

Available online at www.sciencedirect.com

JOURNAL OF Algebra

Journal of Algebra 312 (2007) 733-754

www.elsevier.com/locate/jalgebra

Non-abelian Hopf cohomology

Philippe Nuss*, Marc Wambst

Institut de Recherche Mathématique Avancée, Université Louis-Pasteur et CNRS, 7, rue René-Descartes, 67084 Strasbourg Cedex, France

Received 8 March 2006

Available online 15 November 2006

Communicated by Michel Van den Bergh

Abstract

We introduce non-abelian cohomology sets of Hopf algebras with coefficients in Hopf modules. We prove that these sets generalize Serre's non-abelian group cohomology theory. Using descent techniques, we establish that our construction enables to classify as well twisted forms for modules over Hopf-Galois extensions as torsors over Hopf-modules.

© 2006 Elsevier Inc. All rights reserved.

Introduction

The aim of this article is to extend to Hopf algebras the concept of non-abelian cohomology of groups. Introduced in 1958 by Lang and Tate [8] for Galois groups with coefficients in an algebraic group, the non-abelian cohomology theory in degree 0 and 1 was formalized by Serre [12,13]. For an arbitrary group *G* acting on a group *A* which is not necessarily abelian, Serre constructs a 0-cohomology group H⁰(*G*, *A*) and a 1-cohomology pointed set H¹(*G*, *A*). These objects generalize the two first groups of the classical Eilenberg–MacLane cohomology sequence H^{*}(*G*, *A*) = Ext^{*}_{**Z**[*G*]}(**Z**, *A*), defined only when *A* is abelian. It is well known that the non-abelian cohomology set H¹(*G*, *A*) classifies the torsors on *A* (see [13]).

* Corresponding author.

0021-8693/\$ – see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2006.10.005

Keywords: Non-abelian cohomology; Non-commutative descent theory; Hopf-Galois extension; Hopf-module; Twisted form; Torsor; Hilbert's Theorem 90

E-mail addresses: nuss@math.u-strasbg.fr (P. Nuss), wambst@math.u-strasbg.fr (M. Wambst).

The non-abelian cohomology theory of groups comes naturally into play in the particular case where S/R is a G-Galois extension of rings in the sense of [9]. The situation is the following: a finite group G acts on a ring extension S/R and, in a compatible way, on an S-module M. The coefficient group is then the group of S-automorphisms $A = \text{Aut}_S(M)$ of M. In [10], one of the authors showed that the set $\text{H}^1(G, \text{Aut}_S(M))$ classifies as well descent cocycles on M as twisted forms of M.

Galois extensions of rings may be viewed as particular cases of Hopf-Galois extensions defined by Kreimer–Takeuchi [7], where a Hopf algebra H (non-necessarily commutative nor cocommutative) plays the rôle of the Galois group. Indeed, given a group G, a G-Galois extension of rings is nothing but a \mathbb{Z}^G -Hopf-Galois extension of rings, where \mathbb{Z}^G stands for the dual Hopf algebra of the group ring $\mathbb{Z}[G]$.

Suppose now fixed a ground ring k, a Hopf algebra H over k, and an H-comodule algebra S (for instance, any H-Hopf-Galois extension S/R is based on such a datum). For any (H, S)-Hopf module M, that is an abelian group M endowed with an S-action and a compatible H-coaction, we define in the cosimplicial spirit a 0-cohomology group $H^0(H, M)$ and a 1-cohomology pointed set $H^1(H, M)$.

The philosophy behind the construction is the following (precise definitions will be given in the core of the paper). Start with a *G*-Galois extension S/R, where *G* is a finite group, and with *M* a (*G*, *S*)-Galois module, i.e. an abelian group *M* endowed with two compatible *S*- and *G*-actions. The group Aut_{*S*}(*M*) inherits a *G*-action by conjugation. Let k^G be the dual Hopf algebra of the group ring k[G]. A 1-cocycle in the sense of Serre is represented by a certain map $\alpha : G \to \operatorname{Aut}_S(M)$. By duality, α formally defines an element in $M \otimes_k M^* \otimes_k k^G$, which can also be seen as a map $\Phi_{\alpha} : M \to M \otimes_k k^G$ satisfying some conditions. Assume now given, instead of *G*, a Hopf-algebra *H* coacting on a ring *S*. Let *M* be an (*H*, *S*)-Hopf module, that is a module on which both *H* and *S* act in a compatible way. We replace the former map $\Phi_{\alpha} : M \to M \otimes_k k^G$ by a map $\Phi : M \to M \otimes_k H$ and state general requirements—the cocycle conditions—which reflect the group-cocycle condition on α . This construction gives rise to a 1-cohomology pointed set $\operatorname{H}^1(H, M)$.

We establish two mains results. The first theorem shows that the 1-cohomology set $H^1(H, M)$ generalizes the non-abelian group 1-cohomology set of Serre. The second one relates $H^1(H, M)$ to $\text{Twist}(S/R, N_0)$, the isomorphy class of the twisted forms of an extended module $M = N_0 \otimes_R S$. More precisely, we prove the two following statements:

Theorem A. For a group G and a (k^G, S) -Hopf module M, there is an isomorphism of pointed sets

$$\mathrm{H}^{1}(k^{G}, M) \cong \mathrm{H}^{1}(G, \mathrm{Aut}_{S}(M)).$$

Theorem B. For a Hopf-algebra H and an (H, S)-Hopf module M of the form $M = N_0 \otimes_R S$, there is an isomorphism of pointed sets

$$\mathrm{H}^{1}(H, M) \cong \mathrm{Twist}(S/R, N_{0}).$$

The precise wording of Theorem A will be found in Corollary 3.2, and that of Theorem B in Theorem 1.2. As a consequence of Theorem B, we deduce (Corollary 1.3) a Hopf version of the celebrated Theorem 90 stated in 1897 by Hilbert in his *Zahlbericht*.

735

In order to prove these two results, we bring in an auxiliary cohomology theory $D^i(H, M)$ (i = 0, 1) related to descent theory. The pointed set $D^1(H, M)$ classifies the (H, S)-Hopf module structures on M and, in the case of a Hopf-Galois extension, the descent data on M. Moreover, it may be viewed as torsors on M (Proposition 2.8).

We mention here that A. Blanco Ferro [1], generalizing a construction due to M. Sweedler [14], defined a 1-cohomology set $H^1(H, A)$, where H is a Hopf-algebra and A is an H-module algebra. He applied his theory, which is in some sense dual to ours, to a commutative particular case: not only does H have to be a commutative finitely generated k-projective Hopf algebra, but S/k is a commutative Hopf-Galois extension. For any k-module N, setting $A = \text{End}_S(N \otimes_k S)$, Blanco Ferro showed in this particular case that his set $H^1(H^*, A)$ classifies the twisted forms of $N \otimes_k S$ where H^* stands for the dual Hopf algebra of H.

0. Conventions

Let k be a fixed commutative and unital ring. The unadorned symbol \otimes between a right k-module and a left k-module stands for \otimes_k . By algebra we mean a unital associative k-algebra. A *division algebra* is either a commutative field or a skew-field. By module over a ring R, we always understand a right R-module unless otherwise stated. Denote by \mathfrak{Mod}_R the category of R-modules and by \mathfrak{Set} the category of sets.

Let *H* be a Hopf-algebra over *k* with multiplication μ_H , unity map η_H , comultiplication Δ_H , counity map ε_H , and antipode σ_H . Let *S* be an algebra, μ_S its multiplication, η_S its unity map. We assume that *S* is a right *H*-comodule algebra, in other words that *S* is equipped with an *H*-coaction map $\Delta_S : S \to S \otimes H$ which is a morphism of algebras. Let *M* be both an *S*-module and an *H*-comodule with the *H*-coaction map $\Delta_M : M \to M \otimes H$. If Δ_M verifies the equality

$$\Delta_M(ms) = \Delta_M(m) \Delta_S(s), \tag{1}$$

for any $m \in M$ and $s \in S$, we say that M is an (H, S)-Hopf module (also called a relative Hopf module in the literature) and that $\Delta_M : M \to M \otimes H$ is (H, S)-linear. A morphism $f : M \to M'$ of (H, S)-Hopf modules is an S-linear map f such that $(f \otimes id_M) \circ \Delta_M = \Delta_{M'} \circ f$. To denote the coactions on elements, we use the Sweedler–Heyneman convention, that is, for $m \in M$, we write $\Delta_M(m) = m_0 \otimes m_1$, with summation implicitly understood. More generally, when we write down a tensor we usually omit the summation sign \sum .

Denote by *R* the algebra of *H*-coinvariants of *S*, that is $R = \{s \in S \mid \Delta_S(s) = s \otimes 1\}$. An *S*-module *M* is said to be *extended* if there exists an *R*-module N_0 such that *M* is equal to $N_0 \otimes_R S$. The inclusion map $\psi : R \hookrightarrow S$ is a (*right*) *H*-Hopf-Galois extension if ψ is faithfully flat and the map $\Gamma_{\psi} : S \otimes_R S \to S \otimes H$, called *Galois map*, given on an indecomposable tensor $s \otimes t \in S \otimes_R S$ by

$$\Gamma_{\psi}(s\otimes t) = s\Delta_S(t),$$

is a *k*-linear isomorphism. By Hopf-Galois descent theory [5,11], every (H, S)-Hopf module is isomorphic to an extended *S*-module. Conversely, an extended *S*-module $M = N_0 \otimes_R S$ owns an (H, S)-Hopf module structure with the canonical coaction $\Delta_M = \operatorname{id}_{N_0} \otimes \Delta_S : N_0 \otimes_R S \to$ $N_0 \otimes_R S \otimes H$. Let *G* be a finite group. Denote by k^G the *k*-free Hopf algebra over the *k*-basis $\{\delta_g\}_{g \in G}$, with the following structure maps: the multiplication is given by $\delta_g \cdot \delta_{g'} = \partial_{g,g'} \delta_g$, where $\partial_{g,g'}$ stands for the Kronecker symbol of *g* and *g'*; the comultiplication Δ_{kG} is defined by $\Delta_{kG}(\delta_g) = \sum_{ab=g} \delta_a \otimes \delta_b$; the unit in k^G is the element $1 = \sum_{g \in G} \delta_g$; the counit ε_{kG} is defined by $\varepsilon_{kG}(\delta_g) = \partial_{g,e} 1$; the antipode σ_{kG} sends δ_g on $\delta_{g^{-1}}$. When *k* is a field, then k^G is the dual of the usual group Hopf-algebra k[G]. It is easy to see that a k^G -Hopf-Galois extension is the same as a *G*-Galois extension of *k*-algebras in the sense of [9]. To give an action of *G* on *S* is equivalent to give a coaction map of k^G on *S*, the two structures being related by the equality

$$\Delta_S(s) = \sum_{g \in G} g(s) \otimes \delta_g.$$

An S-module M will be called a (G, S)-Galois module if it is endowed with a (G, S)-action, that is a G-action $\gamma : G \to \operatorname{Aut}_k(M)$ such that following twisted S-linearity condition:

$$g(ms) = g(m)g(s) \tag{2}$$

holds for any $g \in G$, $m \in M$, and $s \in S$ (when no confusion about γ is possible, we denote for simplicity g(m) instead of $\gamma(g)(m)$). When γ verifies (2), we say that the morphism γ is (G, S)-linear. Denote by $\operatorname{Aut}_{S}^{\gamma}(M)$ the subgroup of $\operatorname{Aut}_{k}(M)$ which is the image of γ .

To give a (G, S)-Galois module structure on M is equivalent to give a (k^G, S) -Hopf module structure on S. By Galois descent theory, a (G, S)-Galois module is isomorphic to an extended module $N \otimes_R S$.

1. Non-abelian Hopf cohomology theory

In this section we define a non-abelian Hopf cohomology theory, and state our main result, Theorem 1.2, which compares in the Hopf-Galois context the 1-Hopf cohomology set with twisted forms. We deduce a Hopf-Galois version of Hilbert's Theorem 90.

1.1. Definition of the non-abelian Hopf cohomology sets

Let *H* be a Hopf-algebra and *S* be an *H*-comodule algebra. For any *S*-module *M*, we endow $M \otimes H^{\otimes n}$ with an *S*-module structure given by

$$(m \otimes \underline{h})s = ms \otimes \underline{h},$$

for $m \in M$, $\underline{h} \in H^{\otimes n}$, and $s \in S$.

Set $W_k^n(\overline{M}) = \operatorname{Hom}_k(M, M \otimes H^{\otimes n})$ and $W_S^n(M) = \operatorname{Hom}_S(M, M \otimes H^{\otimes n})$. We equip the *k*-module $W_k^n(M)$ with a composition-type product $\odot : W_k^n(M) \otimes W_k^n(M) \to W_k^n(M)$, defined by

$$\begin{cases} \varphi \odot \varphi' = \varphi \circ \varphi' & \text{if } n = 0, \\ \varphi \odot \varphi' = (\mathrm{id}_M \otimes \mu_H^{\otimes n}) \circ (\mathrm{id}_M \otimes \chi_n) \circ (\varphi \otimes \mathrm{id}_H^{\otimes n}) \circ \varphi' & \text{if } n > 0, \end{cases}$$

for $\varphi, \varphi' \in W_k^n(M)$; here $\chi_n : H^{\otimes n} \otimes H^{\otimes n} \to (H \otimes H)^{\otimes n}$ denotes the intertwining operator given by

$$\chi_n((a_1 \otimes \cdots \otimes a_n) \otimes (b_1 \otimes \cdots \otimes b_n)) = (a_1 \otimes b_1) \otimes \cdots \otimes (a_n \otimes b_n).$$

It restricts to a product still denoted \odot on $W^n_S(M)$. Thanks to the product \odot , the modules $W^n_k(M)$ and $W^n_S(M)$ become a monoid: the associativity of \odot is a direct consequence of the coassociativity of Δ_H and the neutral element is $\upsilon_n = id_M \otimes \eta_H^{\otimes n}$. Further we shall use that the group of invertible elements of the monoid $W^0_S(M)$ is $Aut_S(M)$.

Suppose that *M* is an *H*-comodule. Denote by *T* the *flip* of $H \otimes H$, the automorphism of $H \otimes H$ which sends an indecomposable tensor $h \otimes h'$ to $h' \otimes h$. We define two maps $d^i : W_k^0(M) \to W_k^1(M)$ (i = 0, 1) and three maps $d^i : W_k^1(M) \to W_k^2(M)$ (i = 0, 1, 2) by the formulae

$$d^{0}\varphi = (\mathrm{id}_{M} \otimes \mu_{H}) \circ (\Delta_{M} \otimes \mathrm{id}_{H}) \circ (\varphi \otimes \sigma_{H}) \circ \Delta_{M},$$

$$d^{1}\varphi = (\mathrm{id}_{M} \otimes \eta_{H}) \circ \varphi,$$

$$d^{0}\Phi = (\mathrm{id}_{M} \otimes \mu_{H} \otimes \mathrm{id}_{H}) \circ (\Delta_{M} \otimes T) \circ (\Phi \otimes \sigma_{H}) \circ \Delta_{M},$$

$$d^{1}\Phi = (\mathrm{id}_{M} \otimes \Delta_{H}) \circ \Phi,$$

$$d^{2}\Phi = (\mathrm{id}_{M} \otimes \mathrm{id}_{H} \otimes \eta_{H}) \circ \Phi = \Phi \otimes \eta_{H},$$

where $\varphi: M \to M$ and $\Phi: M \to M \otimes H$ are k-linear morphisms.

~

Lemma 1.1. Let M be an (H, S)-Hopf-module. The restriction of the above defined maps to the corresponding monoids $W^0_S(M)$ and $W^1_S(M)$ are morphims of monoids which may be organized in the following cosimplicial diagram:

$$W_{S}^{0}(M) \xrightarrow{d^{0}} W_{S}^{1}(M) \xrightarrow{d^{0}} W_{S}^{2}(M).$$

$$(3)$$

Proof. We adopt the Sweedler–Heyneman convention and use the Hopf yoga, for instance, the fact that for any $x, y \in H$, one has $x_0 \otimes \sigma_H(x_1)x_2y = x_0 \otimes \varepsilon_H(x_1)y = x \otimes y$. First one has to show that $d^i\varphi$ and $d^i\Phi$ are S-linear. This assertion is obvious for $d^1\varphi$. Let us prove it for $d^0\varphi$. We get, for any $m \in M$ and $s \in S$, the equalities

$$d^{0}\varphi(ms) = \left[(\mathrm{id}_{M} \otimes \mu_{H}) \circ (\Delta_{M} \otimes \mathrm{id}_{H}) \circ (\varphi \otimes \sigma_{H}) \circ \Delta_{M} \right] (ms)$$

= $\left[(\mathrm{id}_{M} \otimes \mu_{H}) \circ (\Delta_{M} \otimes \mathrm{id}_{H}) \right] \left(\varphi(m_{0})s_{0} \otimes \sigma_{H}(m_{1}s_{1}) \right)$
= $(\mathrm{id}_{M} \otimes \mu_{H}) \left[\varphi(m_{0})_{0}s_{0} \otimes \varphi(m_{0})_{1}s_{1} \otimes \sigma_{H}(s_{2})\sigma_{H}(m_{1}) \right]$
= $\varphi(m_{0})_{0}s_{0} \otimes \varphi(m_{0})_{1} \left(s_{1}\sigma_{H}(s_{2}) \right) \sigma_{H}(m_{1})$
= $\varphi(m_{0})_{0}s \otimes \varphi(m_{0})_{1}\sigma_{H}(m_{1})$
= $d^{0}\varphi(m)s.$

The S-linearity of $d^1\Phi$ and $d^2\Phi$ is obvious. We prove it for $d^0\Phi$. For any $m \in M$ and $s \in S$, set $\Phi(m) = m' \otimes m''$. We have $d^0\Phi(m) = ((m_0)')_0 \otimes ((m_0)')_1 \sigma_H(m_1) \otimes (m_0)''$, hence

$$d^{0}\Phi(ms) = \left[(\mathrm{id}_{M} \otimes \mu_{H} \otimes \mathrm{id}_{H}) \circ (\Delta_{M} \otimes T) \circ (\Phi \otimes \sigma_{H}) \circ \Delta_{M} \right] (ms)$$

= $\left[(\mathrm{id}_{M} \otimes \mu_{H} \otimes \mathrm{id}_{H}) \circ (\Delta_{M} \otimes T) \right] ((m_{0})'s_{0} \otimes (m_{0})'' \otimes \sigma_{H}(m_{1}s_{1}))$
= $(\mathrm{id}_{M} \otimes \mu_{H} \otimes \mathrm{id}_{H}) \left[((m_{0})')_{0}s_{0} \otimes ((m_{0})')_{1}s_{1} \otimes \sigma_{H}(s_{2})\sigma_{H}(m_{1}) \otimes (m_{0})'' \right]$
= $((m_{0})')_{0}s \otimes ((m_{0})')_{1}\sigma_{H}(m_{1}) \otimes (m_{0})''$
= $d^{0}\Phi(m)s.$

We prove now that d^i respects the monoid structures on $W^k_S(M)$, that is

$$d^i \varphi \odot d^i \varphi' = d^i (\varphi \odot \varphi'), \qquad d^i \Phi \odot d^i \Phi' = d^i (\Phi \odot \Phi'), \text{ and } d^i (\upsilon_k) = \upsilon_{k+1}$$

for any $\varphi, \varphi' \in W^0_S(M)$, any $\Phi, \Phi' \in W^1_S(M)$, $k \in \{0, 1\}$, and any appropriate index *i*. Let us prove this on the 0-level for φ and φ' in $W^0(M)$. For any $m \in M$, we have:

$$\begin{aligned} \left(d^{0}\varphi'\odot d^{0}\varphi\right)(m) &= (\mathrm{id}_{M}\otimes\mu_{H})\left(d^{0}\varphi'\otimes\mathrm{id}_{H}\right)\left(d^{0}\varphi(m)\right) \\ &= (\mathrm{id}_{M}\otimes\mu_{H})\left(d^{0}\varphi'\otimes\mathrm{id}_{H}\right)\left(\varphi(m_{0})_{0}\otimes\varphi(m_{0})_{1}\sigma_{H}(m_{1})\right) \\ &= \varphi'\left(\varphi(m_{0})_{0}\right)_{0}\otimes\varphi'\left(\varphi(m_{0})_{0}\right)_{1}\sigma_{H}\left(\varphi(m_{0})_{1}\right)\varphi(m_{0})_{2}\sigma_{H}(m_{1}) \\ &= \varphi'\left(\varphi(m_{0})_{0}\right)_{0}\otimes\varphi'\left(\varphi(m_{0})_{0}\right)_{1}\varepsilon_{H}\left(\varphi(m_{0})_{1}\right)\sigma_{H}(m_{1}) \\ &= (\mathrm{id}_{M}\otimes\mu_{H})\left((\Delta_{M}\circ\varphi')\otimes\mathrm{id}_{H}\right)\left[\varphi(m_{0})_{0}\otimes\varepsilon_{H}\left(\varphi(m_{0})_{1}\right)\sigma_{H}(m_{1})\right] \\ &= (\mathrm{id}_{M}\otimes\mu_{H})\left((\Delta_{M}\circ\varphi')\otimes\mathrm{id}_{H}\right)\left[\varphi(m_{0})\otimes\sigma_{H}(m_{1})\right] \\ &= (\mathrm{id}_{M}\otimes\mu_{H})\left((\Delta_{M}\circ\varphi'\circ\varphi)\otimes\sigma_{H}\right)\Delta_{M}(m) \\ &= d^{0}(\varphi'\odot\varphi)(m) \end{aligned}$$

and

$$d^{1}\varphi \odot d^{1}\varphi'(m) = (\mathrm{id}_{M} \otimes \mu_{H}) (d^{1}\varphi' \otimes \mathrm{id}_{H}) (d^{1}\varphi(m))$$

= $(\mathrm{id}_{M} \otimes \mu_{H}) (d^{1}\varphi' \otimes \mathrm{id}_{H}) (\varphi(m) \otimes 1)$
= $(\mathrm{id}_{M} \otimes \mu_{H}) (\varphi'(\varphi(m)) \otimes 1 \otimes 1)$
= $\varphi'(\varphi(m)) \otimes 1$
= $d^{1}(\varphi' \odot \varphi)(m).$

We do not write down the computations on the 1-level, which are very similar to the previous ones. We leave to the reader the straightforward proof of $d^i(v_k) = v_{k+1}$ and also the easy checking of the following three formulae

$$d^{2}d^{0} = d^{0}d^{1}, \qquad d^{1}d^{0} = d^{0}d^{0}, \qquad d^{2}d^{1} = d^{1}d^{1},$$

which mean that the diagram (3) is precosimplicial. \Box

We define the 0-cohomology group $H^0(H, M)$ and the 1-cohomology set $H^1(H, M)$ in the following way. Let

$$\mathrm{H}^{0}(H, M) = \left\{ \varphi \in \mathrm{Aut}_{S}(M) \mid d^{1}\varphi = d^{0}\varphi \right\}$$

be the equalizer of the pair (d^0, d^1) . It is obviously a group since d^i is a morphism of monoids.

The set $Z^1(H, M)$ of 1-Hopf cocycles of H with coefficients in M is the subset of $W^1_S(M)$ defined by

$$Z^{1}(H, M) = \left\{ \Phi \in W_{k}^{1}(M) \middle| \begin{array}{l} (ZC_{1}) \ \Phi(ms) = \Phi(m)s, \text{ for all } m \in M \text{ and } s \in S \\ (ZC_{2}) \ (\mathrm{id}_{M} \otimes \varepsilon_{H}) \circ \Phi = \mathrm{id}_{M} \\ (ZC_{3}) \ d^{2}\Phi \odot d^{0}\Phi = d^{1}\Phi \end{array} \right\}$$

The group $\operatorname{Aut}_{S}(M)$ acts on the right on $Z^{1}(H, M)$ by

$$(\varPhi - f) = d^1 f^{-1} \odot \varPhi \odot d^0 f,$$

where $\Phi \in Z^1(H, M)$ and $f \in Aut_S(M)$. Two 1-Hopf cocycles Φ and Φ' are said to be *cohomologous* if they belong to the same orbit under the action of $Aut_S(M)$ on $Z^1(H, M)$. We denote by $H^1(H, M)$ the quotient set $Aut_S(M) \setminus Z^1(H, M)$; it is pointed with distinguished point the class of the map $\upsilon_1 = id_M \otimes \eta_H$.

For i = 0, 1, we call $H^{i}(H, M)$ the *i*th-Hopf cohomology set of H with coefficients in the (H, S)-Hopf module M.

1.2. The main theorem: Comparison of the 1-Hopf cohomology set with twisted forms in the Hopf-Galois context

Let *H* be a Hopf-algebra, $\psi: R \to S$ be an *H*-Hopf-Galois extension, and $M = N_0 \otimes_R S$ be the extended *S*-module of an *R*-module N_0 . We endow *M* with the canonical (H, S)-Hopf module structure given by the coaction $\Delta_M = \operatorname{id}_{N_0} \otimes \Delta_S$. The central result of this paper asserts that the Hopf 1-cohomology set $H^1(H, M)$ is isomorphic to the pointed set $\operatorname{Twist}(S/R, N_0)$ of twisted forms of N_0 up to isomorphisms.

Let $\psi: R \to S$ be any extension of rings and N_0 be an *R*-module. Recall that a *twisted form* of N_0 (over S/R) is a pair (N, φ) , where N is an *R*-module and $\varphi: N \otimes_R S \to N_0 \otimes_R S$ is an S-linear isomorphism. Let twist $(S/R, N_0)$ be the set of twisted forms of N_0 . Two twisted forms (N, φ) and (N', φ') of N_0 are *isomorphic* if N and N' are isomorphic as *R*-modules. Following [6], we denote by Twist $(S/R, N_0)$ the pointed set of isomorphism classes of twisted forms of N_0 , the distinguished point being the class of $(N_0, id_{N_0} \otimes id_S)$. We mention here that all the results of [10] involving equivalence classes of twisted forms are actually proven for this definition of Twist $(S/R, N_0)$ and not for the one given in [10, §6.3], where the equivalence relation is too restrictive.

Theorem 1.2. Let *H* be a Hopf-algebra, $\psi : R \to S$ be an *H*-Hopf-Galois extension, and $M = N_0 \otimes_R S$ be the extended S-module of an R-module N_0 . There is an isomorphism of pointed sets

$$\mathrm{H}^{1}(H, M) \cong \mathrm{Twist}(S/R, N_0).$$

Theorem 1.2 allows us to state the following non-commutative generalization of Noether's cohomological form of Hilbert's Theorem 90.

Corollary 1.3. Let *H* be a Hopf-algebra and $\psi : K \to L$ be an *H*-Hopf-Galois extension of division algebras. Then, for any positive integer *n*, we have

$$H^1(H, L^n) = \{1\}.$$

Here we denote by 1 the distinguished point of $H^1(H, L^n)$.

Proof of Corollary 1.3. Observe that L^n is isomorphic to the extended *L*-module $K^n \otimes_K L$. By Theorem 1.2, the pointed set $H^1(H, L^n)$ is isomorphic to $\text{Twist}(L/K, K^n)$, which is known to be trivial [10, Corollary 6.21]. \Box

The rest of the paper is mainly devoted to the proof of Theorem 1.2. This is done in two steps. At first we introduce a non-abelian cohomology theory $D^i(H, M)$, for i = 0, 1, which is related to non-commutative descent theory. In Theorem 2.6, we prove the isomorphism $D^1(H, M) \cong \text{Twist}(S/R, N_0)$. Subsequently we show that the Hopf cohomology sets $H^i(H, M)$ are isomorphic to the descent cohomology sets $D^i(H, M)$.

2. Descent cohomology sets

In this section we introduce two descent cohomology sets. We compute them in the Galois case and relate them to the usual non-abelian group cohomology theory. In addition, in the Hopf-Galois context, we prove that the 1-descent cohomology set classifies twisted forms and interpret it in terms of torsors on the module of coefficients.

2.1. Definition of descent cohomology sets

Let *H* be a Hopf-algebra, *S* be an *H*-comodule algebra, and *M* be an (H, S)-Hopf module with coaction $\Delta_M : M \to M \otimes H$. We define the 0-cohomology group $D^0(H, M)$ by

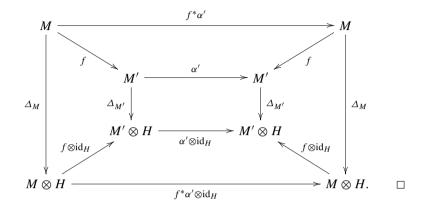
$$D^{0}(H, M) = \{ \alpha \in \operatorname{Aut}_{S}(M) \mid (\alpha \otimes \operatorname{id}_{H}) \circ \Delta_{M} = \Delta_{M} \circ \alpha \}.$$

It is the set of the S-linear automorphisms of M which are maps of H-comodules. This set obviously carries a group structure given by the composition of automorphisms.

Lemma 2.1. Let *H* be a Hopf-algebra and *S* be an *H*-comodule algebra. Any isomorphism $f: M \to M'$ of (H, S)-Hopf modules induces an isomorphism of groups $f^*: D^0(H, M') \to D^0(H, M)$ given on $\alpha' \in D^0(H, M')$ by:

$$f^*\alpha' = f^{-1} \circ \alpha' \circ f.$$

Proof. The S-linearity of $f^*\alpha'$ immediately follows from the S-linearity of f and that of α' . In order to prove that $f^*\alpha'$ belongs to $D^0(H, M)$, it is sufficient to observe that the following diagram is commutative:



We introduce now a 1-cohomology set $D^1(H, M)$ in the following way. The set $C^1(H, M)$ of 1-*descent cocycles of H with coefficients in M* is defined to be the set of all k-linear H-coactions $F: M \to M \otimes H$ on M making M an (H, S)-Hopf module. In other words, one has:

$$C^{1}(H, M) = \left\{ F: M \to M \otimes H \middle| \begin{array}{l} (CC_{1}) \ F(ms) = F(m)\Delta_{S}(s), \text{ for all } m \in M \text{ and } s \in S \\ (CC_{2}) \ (\operatorname{id}_{M} \otimes \varepsilon_{H}) \circ F = \operatorname{id}_{M} \\ (CC_{3}) \ (F \otimes \operatorname{id}_{H}) \circ F = (\operatorname{id}_{M} \otimes \Delta_{H}) \circ F \end{array} \right\}.$$

Notice that $C^1(H, M)$ is pointed (hence not empty) with the coaction map Δ_M as distinguished point.

Lemma 2.2. Let *H* be a Hopf-algebra and *S* be an *H*-comodule algebra. Any isomorphism $f: M \to M'$ of *S*-modules induces a bijection $f^*: C^1(H, M') \to C^1(H, M)$ given on $F' \in C^1(H, M')$ by

$$f^*F' = (f^{-1} \otimes \mathrm{id}_H) \circ F \circ f.$$

For any S-module M, one has

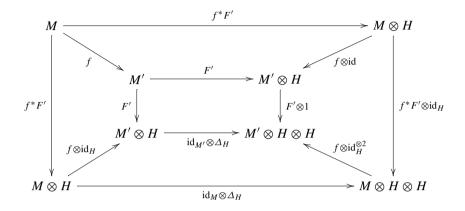
$$(\mathrm{id}_M)^* = \mathrm{id}_{\mathrm{C}^1(H,M)}.$$

For any composable isomorphisms of S-modules $f: M \to M'$ and $f': M' \to M''$, the following equality holds

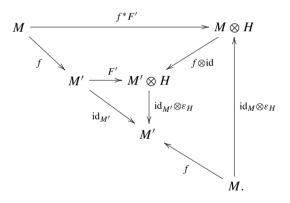
$$(f' \circ f)^* = f^* \circ f'^*.$$

If moreover $f: M \to M'$ is an isomorphism of (H, S)-Hopf modules, then f^* realizes an isomorphism of pointed sets between $C^1(H, M')$ and $C^1(H, M)$.

Proof. Let $f: M \to M'$ be an isomorphism of S-modules. The (H, S)-linearity of f^*F' immediately follows from the S-linearity of f and from the (H, S)-linearity of F'. The coassociativity of f^*F' comes from the commutativity of the diagram



whereas the compatibility of f^*F' with the counity of H is expressed by the commutativity of the diagram



Hence we have shown that f^*F' belongs to $C^1(H, M)$. By the very definition, f^*F' is bijective

and $(\mathrm{id}_M)^* = \mathrm{id}_{\mathrm{C}^1(H,M)}$. Let $f: M \to M'$ and $f': M' \to M''$ be two isomorphisms of *S*-modules. One has, for any $F' \in \mathrm{C}^1(H, M')$, the following equalities

$$(f' \circ f)^*(F') = \left((f' \circ f)^{-1} \otimes \operatorname{id}_H \right) \circ F' \circ (f' \circ f)$$
$$= \left(\left(f^{-1} \circ f'^{-1} \right) \otimes \operatorname{id}_H \right) \circ F' \circ (f' \circ f) = f^*(f'^*F').$$

Moreover, if f is an isomorphism of (H, S)-Hopf modules, the map f^* preserves the distinguished points: indeed, the equality $f^* \Delta_{M'} = \Delta_M$ is equivalent to the fact that f is a morphism of (H, S)-Hopf modules. \Box

From Lemma 2.2, one readily obtains the following result.

Corollary 2.3. Let *H* be a Hopf-algebra, *S* be an *H*-comodule algebra, and *M* be an (H, S)-Hopf module. The group $Aut_S(M)$ acts on the right on $C^1(H, M)$ by

$$(F \leftarrow f) = f^*F = (f^{-1} \otimes \mathrm{id}_H) \circ F \circ f,$$

where $F \in C^1(H, M)$ and $f \in Aut_S(M)$.

Two 1-descent cocycles F and F' are said to be *cohomologous* if they belong to the same orbit under the action of Aut_S(M) on C¹(H, M). We denote by D¹(H, M) the quotient set Aut_S(M)\C¹(H, M); it is pointed with distinguished point the class of the coaction Δ_M .

For i = 0, 1, we call $D^i(H, M)$ the *ith-descent cohomology set of* H with coefficients in M. The choice of this name finds its motivation in the following observation. Suppose that $\psi: R \to S$ is an H-Hopf-Galois extension. As shown in [11], an (H, S)-Hopf module may always be descended to an R-module N_0 , that is M is isomorphic to an extended S-module $N_0 \otimes_R S$. The set $C^1(H, M)$ is exactly those of all descent data on M described in [10].

Corollary 2.4. Let H be a Hopf-algebra and S be an H-comodule algebra.

- Any isomorphism $f: M \to M'$ of S-modules induces a bijection $f^*: D^1(H, M') \to D^1(H, M)$.
- Any isomorphism $f: M \to M'$ of (H, S)-Hopf modules induces an isomorphism of pointed sets $f^*: D^1(H, M') \to D^1(H, M)$.

Proof. Suppose that F_1 and F_2 are two cohomologous 1-cocycles of $C^1(H, M')$, with $g \in Aut_S(M')$ such that $F_1 = g^*F_2$. Then $f^*F_2 = f^*g^*F_1 = f^*g^*(f^{-1})^*f^*F_1 = (f^{-1}gf)^*(f^*F_1)$, so f^*F_1 and f^*F_2 are cohomologous in $C^1(H, M)$. \Box

2.2. Application to the Galois case

We work now with the Hopf algebra k^G dual to the group algebra k[G] for G a finite group. Let $\psi: R \to S$ be a k^G -Galois extension and M a (G, S)-Galois module. We may assume that M is already extended, so that M is equal to $N_0 \otimes_R S$ for an R-module N_0 . Endow M with the canonical (H, S)-Hopf module structure given by the coaction $\Delta_M = \mathrm{id}_{N_0} \otimes \Delta_S$. In this paragraph, we compute the descent cohomology set of k^G with coefficients in $M = N_0 \otimes_R S$ in terms of the Galois 1-cohomology set of G with coefficients in $\mathrm{Aut}_S(M)$.

Recall that for any group G and any (left) G-group A, one classically defines two non-abelian cohomology sets of G with coefficients in A (see [12,13]). This is done in the following way. The 0-cohomology group $H^0(G, A)$ is the group A^G of invariant elements of A under the action of G. The set $Z^1(G, A)$ of 1-cocycles is given by

$$Z^{1}(G, A) = \left\{ \alpha \in \mathfrak{Set}(G, A) \mid \alpha(gg') = \alpha(g)^{g} (\alpha(g')), \forall g, g' \in G \right\}.$$

It is pointed with distinguished point the constant map $1: G \to A$. The group A acts on the right on $Z^1(G, A)$ by

$$(\alpha \leftarrow a)(g) = a^{-1} \alpha(g)^g a,$$

where $a \in A$, $\alpha \in Z^1(G, A)$, and $g \in G$. Two 1-cocycles α and α' are *cohomologous* if they belong to the same orbit under this action. The non-abelian 1-cohomology set $H^1(G, A)$ is the left quotient $A \setminus Z^1(G, A)$. Then $H^1(G, A)$ is pointed with distinguished point the class of the constant map $1: G \to A$.

Let G be a finite group, $\psi: R \to S$ be a G-Galois extension, and $M = N_0 \otimes_R S$ be the extended S-module of an R-module N_0 . The S-module M is a (G, S)-Galois module by the canonical action given on an indecomposable tensor $n \otimes s \in N_0 \otimes_R S$ by

$$g(n \otimes s) = n \otimes g(s),$$

where $g \in G$, $n \in N_0$, and $s \in S$. The group G acts by automorphisms on Aut_S(M) by

$${}^{g}f = (\mathrm{id}_{N_0} \otimes g) \circ f \circ (\mathrm{id}_{N_0} \otimes g^{-1}),$$

where $g \in G$ and $f \in Aut_S(M)$. Hence $Aut_S(M)$ becomes a *G*-group and we get at our disposal the two non-abelian cohomology sets $H^0(G, Aut_S(M))$ and $H^1(G, Aut_S(M))$.

Proposition 2.5. Let G be a finite group, $\psi : R \to S$ be a G-Galois extension, and $M = N_0 \otimes_R S$ be the extended S-module of an R-module N_0 . There is the equality of groups

$$D^0(k^G, M) = H^0(G, Aut_S(M))$$

and an isomorphism of pointed sets

$$\mathrm{D}^1(k^G, M) \cong \mathrm{H}^1(G, \mathrm{Aut}_S(M)).$$

Proof. Let us prove the equality between the groups. It is sufficient to show that for any $f \in Aut_S(M)$, the condition $(f \otimes id_{k^G}) \circ \Delta_M = \Delta_M \circ f$ is equivalent to the fact that f is G-invariant. Indeed, the first condition reflects that f belongs to $D^0(k^G, M)$, whereas $H^0(G, Aut_S(M))$ is precisely the group $Aut_S(M)^G$ of G-invariant automorphisms in $Aut_S(M)$. Pick $f \in Aut_S(M)$, $n \in N_0$, and $s \in S$. One has

$$((f \otimes \mathrm{id}_{k^G}) \circ \Delta_M)(n \otimes s) = \sum_{g \in G} (f \otimes \mathrm{id}_{k^G})(n \otimes g(s) \otimes \delta_g)$$
$$= \sum_{g \in G} (f \circ (\mathrm{id}_{N_0} \otimes g))(n \otimes s) \otimes \delta_g.$$

On the other hand, setting $f(n \otimes s) = n' \otimes s'$, one gets

$$(\Delta_M \circ f)(n \otimes s) = \Delta_M(n' \otimes s') = \sum_{g \in G} (n' \otimes g(s')) \otimes \delta_g = \sum_{g \in G} ((\mathrm{id}_{N_0} \otimes g) \circ f)(n \otimes s) \otimes \delta_g.$$

Since $\{\delta_g\}_{g \in G}$ is a basis of k^G , the relation $(f \otimes id_{k^G}) \circ \Delta_M = \Delta_M \circ f$ is equivalent to the set of equalities $f \circ (id_{N_0} \otimes g) = (id_{N_0} \otimes g) \circ f$, with g running through G. This exactly means that f is G-invariant in Aut_S(M).

We prove now the isomorphism on the 1-cohomology level. Let us show that any $F \in C^1(k^G, M)$ induces a (G, S)-Galois module action $\gamma : G \to \operatorname{Aut}_S^{\gamma}(M)$ defined by

$$F(m) = \sum_{g \in G} (\gamma(g))(m) \otimes \delta_g.$$

For simplicity denote $\gamma(g)(m)$ by g(m). The *k*-linearity of *F* tells us that g(m + m') = g(m) + g(m'), for any $g \in G$ and $m, m' \in M$; the equality $(\operatorname{id}_M \otimes \varepsilon_{kG}) \circ F = \operatorname{id}_M$ implies that 1(m) = m; the coassociativity condition of *F* says that (gg')(m) = g(g'(m)), for any $g, g' \in G$ and $m \in M$; finally the (k^G, S) -linearity of *F* is equivalent to the (G, S)-linearity of γ . As shown in [10], the action map γ gives rise to the 1-Galois cocycle $\alpha : G \to \operatorname{Aut}_S^{\gamma}(M)$ defined by

$$\alpha(g) = \gamma(g) \circ \left(\mathrm{id}_{N_0} \otimes g^{-1} \right).$$

It is easy to check that the correspondence between F and α is bijective. Thus already at the 1-cocycle level there exists a bijection between $Z^1(G, \operatorname{Aut}_S(M))$ and $C^1(k^G, M)$.

Take two cocycles F and F' in $C^1(k^G, M)$. Denote by γ (respectively γ') the corresponding Galois actions and by α (respectively α') the Galois cocycles associated with γ (respectively γ'). Suppose that the cocycles F and F' are cohomologous, with $f \in Aut_S(M)$ such that $(f \otimes id_{k^G}) \circ F = F' \circ f$. Then $f \circ \gamma(g) = \gamma'(g) \circ f$, for all $g \in G$, or equivalently $\gamma(g) = f^{-1} \circ \gamma'(g) \circ f$. Therefore

$$\begin{aligned} \alpha(g) &= f^{-1} \circ \gamma'(g) \circ f \circ \left(\mathrm{id}_{N_0} \otimes g^{-1} \right) \\ &= f^{-1} \circ \gamma'(g) \circ \left(\mathrm{id}_{N_0} \otimes g^{-1} \right) \circ \left(\mathrm{id}_{N_0} \otimes g \right) \circ f \circ \left(\mathrm{id}_{N_0} \otimes g^{-1} \right) \\ &= f^{-1} \circ \alpha'(g) \circ {}^g f, \end{aligned}$$

which means that α and α' are Galois-cohomologous. Conversely, the previous equalities show that two cohomologous Galois cocycles α and α' give rise to two cohomologous cocycles F and F' in $C^1(k^G, M)$. \Box

2.3. Comparison between the 1-descent cohomology set and the set of twisted forms in the Hopf-Galois context

Let *H* be a Hopf-algebra, $\psi : R \to S$ be an *H*-Hopf-Galois extension, and $M = N_0 \otimes_R S$ be the extended *S*-module of an *R*-module N_0 . We endow *M* with the canonical (H, S)-Hopf module structure given by the coaction $\Delta_M = id_{N_0} \otimes \Delta_S$. The main result of this paragraph asserts that the descent 1-cohomology set $D^1(H, M)$ is isomorphic to the pointed set $Twist(S/R, N_0)$ of twisted forms of N_0 up to isomorphisms.

Theorem 2.6. Let *H* be a Hopf-algebra, $\psi : R \to S$ be an *H*-Hopf-Galois extension, and $M = N_0 \otimes_R S$ be the extended S-module of an *R*-module N_0 . Then there is an isomorphism of pointed sets

$$D^1(H, M) \cong \text{Twist}(S/R, N_0).$$

In order to prove Theorem 2.6, we need an intermediate result. For any $F \in C^1(H, M)$ denote by N_F the *R*-module of *F*-coinvariants, that is $N_F = \{m \in M \mid F(m) = m \otimes 1\}$. We state the following lemma.

Lemma 2.7. Under the same hypotheses as in Theorem 2.6, for any $F \in C^{1}(H, M)$, there exists an isomorphism

$$\varphi_F: N_F \otimes_R S \longrightarrow M$$

given by $\varphi_F(m \otimes s) = ms$, for any $m \in N_F$ and $s \in S$.

Proof. The existence of the isomorphism φ_F results from Hopf-Galois descent theory [11, Theorem 3.7] (see also [5]). Indeed, consider the functor "*restriction of scalars*" $\psi^* : \mathfrak{Mod}_S \to \mathfrak{Mod}_R$ and its left adjoint functor $\psi_1 : \mathfrak{Mod}_R \to \mathfrak{Mod}_S$, the functor "*extension of scalars*." Then φ_F is nothing but a counit for the comonad on \mathfrak{Mod}_S induced by the adjunction $\psi_1 \dashv \psi^*$ (see, e.g., [4]).

We explicit now the expression of φ_F . By arguments stemming from descent theory [3,10], the *S*-module *M* is isomorphic to $N_d \otimes_R S$, where N_d is the *R*-module deduced from the Cipolla descent data *d* on *M* associated to the (H, S)-Hopf module structure of *M*. By [10, Proposition 4.10], *d* is the map given by the composition

$$M \xrightarrow{F} M \otimes H \xrightarrow{\beta} M \otimes_S (S \otimes H) \xrightarrow{\operatorname{id}_M \otimes \Gamma_{\psi}^{-1}} M \otimes_S (S \otimes_R S) \xrightarrow{\beta'} M \otimes_R S,$$

where β (respectively β') is the obvious k-linear (respectively S-linear) isomorphism and Γ_{ψ} is the Galois isomorphism mentioned in the Conventions.

Let us now compute d. For $m \in M$, set $F(m) = \sum_i m_i \otimes h_i \in M \otimes H$. For any fixed index i, set $\Gamma_{\psi}^{-1}(1 \otimes h_i) = \sum_j s_{ij} \otimes t_{ij}$, or equivalently $\sum_j s_{ij} \Delta_S(t_{ij}) = 1 \otimes h_i$. So

$$d(m) = \sum_{i} \sum_{j} m_i s_{ij} \otimes t_{ij}.$$

According to [10, Corollary 4.11], we have $N_d = \{m \in M \mid \sum_i \sum_j m_i s_{ij} \Delta_S(t_{ij}) = m \otimes 1\}$, therefore

$$N_d = \left\{ m \in M \mid \sum_i m_i \otimes h_i = m \otimes 1 \right\} = \left\{ m \in M \mid F(m) = m \otimes 1 \right\} = N_F$$

It is proven in [3] that the descent isomorphism from $N_d \otimes_R S$ to M is given by the correspondence $m \otimes s \mapsto ms$ for $m \in N_d$ and $s \in S$. \Box

Proof of Theorem 2.6. Let *F* be an element of $C^1(H, M)$ and φ_F be the isomorphism from $N_F \otimes_R S$ to $M = N_0 \otimes_R S$ given by the previous lemma. The datum (N_F, φ_F) is a twisted form of N_0 . Denote by $\tilde{\mathcal{T}}$ the map from $C^1(H, M)$ to the set twist $(S/R, N_0)$ defined by

$$\tilde{\mathcal{T}}(F) = (N_F, \varphi_F).$$

The map $\tilde{\mathcal{T}}$ obviously sends the distinguished point Δ_M of $C^1(H, M)$ to the distinguished point $(N_0, \mathrm{id}_{N_0 \otimes_R S})$ of twist $(S/R, N_0)$.

Suppose that F and F' are cohomologous in $C^1(H, M)$. We claim that the corresponding descended modules N_F and $N_{F'}$ are isomorphic in \mathfrak{Mod}_R . Indeed, let $f \in \operatorname{Aut}_S(M)$ such that $(f \otimes \operatorname{id}_H) \circ F = F' \circ f$. For any $n \in N_F$, the image f(n) belongs to $N_{F'}$, since

$$F'(f(n)) = (f \otimes \mathrm{id}_H)(F(n)) = (f \otimes \mathrm{id}_H)(n \otimes 1) = f(n) \otimes 1.$$

So the automorphism f induces an isomorphism from N_F to $N_{F'}$. From this fact we deduce a quotient map

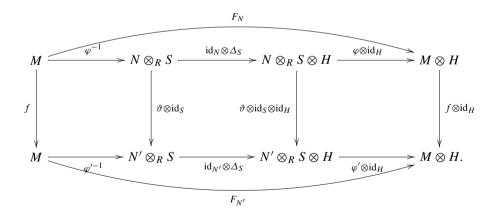
$$\mathcal{T}: \mathrm{D}^1(H, M) \to \mathrm{Twist}(S/R, N_0).$$

We now prove that \mathcal{T} is an isomorphism of pointed sets. In order to do this, we introduce the map $\tilde{\mathcal{D}}$: twist $(S/R, N_0) \to C^1(H, M)$ which associates to any twisted form (N, φ) of M the map $F_N : M \to M \otimes H$ defined by

$$F_N = (\varphi^{-1})^* (\mathrm{id}_N \otimes \Delta_S) = (\varphi \otimes \mathrm{id}_H) \circ (\mathrm{id}_N \otimes \Delta_S) \circ \varphi^{-1}.$$

Since $(id_N \otimes \Delta_S)$ is the canonical (H, S)-Hopf module structure on $N \otimes_R S$, by Lemma 2.2, the map F_N belongs to $C^1(H, M)$.

Suppose that (N, φ) and (N', φ') are two equivalent twisted forms of M via $\vartheta \in \operatorname{Aut}_S(M)$. Set $f = \varphi' \circ (\vartheta \otimes \operatorname{id}_S) \circ \varphi^{-1}$. Observe that the following diagram commutes:

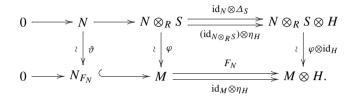


So $F_{N'}$ equals f^*F_N and therefore $\tilde{\mathcal{D}}$ induces a quotient map

$$\mathcal{D}$$
: Twist $(S/R, N_0) \rightarrow D^1(H, M)$.

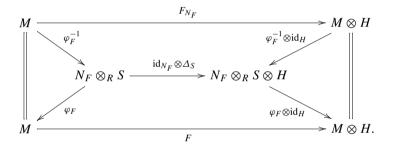
It remains to prove that $\mathcal{T} \circ \mathcal{D}$ and $\mathcal{D} \circ \mathcal{T}$ are the identity maps.

The composition $\mathcal{T} \circ \mathcal{D}$ is the identity. Let (N, φ) be a twisted form of N_0 . Since $N_{F_N} \otimes_R S$ is isomorphic to $N \otimes_R S$ (Lemma 2.7), we deduce from Hopf-Galois descent theory [11, Theorem 3.7] the existence of an isomorphism $\vartheta: N \to N_{F_N}$. So the twisted form $\tilde{\mathcal{T}}(\tilde{\mathcal{D}}(N, \varphi))$ is equivalent to (N, φ) . In concrete terms, ϑ fits into the following commutative diagram of *R*-modules with exact rows:



Hence one gets $T \circ D = id$.

The composition $\mathcal{D} \circ \mathcal{T}$ is the identity. Let *F* be an element of $C^1(M, H)$. Consider the following diagram:



The left and right triangles are trivially commutative. The upper trapezium commutes by the definition of F_{N_F} . Let us show the commutativity of the lower trapezium. Pick an indecomposable tensor $m \otimes s$ in $N_F \otimes_R S$. Setting $\Delta_S(s) = s_0 \otimes s_1$, we have

$$(\varphi_F \otimes \mathrm{id}_H) \circ (\mathrm{id}_{N_F} \otimes \Delta_S)(m \otimes s) = \varphi_F(m \otimes s_0) \otimes s_1 = ms_0 \otimes s_1.$$

The latter equality comes from Lemma 2.7. On the other hand, using the (H, S)-linearity of F, one has

$$(F \circ \varphi_F)(m \otimes s) = F(ms) = F(m)\Delta_S(s) = ms_0 \otimes s_1.$$

So the whole diagram is commutative. Hence we obtain $F = F_{N_F}$, which means $\tilde{\mathcal{D}} \circ \tilde{\mathcal{T}} = \text{id}$. Therefore we conclude $\mathcal{D} \circ \mathcal{T} = \text{id}$. \Box

2.4. The 1-descent cohomology set and torsors

Let G be a finite group and A be a G-group. Recall that an A-torsor (or A-principal homogeneous space) is a non-empty G-set P on which A acts on the right in a compatible way with the G-action and such that P is an affine space over A (see [13]). Pursuing our analogy between non-abelian group- and Hopf-cohomology theories, we are led to state the following definition. Let *H* be a Hopf algebra and *M* be an (H, S)-Hopf module. An *M*-torsor is a triple (X, Δ_X, β) , where $\Delta_X : X \to X \otimes H$ is a map conferring *X* a structure of (H, S)-Hopf module and $\beta : M \to X$ is an *S*-linear isomorphism.

Denote by tors(M) the set of *M*-torsors. It is pointed with distinguished point (M, Δ_M, id_M) . We say that two *M*-torsors (X, Δ_X, β) and $(X', \Delta_{X'}, \beta')$ are *equivalent* if there exists $f \in Aut_S(M)$ such that the composition $\beta \circ f \circ \beta'^{-1} \colon X' \to X$ is a morphism of (H, S)-Hopf modules. Denote by Tors(M) the set of equivalence classes of *M*-torsors; it is pointed with distinguished point the class of (M, Δ_M, id_M) . We have the following result.

Proposition 2.8. *Let H be a Hopf algebra and M be an* (*H*, *S*)*-Hopf module. There is an isomorphism of pointed sets*

$$D^1(H, M) \cong Tors(M).$$

Proof. Define $\tilde{\mathcal{U}}: C^1(H, M) \to tors(M)$ and $\tilde{\mathcal{V}}: tors(M) \to C^1(H, M)$ by

$$\tilde{\mathcal{U}}: F \longmapsto (M, F, \mathrm{id}_M) \text{ and } \tilde{\mathcal{V}}: (X, \Delta_X, \beta) \longmapsto \beta^* \Delta_X.$$

We set here $\beta^* \Delta_X = (\beta^{-1} \otimes id_H) \circ \Delta_X \circ \beta$, which, following Lemma 2.2, is an element of $C^1(H, M)$ since Δ_X belongs to $C^1(H, X)$. Using again Lemma 2.2, it is easy to check that $\tilde{\mathcal{U}}$ and $\tilde{\mathcal{V}}$ define maps $\mathcal{U}: D^1(H, M) \to \text{Tors}(M)$ and $\mathcal{V}: \text{Tors}(M) \to D^1(H, M)$ on the quotients.

It is straightforward to prove $\tilde{\mathcal{V}} \circ \tilde{\mathcal{U}} = \mathrm{id}_{\mathrm{Ci}^1(H,M)}$. Moreover, the torsor $(\tilde{\mathcal{U}} \circ \tilde{\mathcal{V}})(X, \Delta_X, \beta)$ equals $(M, \beta^* \Delta_X, \mathrm{id}_M)$, which, via $f = \mathrm{id}_M$, is equivalent to (X, Δ_X, β) in $\mathrm{tors}(M)$. \Box

3. The isomorphism between Hopf cohomology sets and descent cohomology sets

In this section, we interpret the non-commutative Hopf cohomology sets in terms of the descent cohomology sets.

Let *H* be a Hopf-algebra and $(M, \Delta_M : M \to M \otimes H)$ be an *H*-comodule. We define a map $\tilde{\kappa}$ from $W^1_k(M)$ to itself by the formula

$$\tilde{\kappa}(\Phi) = \Phi \odot \Delta_M,$$

for any $\Phi \in W_k^1(M)$. The map $\tilde{\kappa}$ is a bijection. Indeed, denote by Δ'_M the map $(\mathrm{id}_M \otimes \sigma_H) \circ \Delta_M$, which is easily seen to be the \odot -inverse of Δ_M in $W_k^1(M)$. The inverse map of $\tilde{\kappa}$ is therefore given by

$$\tilde{\kappa}^{-1}(\Phi) = \Phi \odot \Delta'_M.$$

Theorem 3.1. Let H be a Hopf-algebra, S be an H-comodule algebra, and M be an (H, S)-Hopf module with coaction $\Delta_M : M \to M \otimes H$. The identity map $id_{Aut_S(M)}$ realizes the equality of groups

$$\mathrm{H}^{0}(H, M) = \mathrm{D}^{0}(H, M).$$

The translation map $\tilde{\kappa}$ induces an isomorphism of pointed sets

$$\kappa: \mathrm{H}^{1}(H, M) \to \mathrm{D}^{1}(H, M)$$

As a consequence of this result and of Proposition 2.5, one immediately gets the following corollary which relates non-abelian Hopf-cohomology objects to non-abelian group-cohomology objects.

Corollary 3.2. Let G be a finite group, $\psi : R \to S$ be a G-Galois extension, and $M = N_0 \otimes_R S$ be the extended S-module of an R-module N_0 . There is the equality of groups

$$\mathrm{H}^{0}(k^{G}, M) = \mathrm{H}^{0}(G, \mathrm{Aut}_{S}(M))$$

and an isomorphism of pointed sets

$$\mathrm{H}^{1}(k^{G}, M) \cong \mathrm{H}^{1}(G, \mathrm{Aut}_{\mathcal{S}}(M)).$$

Proof of Theorem 3.1.

0-*level.* Let φ be an element of H⁰(*H*, *M*). Then, by definition we have $d^0\varphi = d^1\varphi$. This equality implies

$$(\mathrm{id}_M \otimes \mu_H) \big(d^0 \varphi \otimes \mathrm{id}_H \big) \Delta_M = (\mathrm{id}_M \otimes \mu_H) \big(d^1 \varphi \otimes \mathrm{id}_H \big) \Delta_M.$$

Let us compute the left-hand side on an element $m \in M$. We get

 $(\mathrm{id}_M \otimes \mu_H) \left(d^0 \varphi \otimes \mathrm{id}_H \right) \Delta_M(m) = \varphi(m_0)_0 \otimes \varphi(m_0)_1 \sigma_H(m_1) m_2 = \varphi(m_0)_0 \otimes \varphi(m_0)_1 \varepsilon_H(m_1)$ $= (\Delta_M \circ \varphi) \left(m_0 \varepsilon_H(m_1) \right) = (\Delta_M \circ \varphi)(m).$

The right-hand side applied to $m \in M$ is equal to

$$(\mathrm{id}_M \otimes \mu_H) \big(d^1 \varphi \otimes \mathrm{id}_H \big) \Delta_M(m) = \varphi(m_0) \otimes 1_H m_1 = \varphi(m_0) \otimes m_1 = (\varphi \otimes \mathrm{id}_H) \Delta_M(m).$$

Thus, one has $\Delta_M \circ \varphi = (\varphi \otimes id_H) \circ \Delta_M$, and therefore f belongs to $D^0(H, M)$.

Conversely, let f be an element of $D^0(H, M)$. It satisfies the relation $(f \otimes id_H) \circ \Delta_M = \Delta_M \circ f$. Compose each term of this equality on the left with $(id_M \otimes \mu_H) \circ (\Delta_M \otimes \sigma_H)$. The left-hand side becomes then exactly $d^0 f$. Apply the right-hand side on $m \in M$. Setting m' = f(m), we get

$$m'_0 \otimes m'_1 \sigma_H(m'_2) = m'_0 \otimes \varepsilon_H(m'_1) \mathbf{1}_H = m' \otimes \mathbf{1}_H = f(m) \otimes \mathbf{1}_H = d^1 f(m).$$

Therefore $d^0 f$ equals $d^1 f$, hence f belongs to $H^0(H, M)$.

1-*level.* We begin to prove that $\tilde{\kappa}$ restricts to a bijection, still denoted by $\tilde{\kappa}$, from $Z^1(H, M)$ to $C^1(H, M)$. With the aim to do that, we shall show that via $\tilde{\kappa}$, for any i = 1, 2, 3, Condition ZC_i of Section 1.1 is equivalent to Condition CC_i of Section 2.1. We then prove that the bijection $\tilde{\kappa}$ induces a quotient map $\kappa : H^1(H, M) \to D^1(H, M)$ which is an isomorphism. Adopt the following notations. For $\Phi \in Z^1(H, M)$ and $m \in M$, we denote the tensor $\Phi(m) \in M \otimes H$ by $m_{[0]} \otimes m_{[1]}$. Similarly, for $F \in C^1(H, M)$ and $m \in M$, we set $F(m) = m_{(0)} \otimes m_{(1)}$.

- Equivalence of Conditions ZC₁ and CC₁. Fix $\Phi \in Z^1(H, M)$ and set $F = \tilde{\kappa}(\Phi) = \Phi \odot \Delta_M$. So, for any $m \in M$, we have $F(m) = (m_0)_{[0]} \otimes (m_0)_{[1]} m_1$. Pick now $s \in S$. Condition ZC₁ on Φ means $(ms)_{[0]} \otimes (ms)_{[1]} = m_{[0]} s \otimes m_{[1]}$. Let us compute F(ms):

$$F(ms) = ((ms)_0)_{[0]} \otimes ((ms)_0)_{[1]}(ms)_1$$

= $(m_0s_0)_{[0]} \otimes (m_0s_0)_{[1]}m_1s_1$
= $(m_0)_{[0]}s_0 \otimes (m_0)_{[1]}m_1s_1$
= $F(m)\Delta_S(s).$

We use here the fact that Δ_M is twisted S-linear (second equality). Hence F verifies Condition CC₁.

Conversely, fix $F \in C^1(H, M)$. Condition CC_1 on F means $(ms)_{(0)} \otimes (ms)_{(1)} = m_{(0)}s_0 \otimes m_{(1)}s_1$, for any s in S. Set $\Phi = \tilde{\kappa}^{-1}(F) = F \odot \Delta'_M$, so $\Phi(m) = (m_0)_{(0)} \otimes (m_0)_{(1)}\sigma_H(m_1)$. Compute $\Phi(ms)$:

$$\begin{split} \Phi(ms) &= \left((ms)_0 \right)_{(0)} \otimes \left((ms)_0 \right)_{(1)} \sigma_H ((ms)_1) \\ &= (m_0 s_0)_{(0)} \otimes (m_0 s_0)_{(1)} \sigma_H (s_1) \sigma_H (m_1) \\ &= (m_0)_{(0)} s_0 \otimes (m_0)_{(1)} s_1 \sigma_H (s_2) \sigma_H (m_1) \\ &= (m_0)_{(0)} s_0 \otimes (m_0)_{(1)} \varepsilon_H (s_1) \sigma_H (m_1) \\ &= (m_0)_{(0)} s \otimes (m_0)_{(1)} \sigma_H (m_1) \\ &= \Phi(m) (s \otimes 1). \end{split}$$

Thus Φ verifies Condition ZC₁.

- Equivalence of Conditions ZC₂ and CC₂. We still take $\Phi \in Z^1(H, M)$ and set $F = \tilde{\kappa}(\Phi) = \Phi \odot \Delta_M$, so $F(m) = (m_0)_{[0]} \otimes (m_0)_{[1]}m_1$, for any $m \in M$. Pick $s \in S$. Condition ZC₂ on Φ is given by the relation $m_{[0]}\varepsilon_H(m_{[1]}) = m$. Let us verify Condition CC₂ for F:

$$(\mathrm{id}_{M} \otimes \varepsilon_{H})F(m) = (m_{0})_{[0]}\varepsilon_{H}((m_{0})_{[1]})\varepsilon_{H}(m_{1})$$
$$= (m_{0})\varepsilon_{H}(m_{1})$$
$$= (\mathrm{id}_{M} \otimes \varepsilon_{H})\Delta_{M}(m)$$
$$= m.$$

Conversely, if *F* verifies Condition CC₂, an easy computation shows that $\Phi = F \odot \Delta'_M$ fulfils Condition ZC₂.

- Equivalence of Conditions ZC₃ and CC₃. We introduce the deformed differential map δ : $W^1_S(M) \to W^2_S(M)$ defined on $\Phi \in W^1_S(M)$ by the formula

$$\delta \Phi = (\mathrm{id}_M \otimes T) \circ d^2 \Phi$$

(recall that *T* is the flip of $H \otimes H$, see Section 1.1). We prove now that Condition CC₃ on $F \in W^1_S(M)$ may be translated into the equality

$$d^2 F \odot \delta F = d^1 F. \tag{4}$$

Indeed, as a consequence of the definitions of \odot and of d^2 , one gets

$$d^{2}F \odot \delta F = (\mathrm{id}_{M} \otimes \mu_{H}^{\otimes 2})(\mathrm{id}_{M} \otimes \chi_{2})(d^{2}F \otimes \mathrm{id}_{H}^{\otimes 2})\delta F$$
$$= (\mathrm{id}_{M} \otimes \mu_{H}^{\otimes 2})(\mathrm{id}_{M} \otimes \chi_{2})(F \otimes \eta_{H} \otimes \mathrm{id}_{H}^{\otimes 2})\delta F.$$

Take $m \in M$ and observe that we have $\delta F(m) = m_{(0)} \otimes 1 \otimes m_{(1)}$. Let us compute $(d^2 F \odot \delta F)(m)$:

$$\begin{aligned} \left(d^2 F \odot \delta F\right)(m) &= \left(\mathrm{id}_M \otimes \mu_H^{\otimes 2}\right)(\mathrm{id}_M \otimes \chi_2) \left(F \otimes \eta_H \otimes \mathrm{id}_H^{\otimes 2}\right) \delta F(m) \\ &= \left(\mathrm{id}_M \otimes \mu_H^{\otimes 2}\right)(\mathrm{id}_M \otimes \chi_2) \left(F \otimes \eta_H \otimes \mathrm{id}_H^{\otimes 2}\right)(m_{(0)} \otimes 1 \otimes m_{(1)}) \\ &= \left(\mathrm{id}_M \otimes \mu_H^{\otimes 2}\right)(\mathrm{id}_M \otimes \chi_2) \left(F(m_{(0)}) \otimes 1 \otimes 1 \otimes m_{(1)}\right) \\ &= F(m_{(0)}) \otimes m_{(1)} \\ &= \left((F \otimes \mathrm{id}_H) \circ F\right)(m). \end{aligned}$$

Since $d^1F = (\mathrm{id}_M \otimes \Delta_H) \circ F$, Condition CC₃ is equivalent to equality (4).

Let Φ be an element of $W_S^1(M)$. Set $F = \tilde{\kappa}(\Phi) = \Phi \odot \Delta_M$. We write down a sequence of equivalent assertions which begins with Condition ZC₃ on Φ and ends with an avatar of (4).

$$d^{2}\Phi \odot d^{0}\Phi = d^{1}\Phi \iff d^{2}(F \odot \Delta'_{M}) \odot d^{0}(F \odot \Delta'_{M}) = d^{1}(F \odot \Delta'_{M})$$
$$\iff d^{2}F \odot d^{2}\Delta'_{M} \odot d^{0}F \odot d^{0}\Delta'_{M} = d^{1}F \odot d^{1}\Delta'_{M}$$
$$\iff d^{2}F \odot (d^{2}\Delta'_{M} \odot d^{0}F \odot d^{0}\Delta'_{M} \odot d^{1}\Delta_{M}) = d^{1}F$$

It suffices now to prove $d^2 \Delta'_M \odot d^0 F \odot d^0 \Delta'_M \odot d^1 \Delta_M = \delta F$. For any $m \in M$, one has the two equalities $d^0 \Delta'_M(m) = m_0 \otimes m_1 \sigma_H(m_3) \otimes \sigma_H(m_2)$ and $d^1 \Delta_M(m) = m_0 \otimes m_1 \otimes m_2$. Thus one gets

$$(d^0 \Delta'_M \odot d^1 \Delta_M)(m) = m_0 \otimes m_1 \sigma_H(m_3) m_4 \otimes \sigma_H(m_2) m_5 = m_0 \otimes m_1 \otimes \sigma_H(m_2) m_3 = m_0 \otimes m_1 \otimes 1.$$
 (5)

It remains to compute $(d^2 \Delta'_M \odot d^0 F)(m)$. Denote the tensor $d^0 F(m_0) \in M \otimes H$ by $x \otimes y$, the summation being implicitly understood. Then $d^0 F(m)$ is given by $x_0 \otimes x_1 \sigma_H(m_1) \otimes y$. We also have $d^2 \Delta'_M(m) = m_0 \otimes \sigma_H(m_1) \otimes 1$. Therefore we get

$$\left(d^2 \Delta'_M \odot d^0 F\right)(m) = x_0 \otimes \sigma_H(x_1) x_2 \sigma_H(m_1) \otimes 1y = x \otimes \sigma_H(m_1) \otimes y.$$
(6)

Combining (5) and (6), one obtains

$$\begin{pmatrix} \left(d^2 \Delta'_M \odot d^0 F\right) \odot \left(d^0 \Delta'_M \odot d^1 \Delta_M\right) \right)(m) = x \otimes \sigma_H(m_1)m_2 \otimes y1 \\ = x \otimes \varepsilon_H(m_1)1 \otimes y \\ = (\mathrm{id}_M \otimes T) \left(x \otimes y \otimes \varepsilon_H(m_1)1\right) \\ = (\mathrm{id}_M \otimes T) (F \otimes \mathrm{id}_H) \left(m_0 \otimes \varepsilon_H(m_1)1\right) \\ = (\mathrm{id}_M \otimes T) \left(F(m) \otimes 1\right) \\ = (\mathrm{id}_M \otimes T) \left(d^2 F\right)(m) \\ = (\delta F)(m).$$

- *Factorization of* $\tilde{\kappa}$. We claim that the bijection $\tilde{\kappa}$ factorizes through an isomorphism from $H^1(H, M)$ to $D^1(H, M)$. Indeed, take Φ and Φ' two cohomologous 1-Hopf cocycles and $f \in Aut_S(M)$ satisfying the equality $d^1 f^{-1} \odot \Phi \odot d^0 f = \Phi'$. Set $F = \tilde{\kappa}(\Phi)$ and $F' = \tilde{\kappa}(\Phi')$. One has then the equivalences

$$\begin{aligned} d^{1}f^{-1} \odot \varPhi \odot d^{0}f = \varPhi' &\iff d^{1}f^{-1} \odot \left(F \odot \Delta'_{M}\right) \odot d^{0}f = F' \odot \Delta'_{M} \\ &\iff F \odot \Delta'_{M} \odot d^{0}f \odot \Delta_{M} = d^{1}f \odot F' \\ &\iff F \odot d^{1}f = d^{1}f \odot F' \\ &\iff F \circ f = (f \otimes \operatorname{id}_{H}) \circ F'. \end{aligned}$$

The last equality means that *F* and *F'* are descent-cohomologous. Observe that the third equivalence is a consequence of the equality $d^0 f = \Delta_M \odot d^1 f \odot \Delta'_M$, which may be easily checked by the reader. \Box

Post-scriptum. The present work in its first preprint version led T. Brzeziński to generalize the descent cohomology to the coring framework [2]. For any coring *C* and any *C*-comodule *M*, this author defines two descent cohomology sets $\mathcal{D}^0(C, M)$ and $\mathcal{D}^1(C, M)$, which coincide respectively with $\mathcal{D}^0(H, M)$ and $\mathcal{D}^1(H, M)$ (notations of Section 2) when *C* is the coring $S \otimes H$.

References

- A. Blanco Ferro, Hopf algebras and Galois descent, Publ. Sec. Mat. Universitat Autònoma Barcelona 30 (1) (1986) 65–80.
- [2] T. Brzeziński, Descent cohomology and corings, preprint, arXiv: math.RA/0601491, 2006.
- [3] M. Cipolla, Discesa fedelmente piatta dei moduli, Rend. Circ. Mat. Palermo (2) 25 (1976).
- [4] P. Deligne, Catégories tannakiennes, in: The Grothendieck Festschrift, vol. II, in: Progr. Math., vol. 87, Birkhäuser, Boston, MA, 1990, pp. 111–195.
- [5] Y. Doi, M. Takeuchi, Hopf-Galois extensions of algebras, the Miyashita–Ulbrich action, and Azumaya algebras, J. Algebra 121 (2) (1989) 488–516.
- [6] M.A. Knus, Quadratic and Hermitians Forms over Rings, Grundlehren Math. Wiss., vol. 294, Springer, Berlin, 1991.
- [7] H.F. Kreimer, M. Takeuchi, Hopf algebras and Galois extensions of an algebra, Indiana Univ. Math. J. 30 (5) (1981) 675–692.
- [8] S. Lang, J. Tate, Principal homogeneous spaces over abelian varieties, Amer. J. Math. 80 (1958) 659-684.
- [9] L. le Bruyn, M. Van den Bergh, F. van Oystaeyen, Graded Orders, Birkhäuser, Boston, MA, 1988.
- [10] P. Nuss, Noncommutative descent and non-abelian cohomology, K-Theory 12 (1) (1997) 23-74.

- [11] H.-J. Schneider, Principal homogeneous spaces for arbitrary Hopf algebras, Israel J. Math. 72 (1-2) (1990) 167-195.
- [12] J.-P. Serre, Corps locaux, troisième édition corrigée, Hermann, Paris, 1968.
- [13] J.-P. Serre, Galois Cohomology, Springer, Berlin, 1997;
- Translated from Cohomologie galoisienne, Lecture Notes in Math., vol. 5, Springer, Berlin, 1973.
- [14] M.E. Sweedler, Cohomology of algebras over Hopf algebras, Trans. Amer. Math. Soc. 133 (1968) 205-239.