.4) is a short form for

N0ϕ ∈ L1(H,μ) and
∫
H

N0ϕ dμ = 0 for all ϕ ∈ C2
b(H). (1.5)

Any invariant measure for any solution of (1.2) in the classical sense will satisfy (1.4). Then we
can analyze N0, with domain C2

b(H) in L2(H,μ), i.e., solve the Kolmogorov equation

dv

dt
= N0v, v(0, ·) = f, (1.6)

for the closure N0 of N0 on L2(H,μ) and initial condition f ∈ L2(H,μ). This means, we have
to prove that N0 generates a C0-semigroup Tt = etN0 on L2(H,μ), i.e., that (N0,C

2
b(H)) is

essentially m-dissipative on L2(H,μ).
Subsequently, we have to show that (Tt )t�0 is given by a semigroup of probability kernels

(pt )t�0 (i.e., ptf is a μ-version of Ttf ∈ L2(H,μ) for any t � 0 and any bounded measurable
function f :H → R) and such that there exists a strong Markov process with continuous sample
paths in H whose transition function is (pt )t�0. Then, by definition, this Markov process will
solve the martingale problem corresponding to (1.2).

The existence of solutions to (1.4) (even for more general SPDE than (1.2)) was proved in [6]
(the method was based essentially on finite-dimensional approximations), generalizing earlier
results from [10]. We shall restate the precise theorem in Section 2.

In [10] in the special case when

Ψ (s) := αs + sm, s ∈ R, (1.7)

for m ∈ N, m odd, and α > 0, the remaining part of the above programme was carried out. The
specially interesting “degenerate” case α = 0 in (1.7) was, however, not covered.

In this paper we shall improve these results in an essential way. First, we shall construct a so-
lution to the Kolmogorov equation (1.6) for Ψ as in (H3), hence including the case α = 0 in (1.7).
More precisely, we identify a whole class M of reference measures, called infinitesimally exces-
sive measures, which includes all measures solving (1.4) so that for all ν ∈ M we can construct
a solution to the Kolmogorov equation (1.6) in L2(H, ν) for Ψ as in (H3), hence including the
degenerate case α = 0, in (1.7). The main tool employed here is the Yosida approximation for
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the nonlinear maximal dissipative mapping �(Ψ ), as a map in H−1 with a suitable domain. In
particular, we thus clarify that in case the nonlinearity of SPDE (1.2) is maximal dissipative,
the issue of proving the existence of infinitesimally invariant measures μ for N0 and the issue
of essentially maximal dissipativity of the operator (N0,C

2
b(H)) on L2(H, ν) can be separated

completely. That is, the latter does not depend in particular on how one constructs a solution to
(1.4) and which solution is chosen as a reference measure.

Second, we shall construct the said Markov process which weakly solves SPDE (1.2) for
general Ψ as in (H3); i.e., without any nondegeneracy assumptions. Furthermore, we prove that
for d = 1 and specifically chosen C (cf. condition (H.4) in Section 5) the Markov process is
strong Feller.

The organization of this paper is as follows. In Section 2 we summarize all relevant results
about infinitesimal invariant measures μ for N0 from [6,10]. Then we define the mentioned class
M of references measures ν and prove that for some λ > 0, (λ − N0,C

2
b(H)) is dissipative on

L2(H, ν), hence (N0,C
2
b(H)) is closable on L2(H, ν).

Section 3 is devoted to the Yosida approximations. In Section 4 we prove that for all ν ∈ M
the closure of (N0,C

2
b(H)) on L2(H, ν) generates a C0-semigroup on L2(H, ν) solving (1.6).

Section 5 is devoted to the existence and uniqueness of a Markov process solving SPDE (1.2) in
the sense of a martingale problem, and, in case d = 1, to its strong Feller property on suppν. In
Section 6 under weak additional conditions we prove that if ν is the solution of (1.4) constructed
in [6], then suppν = H , i.e., ν charges any nonempty open set of H .

Finally, we would like to mention that we think that it should be also possible to prove the
existence and uniqueness of a strong solution for (1.2). A corresponding paper of the last named
author jointly with B. Rozovskii is in preparation.

2. Infinitesimal invariance and a large class of references measures

We first note that N0ϕ(x) is well defined for ϕ ∈ C2
b(H) if x belongs to the set

HΨ := {
x ∈ L2(D): Ψ (x) ∈ H 1

0 (D)
}
. (2.1)

We also define for r > 1

H 1
0,r := {

x ∈ L2(D): |x|r signx ∈ H 1
0 (D)

}
.

Now we recall the following result from [6, Theorem 1.1, Corollary 1.1].

Theorem 2.1. Assume that (H1)–(H3) hold. Then there exists a probability measure μ on H

which is infinitesimally invariant for N0 in the sense of (1.5). Furthermore,

∫
H

∫
D

∣∣∇(
Ψ (x)

)
(ξ)

∣∣2
dξ μ(dx) < +∞ (2.2)

and ∫ ∫ ∣∣∇(|x| r+1
2 signx

)
(ξ)

∣∣2
dξ μ(dx) < +∞. (2.3)
H D
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In particular, μ(HΨ ∩ H 1
0, r+1

2
) = 1.

Remark 2.2. It was also shown in [6, Lemma 1] that HΨ ⊂ H 1
0,r . So, (2.2) implies that

∫
H

∫
D

∣∣∇(|x|r signx
)
(ξ)

∣∣2
dξ μ(dx) < +∞.

Therefore, by Poincaré’s inequality, HΨ ⊂ L2r (D) and∫
H

∫
D

|x|2r (ξ) dξ μ(dx) < +∞.

By Theorem 2.1, N0ϕ is μ-a.e. defined for all ϕ ∈ C2
b(H). All subsequent results in this paper

are valid for the larger class of measures M on H which contains all infinitesimally invariant
measures for N0 and consists of all probability measures ν on H which satisfy (2.2) and for
which there exists λν ∈ (0,∞) such that∫

H

N0ϕ dν � λν

∫
H

ϕ dν for all ϕ ∈ C2
b(H) with ϕ � 0 ν-a.e. (2.4)

The elements in M are called infinitesimally excessive measures.

Lemma 2.3. Let ν ∈M and ϕ ∈ C2
b(H) be such that ϕ = 0 ν-a.e. Then N0ϕ = 0 ν-a.e.

Proof. The proof is analogous to that of [6, Lemma 3.1] (see also [18, Proposition 4.1]). �
We would like to emphasize that so far we have not been able to show that μ(U) > 0 (for

μ as in Theorem 2.1) for any open nonempty set U ⊂ H . So, Lemma 2.3 is crucial to consider
N0 as an operator on L2(H,μ) with domain equal to the μ-classes determined by C2

b(H), again
denoted by C2

b(H). The same holds for any ν ∈ M.

Proposition 2.4. Assume that (H1)–(H3) hold and let ν ∈M. Then

(i) N0ϕ ∈ L2(H, ν) for ϕ ∈ C2
b(H).

(ii) ( 1
2λν − N0,C

2
b(H)) is dissipative on L2(H, ν), i.e.,

∥∥∥∥λ−1
(

λ + 1

2
λν − N0

)
ϕ

∥∥∥∥
L2(H,ν)

� ‖ϕ‖L2(H,ν) for all ϕ ∈ C2
b(H).

In particular, (N0,C
2
b(H)) is closable on L2(H, ν), its closure being denoted by (N2,D(N2)).

Proof. (i) We note that ∫ ∣∣∇Ψ (x)
∣∣2

(ξ) d(ξ) = ∣∣�Ψ (x)
∣∣2
H

.

D
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Hence the assertion follows by (2.2).
(ii) This follows from [14, Appendix B, Lemma 1.8]. �

3. Yosida approximations

For completeness we recall the definition and basic properties of the Yosida approximation of
an m-dissipative map F :D(F) ⊂ H → H . The latter means that〈

F(x) − F(y), x − y
〉
H

� 0 for all x, y ∈ D(F) (3.1)

and

(λI − F)
(
D(F)

) = H for all λ > 0, (3.2)

where I denotes the identity operator on H . For ε > 0 let

Jε := (I − εF )−1. (3.3)

Note that by (3.1) I − εF :D(F) → H is one-to-one. Then Jε is Lipschitz continuous with
constant 1, hence so is

Fε := 1

ε
(Jε − I ) (3.4)

with constant ε−1. The mapping Fε is called Yosida approximation of F . It has the following
properties (cf., e.g., [2,8] or [19]):

lim
ε→0

Fε(x) = F(x), x ∈ D(F), (3.5)

∣∣Fε(x)
∣∣
H

�
∣∣F(x)

∣∣
H

, x ∈ D(F), ε > 0, (3.6)

∣∣Fε(x)
∣∣
H

↑ 1D(F)(x)
∣∣F(x)

∣∣ + ∞ · 1H\D(F)(x), as ε ↓ 0, x ∈ H, (3.7)

〈
Fε(x),F (x)

〉
H

� −∣∣Fε(x)
∣∣2
H

, x ∈ D(F). (3.8)

The following is well known, see, e.g., [2, Chapter 2, Proposition 2.12], and for the original proof
see [7].

Proposition 3.1. Assume (H3) holds. Then F := �Ψ with domain D(F) := HΨ is m-dissipative
on H .

4. Essential maximal dissipativity of N0 on L2(H,ν)

Below, Fε , ε > 0, shall always denote the Yosida approximation to (�Ψ,HΨ ). We need a
further regularization and, therefore, define for β > 0

Fε,β(x) :=
∫

eβBFε

(
eβBx + y

)
N 1

2 B−1(e2βBx−I )
, x ∈ H, (4.1)
H
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where B :D(B) ⊂ H → H is a self-adjoint negative definite operator such that B−1 is of trace
class. Then obviously Fε,β is dissipative of class C∞, and has bounded derivatives of all orders.
Furthermore,

lim
β→0

Fε,β(x) = Fε(x), x ∈ H (4.2)

(see [12, Theorem 9.19]) and, since Fε is Lipschitz, there exists cε ∈ (0,∞) such that∣∣Fε,β(x)
∣∣ � cε

(
1 + |x|H

)
, x ∈ H, β > 0. (4.3)

Now consider the approximating stochastic equation

dX(t) = Fε,β

(
X(t)

)
dt + √

C dW(t). (4.4)

It is well known (see [12]) that for any initial condition x ∈ H Eq. (4.4) has a unique solution
Xε,β(·, x) and that for λ > 0 and f ∈ C2

b(H)

ϕε,β(x) =
∞∫

0

e−λt
E

[
f

(
Xε,β(t, x)

)]
dt, x ∈ H, (4.5)

is in C2
b(H) and solves the equation

f (x) = λϕε,β(x) − 1

2

∞∑
k=1

λkD
2ϕε,β(x)(ek, ek) + Dϕε,β(x)

(
Fε,β(x)

)
(4.6)

(see [13, Chapter 5.4]). We have, moreover, for all h ∈ H ,

Dϕε,β(x)(h) =
+∞∫
0

e−λt
E

[
Df

(
Xε,β(t, x)

)(
DxXε,β(t, x)h

)]
dt. (4.7)

For any h ∈ H we set ηh
ε,β := DxXε,β(t, x). Then we have

{
d
dt

ηh
ε,β(t, x) = DFε,β(Xε,β(t, x))ηh

ε,β(t, x),

ηh
ε,β(0, x) = h.

(4.8)

Multiplying both sides of Eq. (4.8) by ηh
ε,β(t, x), integrating with respect to t and taking the

dissipativity of DFε,β into account, we find

∣∣ηh
ε,β(t, x)

∣∣2 � |h|2. (4.9)

Consequently by (4.7) it follows that

∣∣Dϕε,β(x)
∣∣
H 1 � 1‖Df ‖0, x ∈ H, (4.10)
0 λ
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where ‖ · ‖0 denotes the sup norm.
Now we can prove the following result.

Theorem 4.1. Assume that (H1)–(H3) hold and let ν ∈ M. Then (N0,C
2
b(H)) is essentially

m-dissipative on L2(H, ν), i.e., its closure (N2,D(N2)) is m-dissipative on L2(H, ν).

Proof. Let f ∈ C2
b(H) and let ϕε,β be the solution to Eq. (4.6). Then ϕε,β belongs to C2

b(H) and
we have

λϕε,β − N0ϕε,β = f + Dϕε,β(Fε,β − �Ψ ). (4.11)

We claim that

lim
ε→0

lim
β→0

Dϕε,β(Fε,β − �Ψ ) = 0 in L2(H, ν).

In fact, it follows by (4.10) that

Iε,β :=
∫
H

∣∣Dϕε,β(Fε,β − �Ψ )
∣∣2
H 1

0
dν � 1

λ2
‖Df ‖2

0

∫
H

|Fε,β − �Ψ |2H dν. (4.12)

Letting β → 0 we conclude by (4.3) that

lim sup
β→0

Iε,β � 1

λ2
‖Df ‖2

0

∫
H

|Fε − �Ψ |2H dν.

Since ν verifies (2.2) by assumption, the claim now follows, in view of the dominated conver-
gence theorem, from (3.6), (3.7) with F := �Ψ .

Hence we have proved that

lim
ε→0

lim
β→0

(λ − N0)ϕε,β = f in L2(H, ν).

Therefore the closure of the range of λ−N0 includes C2
b(H) which is dense in L2(H, ν). By the

Lumer–Phillips theorem it follows that N2 is maximal-dissipative as required. �
As a consequence of the proof of Theorem 4.1 we have:

Corollary 4.2. Assume that (H1)–(H3) hold and let ν ∈ M. Define a C0-semigroup

Pt := etN2, t � 0,

on L2(H, ν) (which exists by Theorem 4.1). Then

(i) v(t, ·) := Ptf , t > 0, solves (1.6) for the initial datum f ∈ D(N2).
(ii) (Pt )t�0 is Markovian, i.e., Pt1 = 1 and Ptf � 0 for all nonnegative functions f ∈ L2(H, ν)

and all t � 0.
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(iii) Let f ∈ L2(H, ν) be nonnegative and let t > 0. Then∫
H

Ptf dν � eλν t

∫
H

f dν. (4.13)

Proof. (i) The assertion follows by the definition of Pt , t � 0.
(ii) By [14, Appendix B, Lemma 1.9] Pt is positivity preserving. Since 1 ∈ C2

b(H) and
N01 = 0, it follows that Pt1 = 1 for all t � 0.

(iii) We first note that since C2
b(H) is dense in D(N2) with respect to the graph norm given

by N2, it follows by Theorem 4.1 and (2.4) that∫
H

N2f dν � λν

∫
H

f dν for all f ∈ D(N2) with f � 0 ν-a.e. (4.14)

So, if f ∈ C2
b(H) (⊂ D(N2)), f � 0, then Ptf ∈ D(N2) and Ptf � 0 ν-a.e. Hence (4.14) and

assertion (i) imply that

d

dt

∫
H

Ptf dν =
∫
H

N2Ptf dν � λν

∫
H

Ptf dν.

So, by Gronwall’s lemma (4.13) follows for f ∈ C2
b(H), f � 0. But since any nonnegative

f ∈ L2(H, ν) can be approximated by nonnegative functions in C2
b(H) in L2(H, ν), assertion

(iii) follows. �
5. Existence of a weak solution of SPDE (1.2)

This section generalizes all results of [11, §4] in an essential way. However, parts of it are very
similar. We, nevertheless, include a complete presentation below for the reader’s convenience.

Theorem 5.1. (Existence) Assume that (H1)–(H3) hold and, in addition, that r � 2. Let ν ∈ M.
Then

(i) There exists a conservative strong Markov process

M = (
Ω,F , (Ft )t�0, (Xt )t�0, (Px)x∈H

)
on H with continuous sample paths such that for its transition semigroup (pt )t�0 defined by

ptf (x) :=
∫
H

f (Xt ) dPx, t � 0, x ∈ H,

where f :H → R is bounded B(H)-measurable, we have that ptf is a ν-version of etN2f ,
t > 0. Furthermore, if f � 0, one has∫

H

ptf dν � eλν t

∫
H

f dν for all t � 0,

i.e., ν is an excessive measure for M.
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(ii) There exists H ∈ B(H) such that ν(H ) = 1, for all x ∈ H one has

Px[Xt ∈ H ∀t � 0] = 1,

and for any probability measures ρ on (H,B(H)) with ρ(H ) = 1, the process

ϕ(Xt ) −
t∫

0

N0ϕ(Xs) ds, t � 0,

is an (Ft )-martingale under Pρ := ∫
H

Pxρ(dx) for all ϕ ∈ C2
b(H) and one has

Pρ ◦ X−1
0 = ρ.

Theorem 5.2. (Uniqueness) Assume that (H1)–(H3) hold and, in addition, that r � 2. Let ν ∈ M.
Suppose that

M
′ = (

Ω ′,F ′,
(
F ′

t

)
t�0,

(
X′

t

)
t�0,

(
P

′
x

)
x∈H

)
is a continuous Markov process on H whose transition semigroup (p′

t )t�0 consists of continuous
operators on L2(H,μ) with locally (in t) uniformly bounded operator norm (which is, e.g., the
case if ν is also an excessive measure for M

′). If M
′ satisfies assertion (ii) of Theorem 5.1 for

ρ := ν, then for ν-a.e. x ∈ H , one has p′
t (x, dy) = pt (x, dy) for all t � 0 (where pt is as in

Theorem 5.1(i)), i.e., M
′ has the same finite-dimensional distributions as M for ν-a.e. starting

point.

We shall only prove Theorem 5.1(i). The remaining parts are proved in exactly the same way
as Theorem 7.4(ii), Proposition 8.2 and Theorem 8.3 in [9] with the only exception that because
we do not know whether (pt )t�0 is Feller, all statements can only be proved ν-a.e. So we do not
want to repeat them here.

Our proof of Theorem 5.1(i) is based on the theory of generalized Dirichlet forms developed
in [20]. Indeed, by Corollary 4.2, (N2,D(N2)) is a Dirichlet operator in the sense of [16,20].
Hence by [20, Proposition I.4.6]

E(u, v) :=
{

(u, v)L2(H,ν) − (N2u,v)L2(H,ν), u ∈ D(N2), v ∈ L2(H, ν),

(u, v)L2(H,ν) − (N∗
2 v,u)L2(H,ν), u ∈ L2(H, ν), v ∈ D(N∗

2 ),

is a generalized Dirichlet form on L2(H, ν) in the sense of [20, Definition I.4.8] with

F := (
D(N2),‖N2 · ‖L2(H,ν) + ‖ · ‖L2(H,ν)

)
and with coercive part A identically equal to 0.

We emphasize here that the theory of generalized Dirichlet forms, in contrast to earlier
versions (cf., e.g., [15,16]), does not require any symmetry or sectoriality of the underlying op-
erators. We refer to [20] for an excellent exposition. As is well known to the experts on potential
theory on L2-spaces (and as is clearly presented in [20]), the following two main ingredients are
needed:
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(a) There exists a core C of (N2,D(N2)) which is an algebra consisting of functions having
(quasi-)continuous ν-versions.

(b) The capacity determined by (N2,D(N2)) is tight.

Part (a) follows from the essential m-dissipativity of N0 on C2
b(H) proved in the previous

section, so we can take C := C2
b(H). This is exactly why essential m-dissipativity is so impor-

tant for probability theory, in particular, Markov processes. Before we prove (b) we recall the
necessary definitions.

Let

G
(2)
λ := (λ − N2)

−1, λ > 0,

be the resolvent corresponding to N2. A function u ∈ L2(H, ν) is called 1-excessive if u � 0 and
λG1+λu � u for all λ > 0. For an open set U ⊂ H define

eU := inf
{
u ∈ L2(H, ν) | u is 1-excessive, u � 1U ν-a.e.

}
(cf. [20, Proposition III.1.7(ii)]), and the 1-capacity of U by

CapU :=
∫
H

eU dν

(cf. [20, Definition III.2.5 with ϕ ≡ 1]). Cap is called tight if there exist increasing compact sets
Kn, n ∈ N, such that for Kc

n := H \ Kn one has

lim
n→∞ Cap

(
Kc

n

) = 0.

Once we have proved this, i.e., have proved (b), Theorem 5.1(i) follows from [20, Theorem
IV.2.2]. Indeed, in our situation, according to (a) and [20, Proposition IV.2.1], the requirement
in [20, Theorem IV.2.2] that quasi-regularity holds is equivalent to (b) and condition D3 in [20,
Theorem IV.2.2].

Remark 5.3. We mention here that in Theorem 5.1 we do not state all facts known about M; e.g.,
it is also proved in [20, Theorem IV.2.2, see also Definition IV.1.4] that all “ν-a.e.” statements
can be replaced by “quasi-everywhere” (with respect to Cap) statements and that

x �→
+∞∫
0

e−λtptf (x) dt

is Cap-quasi-continuous. Furthermore, [20, Theorem IV.2.2] only claims that M has cadlag paths,
but a similar proof as that in [16, Chapter V, Section 1] gives indeed continuous paths because
N2 is a local operator.
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To prove (b) it is enough to find a 1-excessive function u :H → R
+ so that for each n ∈ N the

level set {u � n} is contained in the union of a compact set Kn ⊂ H and a ν-zero set, because
then eKc

n
� 1/n u ν-a.e., hence

Cap
(
Kc

n

)
� 1

n

∫
H

udν → 0, as n → ∞. (5.1)

So, the proof of Theorem 5.1(i) is completed by Proposition 5.4, since closed balls in L2(D)

are compact in H . Before we can formulate it, we need to introduce the resolvent generated by
N0 on L1(H, ν). To this end we note that by (2.4) (N0,C

2
b(H)) is also dissipative on L1(H, ν)

(cf., e.g., [14, Appendix B, Lemma 1.8]), hence closable. We recall that (λ − N0)(C
2
b(H)) is

dense in L2(H, ν) (by the proof of Theorem 4.1), hence also dense in L1(H, ν), so analogously
(N1,D(N1)) generates a C0 semigroup (etN1)t�0 of contractions on L1(H, ν) and we can con-
sider the corresponding resolvent

G
(1)
λ := (λ − N1)

−1, λ > 0.

Clearly, G
(1)
λ = G

(2)
λ on (λ − N0)(C

2
b(H)), hence

G
(1)
λ f = G

(2)
λ f for all λ > 0, f ∈ L2(H, ν). (5.2)

Define

Ψ (t) :=
t∫

0

Ψ (s) ds, t ∈ R, and Φ(x) :=
{ ∫

D
Ψ (x(ξ)) dξ, x ∈ HΨ ,

+∞, otherwise.

By (H3) Ψ is convex and since r > 1, (H3) also implies that for all s ∈ R

0 � κ0

r(r + 1)
|s|r+1 � Ψ (s) � C1

2
|s|2 + κ1

r(r + 1)
|s|r+1

�
[
C1

2
+

(
C1

2
+ κ1

κ0(r + 1)

)∣∣Ψ (s)
∣∣]|s|. (5.3)

Hence, it follows by Remark 2.2 that Φ ∈ L1(H, ν). Recall that by (2.2) we have |�Ψ |2H ∈
L1(H, ν).

Proposition 5.4. Consider the situation of Theorem 5.1. Then

(i) There exists c > 0 such that

c|x|r+1
L2(D)

� G
(1)
1

(
Φ + |�Ψ |2H

)
(x) =: g(x) (� 0) for ν-a.e. x ∈ H .

(ii) The function g1/2 is 1-excessive.
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For the proof of Proposition 5.4 we need the following lemma.

Lemma 5.5. Let v ∈ C2(H)∩L1(H, ν) be such that v, |Dv|H 1
0
, supi∈N |D2v(ei, ei)| are bounded

on H balls and

∫
D

[∣∣v(x)
∣∣|x|2H + ∣∣Dv(x)

∣∣
H 1

0
+ ∣∣Dv(x)

∣∣
H 1

0
|x|H + sup

i∈N

∣∣D2v(x)(ei, ei)
∣∣]ν(dx) < +∞.

(5.4)

Then v ∈ D(N1) and for ν-a.e. x ∈ H one has

N1v(x) =
∞∑
i=1

D2v(x)(ei, ei) + Dv(x)
(
�Ψ (x)

)
. (5.5)

Proof. Let χ ∈ C∞(R) be such that χ ′ � 0, 0 � χ � 1, χ = 1 on (−∞,1] and χ = 0 on (2,∞).
For n ∈ N let

χn(x) := χ

( |x|2H
n2

)
, x ∈ H, vn := χnv.

Then for any x ∈ H one has

Dvn(x) = χn(x)Dv(x) + v(x)Dχn(x)

= 1{|x|H �2n}(x)

[
χn(x)Dv(x) + 2

n2
v(x)χ ′

( |x|2H
n2

)
〈x, ·〉H

]
. (5.6)

Likewise for i ∈ N, x ∈ H , one has

D2vn(x)(ei, ei)

= χn(x)D2v(x)(ei, ei) + v(x)D2χn(x)(ei, ei) + 2Dv(x)(ei)Dχn(x)(ei)

= 1{|x|H �2n}(x)

[
χn(x)D2v(x)(ei, ei) + v(x)

(
χ ′

( |x|2H
n2

)
2

n2
+ 4

n4
χ ′′

( |x|2H
n2

)
〈x, ei〉2

H

)

+ 4

n2
Dv(x)(ei)χ

′
( |x|2H

n2

)
〈x, ei〉H

]
. (5.7)

Hence vn ∈ C1
b(H). Since |�Ψ |H ∈ L2(H, ν) by (2.2) and

∫
H

|x|2r
H ν(dx) � c1

∫
H

|x|2r
L2r ν(dx) � c2

∫
H

∣∣�Ψ (x)
∣∣2
H

ν(dx) < +∞ (5.8)

(cf. Remark 2.2), we see from (5.6), (5.7) that vn → v and N0vn converge to the right-hand side
of (5.5) in L1(H, ν) as n → ∞. �
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Proof of Proposition 5.4. Consider the Moreau approximation Φε , ε > 0, of Φ , i.e.,

Φε(x) := min

{
1

2ε
‖y − x‖2 + Φ(y) | y ∈ H

}
, x ∈ H.

Then Φε ∈ C1(H), is convex and DΦε is just the Yosida approximation Fε of (�Ψ,HΨ ) used
in Section 4. Furthermore, Φε ↑ Φ as ε ↓ 0 (cf., e.g., [19, Proposition IV.1.8]).

Fix ε,β > 0 and define

Φε,β(x) :=
∫
H

Φε

(
eβBx + y

)
N 1

2 B−1(e2βB−I )
, x ∈ H, (5.9)

where B is as in (4.1). Then Φε,β ∈ C∞(H), is convex and

DH Φε,β(x) := �
(
DΦε,β(x)

) = Fε,β(x), x ∈ H, (5.10)

with Fε,β as defined in (4.1). So, by the properties of Fε,β stated in Section 4 it follows that
D2Φε,β is bounded and (4.3) implies that

∣∣Φε,β(x)
∣∣ � 2Cε

(
1 + |x|2H

)
, x ∈ H. (5.11)

By (5.8), (5.11) and (4.3) it follows that all assumptions in Lemma 5.5 for v := Φα,β are fulfilled
(note that condition (5.4) indeed holds by (5.8) since r � 2). Hence Φα,β ∈ D(N1) and if we
denote the right-hand side of (5.5) for v := Φα,β by N0Φα,β it follows that for all x ∈ H one has

(1 − N0)Φε,β(x) � Φε,β(x) − 〈
DH Φε,β(x),�Ψ (x)

〉
H

. (5.12)

Here we used that D2Φε,β(x)(ei, ei) � 0, i ∈ N, since Φε,β is convex. Since by (4.3) one has

∣∣〈DH Φε,β(x),�Ψ (x)
〉
H

∣∣ � Cε

(
1 + |x|H

)∣∣�Ψ (x)
∣∣
H

� Cε

(
1 + |x|H

)∣∣Ψ (x)
∣∣
H 1

0

and the right-hand side is in L1(H, ν) by (5.8) and (2.2), the right-hand side of (5.12) converges
to Φε −〈DH Φε,β(·),�Ψ (·)〉H in L1(H, ν) as β → 0. Applying G

(1)
1 to (5.12) and letting β → 0

we then obtain for ν-a.e. x ∈ H

Φε(x) � G
(1)
1

(
Φε(x) − 〈

DH Φε(x),�Ψ (x)
〉
H

)
. (5.13)

But by (3.6) for every x ∈ HΨ one has

∣∣〈DH Φε(x),�Ψ (x)
〉
H

∣∣ = ∣∣〈Fε(x),F (x)
〉
H

∣∣ �
∣∣F(x)

∣∣2
H

= ∣∣Ψ (x)
∣∣2
H 1

0
.

Since ν(HΨ ) = 1 and since Φε + |Ψ |H 1
0

∈ L1(H, ν), by (5.13) this implies that

Φε � G
(1)
1

(
Φε + |Ψ |2 1

) = g ν-a.e.

H0
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Since Φε ↑ Φ and Φ ∈ L1(H, ν) and since by (5.3) one has

Φ(x) � κ0

r(r + 1)
|x|r+1

Lr+1(D)
, x ∈ H,

and r +1 � 2, assertion (i) follows. To prove (ii) fix λ > 0. We note that by the resolvent equation
λG

(1)
λ+1g � g, since g � 0. Hence

λG
(1)
λ+1g

1/2 � λ

λ + 1

(
(λ + 1)G

(1)
λ+1g

)1/2 = λ1/2

(λ + 1)1/2

(
λG

(1)
λ+1g

)1/2 � g1/2.

So, by (5.2) assertion (ii) follows. �
The last result of this section is that in some cases the Markov processes in Theorem 5.1 can

even be chosen to be strong Feller on suppν if d = 1. More precisely, consider the following
condition:

(C1) d = 1 and C = (−�)−γ with γ ∈ (1/2,1].

Theorem 5.6. Assume that (H1)–(H3) and (C1) hold. Then the conservative strong Markov
process M in Theorem 5.1 can be chosen to be strong Feller on suppν. More precisely, its semi-
group satisfies ptf ∈ Cb(suppν) for all f ∈ Bb(H), t � 0, and limt→0 ptf (x) = f (x) for all
x ∈ suppν and all bounded Lipschitz continuous functions f :H → R. Furthermore, suppν is
an invariant set for M and Theorem 5.1(ii) holds with H = suppν.

Proof. The line of argument is exactly analogous to [9]. We only mention here that the crucial
estimate (4.7) in [9] can be derived in the same way in our situation here. Hypotheses 1.1(i)
and 1.2(i) of [9] are not used for this. �
Remark 5.7.

(i) We stress that according to Theorem 6.1 we have that suppν = H since (C1) implies condi-
tion (H4).

(ii) For the interested reader who would like to check the details from [9] for the proof of The-
orem 5.6 we would like to point out an annoying misprint in [9, Lemma 5.6]. The last two
lines of its statement should be replaced by “and for t, λ > 0, x �→ ∫ t

0 psf (x)e−λs ds is
continuous on H0.”

6. Support of invariant measure

In this section, we show that any measure which is the weak limit of a sequence of invariant
probability measures νn corresponding to the finite-dimensional approximations has full support
in the negative Sobolev space H := H−1(D) with its natural Hilbert norm | · |H . To this end, we
obtain a uniform lower bound of νn-measures of any given ball in H .

Let C be a positive symmetric operator on L2(D). We assume that in addition to (H1) the
operator C satisfies the following condition:
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(H4) λk , k ∈ N, in (H1) are strictly positive and there is a Hilbert space E such that the embed-
ding L2(D) → E is Hilbert–Schmidt and

√
C extends to an operator in L(E,H 1

0 (D)) that
will be denoted by the same symbol.

A typical example is C = (−�)−σ , σ � 1 + γ , and E = H−γ (D), γ > d/2.
Let W be a cylindrical Wiener process in L2(D). Then W is a continuous Wiener process

with values in E. Given a function Ψ as above, we consider the mapping F :x �→ �(Ψ ◦ x) on
L2(D) with values in H−2(D).

As above, let {ei} be the eigenbasis of the Laplacian, let Pn be the orthogonal projection
in L2(D) (and also in H−1(D)) to the linear span En of e1, . . . , en, and let Fn := PnF and
Cn := Pn

√
C. We observe that

∫
D

Ψ ◦ x(u)�x(u)du = −
∫
D

Ψ ′ ◦ x(u)
∣∣∇x(u)

∣∣2
du � −κ

∫
D

∣∣x(u)
∣∣r−1∣∣∇x(u)

∣∣2
du

for all x ∈ En. Therefore, on every subspace En we have

(
Fn(x), x

)
L2(D)

→ −∞ as ‖x‖L2(D) → ∞.

Since Fn is continuous and dissipative on En, there is a diffusion process ξn on En governed (in
the strong sense) by the stochastic differential equation

dξn = Fn(ξn) dt + Cn dW.

This process has a unique invariant probability νn.

Theorem 6.1. Suppose that (H1)–(H4) hold and that 1 � d � 2(r +1)/(r −1). Then any measure
ν that is the limit of a weakly convergent subsequence of {νn} has full support in H , i.e., does not
vanish on nonempty open sets.

Remark 6.2. If ν := μ where μ is the solution of (1.4) constructed in [6], then Theorem 6.1
applies to ν.

Proof of Theorem 6.1. Let us fix x0, x1 ∈ ⋃∞
n=1 En, ε > 0, and consider the deterministic equa-

tion

y′
n = Fn(yn) + Cnu

ε
n, t ∈ [0,1],

yn(0) = x0, (6.1)

where uε
n ∈ L2(0,1;E) is specified below. We consider n � n0, where n0 is such that x0,

x1 ∈ En0 . By Lemma A.1 there is uε
n ∈ L2(0,1;E) such that as n → ∞ one has uε

n → uε strongly
in L2(0,1;E) and

∣∣yn(1) − x1
∣∣ � ε. (6.2)

H
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Set Dt := D × (0, t). Letting vε
n(t) := ∫ t

0 uε
n(s) ds we obtain

ξn(t, x0) − yn(t) −
t∫

0

[
Fn

(
ξn(s, x0)

) − Fn

(
yn(s)

)]
ds = CnW(t) − Cnv

ε
n(t).

Set

zn(t) :=
t∫

0

[
Fn

(
ξn(s, x0)

) − Fn

(
yn(s)

)]
ds.

Then we arrive at the following representation:

ξn(s) − yn(s) − zn(s) = CnW(s) − Cnv
ε
n(s).

Taking the inner product in H with Fn(ξn(s)) − Fn(yn(s)) and integrating in s over [0, t], we
obtain

−
t∫

0

〈
ξn(s) − yn(s),Fn

(
ξn(s)

) − Fn

(
yn(s)

)〉
H

ds + 1

2

∣∣zn(t)
∣∣2
H

= −
t∫

0

〈
CnW(s) − Cnv

ε
n(s),Fn

(
ξn(s)

) − Fn

(
yn(s)

)〉
H

ds

�
∣∣CnW − Cnv

ε
n

∣∣
C([0,t];H 1

0 (D))

∣∣Ψ (ξn) − Ψ (yn)
∣∣
L1([0,t];H)

� K1
∣∣W − vε

n

∣∣
C([0,t];E)

∣∣Ψ (ξn) − Ψ (yn)
∣∣
L1([0,t];H)

,

where condition (H4) was employed and K1 is a constant. Generic constants will be denoted by
K with subindices. Taking into account that

〈
ξn − yn,Fn(ξn) − Fn(yn)

〉
H

=
∫
D

(ξn − yn)
(
Ψ (ξn) − Ψ (yn)

)
du,

we obtain for t = 1

−
∫
D1

(ξn − yn)
(
Ψ (ξn) − Ψ (yn)

)
duds + 1

2

∣∣zn(1)
∣∣2
H

� K1
∣∣W − vε

n

∣∣
C([0,1];E)

∣∣Ψ (ξn) − Ψ (yn)
∣∣
L1(0,1;H)

. (6.3)

On the other hand, by the Sobolev embedding theorem L2d/(d+2) ⊂ H and therefore



V. Barbu et al. / Journal of Functional Analysis 237 (2006) 54–75 71
∣∣Ψ (ξn) − Ψ (yn)
∣∣
H

� K2
∣∣Ψ (ξn) − Ψ (yn)

∣∣
L2d/(d+2)(D)

� K2

(∫
D

[|ξn|2dr/(2+d) + |yn|2dr/(2+d)
]
du

)(d+2)/(2d)

. (6.4)

Similarly to (6.3) we have

∫
D1

ξnΨ (ξn) duds �
∫
D1

x0Ψ (ξn) duds + K1|W |C([0,1];E)

∣∣Ψ (ξn)
∣∣
L1(0,1;H)

� K3

∫
D1

|x0||ξn|r duds + K4|W |C([0,1];E)

( ∫
D1

|ξn|2dr/(d+2) duds

)(d+2)/(2d)

.

Since under our assumption 2dr/(d + 2) � r + 1 we obtain

∫
D1

|ξn|r+1 duds � K5
(|x0|rLr (D) + |W |rC([0,1];E)

)
.

Similarly, we have by (6.1)

∫
D1

|yn|r+1 duds � K6
(|x0|rLr (D) + ∣∣vε

n

∣∣r
C([0,1];E)

)
.

According to (6.4) this yields

1∫
0

∣∣Ψ (ξn) − Ψ (yn)
∣∣
H

ds � K7
(|x0|rLr (D) + |W |rC([0,1];E) + ∣∣vε

n

∣∣r
C([0,1];E)

)
.

Therefore, taking into account (6.3) we obtain

∣∣zn(1)
∣∣2
H

� K8
∣∣W − vε

n

∣∣
C([0,1];E)

(|x0|rLr (D) + |W |rC([0,1];E) + ∣∣vε
n

∣∣r
C([0,1];E)

)
,

which along with (6.2) gives

∣∣ξn(1, x0) − x1
∣∣
H

� ε + ∣∣CnW(1) − Cnv
ε
n(1)

∣∣
H

+ ∣∣zn(1)
∣∣
H

� ε + K9
∣∣W − vε

n

∣∣1/2
C([0,1];E)

(|x0|r/2
Lr(D) + ∣∣W − vε

n

∣∣r/2
C([0,1];E)

+ 1
)
.

Therefore, for all α > 0 one has

P
(∣∣ξn(1, x0) − x1

∣∣ � α
)
� P

(∣∣W − vε
n

∣∣1/2 [|x0|r/2
r + ∣∣W − vε

n

∣∣r/2 + 1
]
� γ

)
,

H C([0,1];E) L (D) C([0,1];E)
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where γ = (α − ε)/K9. Now let α = 2ε and let B(x1, α) denote the closed ball of radius α in
H centered at x1. Then Bn(x1, α) = B(x1, α) ∩ En is the ball of the same radius in En centered
at x1 (we recall that we deal with n such that x1 ∈ En). Set

Gn(x0) := P
(∣∣W − vε

n

∣∣1/2
C([0,1];E)

[|x0|r/2
Lr(D) + ∣∣W − vε

n

∣∣r/2
C([0,1];E)

+ 1
]
� ε/K9

)
.

By the invariance of the measure νn and the previous estimate one has

νn

(
Bn(x1, α)

) =
∫
En

P
(∣∣ξn(1, x0) − x1

∣∣
H

� α
)
νn(dx0) �

∫
En

[
1 − Gn(x0)

]
νn(dx0).

Letting

G(x0) := P
(∣∣W − vε

∣∣1/2
C([0,1];E)

[|x0|r/2
Lr(D) + ∣∣W − vε

∣∣r/2
C([0,1];E)

+ 1
]
� ε/K9

)
,

we have G(x0) = limn→∞ Gn(x0). We recall that the measures νn converge weakly to ν also on
the space L2(D). By convergence of uε

n in L2(0,1;E) we have

vε
n(t) →

t∫
0

uε(s) ds =: vε in C
([0,1];E)

.

Therefore, the functions Gn converge to G uniformly on bounded sets in L2(D). Hence∫ [
1 − G(x0)

]
ν(dx0) = lim

n→∞

∫ [
1 − Gn(x0)

]
νn(dx0).

This yields the estimate

ν
(
B(x1, α)

)
� lim sup

n→∞
νn

(
Bn(x1, α)

)
�

∫ [
1 − G(x0)

]
ν(dx0).

It remains to observe that G(x0) < 1 for every x0. This follows by the fact that W is a nondegen-
erate Gaussian vector in C([0,1];E), hence for any η > 0, one has

P
(

sup
t∈[0,1]

∣∣W(t) − vε(t)
∣∣
E

< η
)

> 0. �
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Appendix A. Approximate controllability

Let H be a separable Hilbert space, F be an m-dissipative operator on H , and let B :E → H

be a bounded linear operator on a Hilbert space E such that Ker(B∗) = 0. Let {ei} be an or-
thonormal basis in H and Pnx = ∑n

i=1(x, ei)ei the projection to En := span(e1, . . . , en). Set
Fn := PnF |En .

Given u ∈ L2(0, T ;E), let us consider the following nonlinear equation:

y′ = Fy + Bu, t ∈ [0, T ],
y(0) = y0. (A.1)

We also consider finite-dimensional equations

y′
n = Fnyn + PnBu, t ∈ [0, T ],

yn(0) = Pny0. (A.2)

It was proved in [4] that Eq. (A.1) is approximately controllable, i.e., given ε > 0 and y0, y1 ∈
D(F), there is u ∈ L2(0, T ;E) such that |y(T ) − y1|H � ε. Here we prove a sharper result in
terms of the approximating problem (A.2).

Lemma A.1. Given ε > 0 and y0, y1 ∈ D(F), there exists uε
n ∈ L2(0, T ;E) such that |yn(T ) −

Pny1|H � δ(ε), limn→∞ uε
n = uε in L2(0, T ;E) and |yuε (T ) − y1|H � δ(ε), where yu is the

solution to (A.1) and limε→0 δ(ε) = 0.

Proof. It suffices to prove our claim for y0, y1 ∈ D(F). If y0 = y1 the conclusion of the lemma
is immediate because the range of B is dense. Let us consider the case |y0 − y1| > 0. We fix n

and � > |Fy1|H and consider the differential inclusion

z′
n ∈ Fnzn − � sgn(zn − Pny1) a.e. t ∈ [0, T ], zn(0) = Pny0. (A.3)

It is known (see [2]) that (A.3) has a unique solution zn ∈ W 1,∞([0, T ],En) and

z′
n(t) = Fnzn(t) − � sgn

(
zn(t) − Pny1

)
a.e. on [0, T ], (A.4)

where for every vector w we define sgn(w) as follows: sgn(w) is the unit vector w/|w| if w �= 0,
sgn(0) is the unit ball {h ∈ Hn: |hn|H < 1}. Therefore,

d

dt

∣∣zn(t) − Pny1
∣∣
H

+ � � |PnFy1|H a.e. t > 0. (A.5)

One can derive from (A.5) that there is tn > 0 such that |zn(tn) − Pny1| = 0 and |zn(t) −
Pny1|H > 0 for all t ∈ [0, tn). Hence z′

n(t) = Fnzn(t) + vn(t) with

vn(t) = −�
zn(t) − Pny1 for t ∈ [0, tn). (A.6)
|zn(t) − Pny1|H
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On the other hand, by (A.4) we have

z′
n(t) = (

Fnzn(t) − � sgn
(
zn(t) − Pny1

))0
,

where (D)0 stands for the minimal section of a set D. We have therefore

vn(t) = ProjB(0,�) Fn(Pny1) for t ∈ [tn, T ]. (A.7)

Let z′(t) = Fz + v a.e. on [0, T ], z(0) = y0, z(T ) = y1. By (A.6) and (A.7) we conclude that
vn → v in L2(0, T ;H) and zn → z in C([0, T ];H) as n → ∞. Next, letting Bn := PnB , we
define uε

n to be the point where the function |Bnu − vn|2L2(0,T ;H)
+ ε|u|2

L2(0,T ;E)
attains its mini-

mum. We have

B∗
n

(
Bnu

ε
n − vn

) + εuε
n = 0. (A.8)

Finally, we define uε to be the point where the function |Bu− v|2
L2(0,T ;H)

+ ε|u|2
L2(0,T ;E)

attains
its minimum. We have

B∗(Buε − v
) + εuε = 0. (A.9)

It follows by (A.8) and (A.9) that uε
n → uε in L2(0, T ;E) as n → ∞. Moreover, since

|Buε − v|2
L2(0,T ;H)

+ ε|uε|2
L2(0,T ;E)

� |v|2
L2(0,T ;H)

we have by (A.9) that Buε − v → 0 weakly

in L2(0, T ;H) as ε → 0. Replacing {uε} by a suitable sequence of the arithmetic means of uεi

we may assume that Buε → v in the norm of L2(0, T ;H). Then we see that

∣∣Bnu
ε
n − vn

∣∣
L2(0,T ;H)

� η1(1/n) + η2(ε) + C1
∣∣uε − uε

n

∣∣
L2(0,T ;H)

+ ∣∣Bnu
ε − Buε

∣∣
L2(0,T ;H)

,

where ηi(s) → 0 as s → 0, i = 1,2. Then we obtain |Bnu
ε
n − vn|L2(0,T ;H) � 4η2(ε) =: δ(ε) for

all n � N(ε). �
We remark that this proof remain valid if F is quasi-m-dissipative, i.e., F + γ I is m-dis-

sipative for some γ > 0. In addition, F may be multivalued.
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