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Abstract

We apply the perturbative chiral quark model to give predictions for the electromagneticO(p2) low-energy couplings of the
ChPT effective Lagrangian that define the electromagnetic mass shifts of nucleons and first-order(e2) radiative corrections to
theπN scattering amplitude. We estimate the leading isospin-breaking correction to the strong energy shift of theπ−p atom in
the 1s state, which is relevant for the experiment “Pionic Hydrogen” at PSI.
 2001 Elsevier Science B.V.
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In [1,2] Weinberg and Tomozawa derived a model-independent expression for theS-waveπN scattering lengths
using the current algebra relations and the PCAC assumption. To reproduce the result for theπN scattering lengths
one can use the specific Lagrangian with the nucleon fieldN referred to as the Weinberg–Tomozawa (WT) term
[3–7] which is part of the effective Weinberg Lagrangian. The effective Weinberg Lagrangian can be derived from
the originalσ -model [8] by performing a chiral-field dependent rotation on the nucleon field [3]. On the quark
level the same exercise was done in the framework of the cloudy bag model [9,10]. The chiral transformation
eliminates the nonderivative coupling of the chiral (pion) field with the nucleons/quarks and replaces it by a
nonlinear derivative coupling (axial vector term+ WT term+ higher order terms in the chiral field). Note, that both
realizations of chirally-symmetric Lagrangians (the originalσ -model and the Weinberg type Lagrangian) should á
priori give the same result for theπN S-wave scattering lengths. In Ref. [11] in the framework of perturbative chiral
quark model (PCQM) [12,13] we demonstrate that the equivalence between the two theories with nonderivative
and derivative coupling of the chiral field to the quarks is also valid when including the photon field.

The purpose of this Letter is to calculate first-order (e2) radiative corrections to the nucleon mass and the pion–
nucleon amplitude at threshold. We thereby predict theO(p2) electromagnetic (e.m.) low-energy couplings (LECs)
originally defined in the effective Lagrangian of Chiral Perturbation Theory (ChPT) [5,6]. Quantitative information
about these constants is important for the ongoing experimental and theoretical analysis of decay properties of the
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π−p atom (for a detailed discussion see Ref. [14]). In particular, we give a prediction for the leading isospin-
breaking correction to the strong energy shift of theπ−p atom in the 1s state.

Following considerations are based on the perturbative chiral quark model (PCQM), a relativistic quark model
suggested in [12] and extended in [13] for the study of low-energy properties of baryons. The model includes
relativistic quark wave functions and confinement as well as the chiral symmetry requirements. The quarks move
in a self-consistent field, represented by scalarS(r) and vectorV (r) components of a static potential withr = |�x|
providing confinement. The interaction of quarks with Goldstone bosons is introduced on the basis of the nonlinear
σ -model [8]. The PCQM is based on the effective, chirally invariant LagrangianLinv [13]

(1)Linv(x) = ψ̄(x)

{
i/∂ − γ 0V (r) − S(r)

[
U + U†

2
+ γ 5U − U†

2

]}
ψ(x) + F 2

4
Tr

[
∂µU∂µU†],

whereψ is the quark field,U = exp[iΦ̂/F ] is the chiral field andF = 88 MeV is the pion decay constant in the
chiral limit [4,13]. In the following we restrict to theSU(2) flavor case, that iŝΦ → π̂ = �π �τ . For small fluctuations
of the mesons fields one can use the perturbation expansion in powers of the parameter 1/F . The PCQM was
successfully applied toσ -term physics and extended to the study of electromagnetic properties of the nucleon [13].
Similar perturbative quark models have also been studied in Refs. [15].

The quark fieldψ we expand in the basis of potential eigenstates as

(2)ψ(x) =
∑
α

bαuα(�x )exp(−iEαt) −
∑
β

d
†
βvβ(�x )exp(iEβt),

where the sets of quark{uα} and antiquark{vβ } wave functions in orbitsα andβ are solutions of the Dirac equation

with the static potential. The expansion coefficientsbα andd†
β are the corresponding single quark annihilation and

antiquark creation operators.
The direct way to generate the WT term in the Lagrangian (1) is through introduction of a unitary transformation

on the quark fieldψ . The technique was, for example, performed in the context of the cloudy bag model [9]. With
the unitary chiral rotationψ → exp{−iγ 5Φ̂/(2F)}ψ the Lagrangian (1) transforms into a Weinberg-type formLW

containing the axial-vector coupling and the WT term:

LW(x) = L0(x) +LW;str
I (x) + o

(�π2),
L0(x) = ψ̄(x)

{
i/∂ − S(r) − γ 0V (r)

}
ψ(x) − 1

2
�π(x)

(✷ + M2
π

)�π(x),

(3)LW;str
I (x) = 1

2F
∂µ �π(x)ψ̄(x)γ µγ 5�τψ(x) − εijk

4F 2πi(x)∂µπj (x)ψ̄(x)γ µτkψ(x),

whereLW;str
I is theO(π2) strong interaction Lagrangian,✷ = ∂µ∂µ andMπ is the pion mass.

In Ref. [11] we demonstrate explicitly for theπN amplitude up to order(1/F 2) that the two effective theories,
the original one involving the pseudoscalar coupling and the Weinberg type, are formally equivalent, both on the
level of the Lagrangians and for the matrix elements. This equivalence is based on the unitary transformation of
the quark fields, where, in addition, the quarks remain on their energy shell. The same relation also holds in a
fully covariant formalism, when quarks/baryons are on their mass shell. Particularly, we show that the Weinberg–
Tomozawa result can be reproduced with the use of the original Lagrangian (1) if: (i) we use the expansion of the
chiral field up to quadratic terms and (ii) we employ the full quark propagator including the antiquark components.
The two forms of the Lagrangian also yield the same results when including the photon field. For the equivalence to
hold it is essential that the photons are introduced consistently in both formalisms, that is by minimal substitution.
One can prove that both Lagrangians yield the same results for radiative corrections to theπN scattering amplitude
at threshold.

In this Letter we apply the developed formalism to study e.m. corrections of nucleon properties, such as
the mass and theπN scattering amplitude. We perform all calculations using the technically more convenient
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Fig. 1. Electromagnetic mass shift of the nucleon.

Lagrangian (3). Introduction of the e.m. fieldAµ is accomplished by minimal substitution into Eq. (3):

(4)∂µψ −→ Dµψ = ∂µψ + ieQAµψ, ∂µπi −→ Dµπi = ∂µπi + eε3ijAµπj ,

whereQ is the quark charge matrix.
Following the Gell-Mann and Low theorem [16] the e.m. mass shift)mem

N of the nucleon with respect to the
three-quark ground state|φ0〉N is

(5))mem
N

.= N 〈φ0| − i

2

∫
δ
(
x0)d4x

∫
d4y T

[
Lem(x)Lem(y)

]|φ0〉Nc
to ordere2 in the e.m. interaction. Subscript “c” in Eq. (5) refers to contributions from connected graphs only.
Superscript “N ” indicates that the matrix elements have to be projected onto the respective nucleon states. These
nucleon states are conventionally set up by the product of single quarkSU(6) spin-flavor andSU(3)c color w.f.
(see details in [13]), where the nonrelativistic single quark spin wave function is replaced by the relativistic ground
state solution. With the quark–photon interaction defined by the Lagrangian

(6)Lem(x) = −eAµψ̄(x)Qγµψ(x),

the e.m. mass shift)mem
N is generated by two diagrams: one-body (Fig. 1(a)) and two-body diagram (Fig. 1(b)).

The leading e.m. corrections (up to ordere2/F 2) to theπN scattering amplitude at threshold are generated by
the interaction Lagrangian

(7)LW
I (x) = LW;str

I (x)+LW;em
I (x),

whereLW;str
I is given in Eq. (3) and the additional e.m. partLW;em

I is given by

LW;em
I (x) =Lem(x)+ e

4F 2
Aµ(x)ψ̄(x)γ µ

[�π2(x)τ3 − �π(x)�τπ0(x)
]
ψ(x)

(8)− eAµ(x)ε3ij

[
πi(x)∂

µπj (x) − πj (x)

2F
ψ̄(x)γ µγ 5τiψ(x)

]
.

TheπN amplitude in the presence ofO(e2) radiative corrections is given by

(9)N〈φ0;πj |
4∑

n=1

in

n!
∫

d4x1 · · ·
∫

d4xn T
[
LW

I (x1) · · ·LW
I (xn)

]|φ0;πi〉Nc .

The diagrams forO(e2/F 2) radiative corrections to theπN amplitude at threshold are shown in Fig. 2. To
evaluate the diagrams in Figs. 1 and 2 we use the photon propagatorDµν in the Coulomb gauge1 to separate
the contributions from Coulomb and transverse photons.

1 It can be shown that the results do not depend on the choice of the gauge.
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Fig. 2. Leadinge2/F2 radiative corrections to theπN amplitude at threshold.

First, we analyze the e.m. mass shift of the nucleon. The contributions of diagrams Fig. 1(a) and Fig. 1(b) are
given by

)m
em;a
N = e2 · N〈φ0|

∫
d4x

∫
d4y δ

(
x0)Dµν(x − y)ψ̄0(x)γ

µQiGψ(x, y)γ νQψ0(y)|φ0〉N,

(10))m
em;b
N = e2

2
· N〈φ0|

∫
d4x

∫
d4y δ

(
x0)Dµν(x − y)ψ̄0(x)γ

µQψ0(x)ψ̄0(y)γ
νQψ0(y)|φ0〉N ,
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whereiGψ(x, y) = 〈0|T {ψ(x)ψ̄(y)}|0〉 is the quark propagator in a binding potential. In the following we truncate
the expansion of the quark propagator to the ground state eigen mode:

(11)iGψ(x, y) −→ iG0(x, y)
.= u0(�x )ū0(�y )e−iEα(x0−y0)θ(x0 − y0),

that is we restrict the intermediate baryon states toN and) configurations. Inclusion of excited baryon states will
be subject of future investigations. With the use of approximation (11))m

em;a
N and)m

em;b
N reduce to

)m
em;a
N = e2

16π3 〈N |
3∑

i=1

(
Q2)(i)|N〉

∫
d3q

�q2

{[
G

p
E

(−�q2)]2 − �q2

2m2
N

[
G

p
M

(−�q2)]2
}
,

(12)

)m
em;b
N = e2

16π3

∫
d3q

�q2

{
〈N |

3∑
i �=j

Q(i)Q(j)|N〉[Gp

E

(−�q2)]2

− 〈N |
3∑

i �=j

Q(i)Q(j) �σ (i) �σ (j)|N〉 �q2

6m2
N

[
G

p
M

(−�q2)]2

}
,

where|N〉 is theSU(6) spin-flavor w.f. of the nucleon. Here we introduce the proton charge(G
p
E) and magnetic

(G
p
M) form factors (f.f.) calculated at zeroth order [13] (meson cloud corrections are not taken into account) with

χ
†
Ns′ χNsGE

(−�q2) = N〈φ0|
∫

d3x ψ̄0(�x)γ 0ψ0(�x)ei �q �x |φ0〉N,

(13)χ
†
Ns′

i[�σN × �q]
2mN

χNsGM

(−�q2) = N〈φ0|
∫

d3x ψ̄0(�x) �γψ0(�x)ei �q �x |φ0〉N,

whereχNs is the nucleon spin w.f. and�σN is the nucleon spin operator. Note that the contributions of Coulomb
and transverse photons to the e.m. mass shifts (see Eqs. (12)) are related to the nucleon charge and magnetic f.f.,
respectively. The sum

(14)〈N |
3∑

i=1

(
Q2)(i)|N〉 + 〈N |

3∑
i �=j

Q(i)Q(j)|N〉 =
{

1 for N = p,

0 for N = n,

is equivalent to the charge matrix of nucleons (QN being the nucleon charge). In the limitmN → ∞ (when we
neglect the contribution ofGp

M in Eqs. (12)) we obtain for the e.m. mass shifts

(15))mem
N = )m

em;a
N + )m

em;b
N = αQ2

N

4π2

∫
d3q

�q2

[
G

p
E

(−�q2)]2

consistent with the result (Eq. (12.4)) of Ref. [17]. Hence, the e.m. mass shift of the neutron vanishes in the heavy
nucleon limit.

In the numerical analysis we use the variationalGaussian ansatz [13] for the quark ground state wave function
with the following analytical form:

(16)u0(�x) = N exp

[
− �x2

2R2

](
1

iρ �σ �x/R
)
χsχf χc,

whereN = [π3/2R3(1+ 3ρ2/2)]−1/2 is a constant fixed by the normalization condition
∫
d3x u

†
0(x)u0(x) ≡ 1;χs ,

χf , χc are the spin, flavor and color quark wave functions, respectively. Our Gaussian ansatz contains two model
parameters: the dimensional parameterR and the dimensionless parameterρ. The parameterρ can be related to
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the axial coupling constantgA calculated in zeroth-order (or the three quark-core) approximation:

(17)gA = 5

3

(
1− 2ρ2

1+ 3
2ρ

2

)
.

Therefore,ρ can be replaced by the axial chargegA by means of the matching condition (17). The parameterR

can be physically understood as the mean radius of the three-quark core and is related to the charge radius of the
proton in the leading-order approximation as

(18)
〈
r2
E

〉P
LO =

∫
d3x u

†
0(�x )�x2u0(�x ) = 3R2

2

1+ 5
2ρ

2

1+ 3
2ρ

2
.

In our calculations we use the valuegA = 1.25 obtained in ChPT [4]. Therefore, we have only one free parameter,
that isR. In the numerical studies [13]R is varied in the region from 0.55 fm to 0.65 fm, which corresponds to a
change of〈r2

E〉PLO from 0.5 to 0.7 fm2. The exact Gaussian ansatz (16) restricts the potentialsS(r) andV (r) to a
form proportional tor2. They are expressed in terms of the parametersR andρ (for details see Ref. [13]).

Using (16) the proton f.f. at zeroth order are determined as [13]:

GE

(−�q2) = exp

(
− �q2R2

4

)[
1− �q2R2

4
κ

]
,

(19)GM

(−�q2) = exp

(
− �q2R2

4

)
2mNR

√
κ

(
1− 3

2
κ

)
, κ = 1

2
− 3

10
gA.

With Eq. (19) the e.m. mass shift is finally given as

(20))mem
p = α

R
√

2π

[
1− κ

2
+ 3

16
κ2 − 34

9
κ

(
1− 3

2
κ

)]
, )mem

n = − α

R
√

2π

8

3
κ

(
1− 3

2
κ

)
,

whereα = 1/137 is the fine structure coupling. For our set of parametersgA = 1.25 andR = 0.6 ± 0.05 fm we
get )mem

p = 0.54± 0.04 MeV, )mem
n = −0.26± 0.02 MeV and)mem

n − )mem
p = −0.8 ± 0.06 MeV. These

and the following uncertainties in our results correspond to the variation of the parameterR. Our predictions are
in qualitative agreement with the results obtained by Gasser and Leutwyler using the Cottingham formula [17]:
)mem

p = 0.63 MeV,)mem
n = −0.13 MeV,)mem

n − )mem
p = −0.76 MeV. To compare our prediction for the e.m.

mass shifts of the nucleons with the result of ChPT [6], we recall the part of the ChPT Lagrangian [6] which is
responsible for radiative corrections

(21)Le2

ChPT= e2�N
{
f1

(
1− �π2 − (π0)2

F 2

)
+ f2

2

(
τ3 − �π2τ3 − π0�π �τ

2F 2

)
+ f3

}
N.

TheO(p2) low-energy constants (LECs)f1, f2 andf3 contain the effect of the direct quark–photon interaction.
Matching our results for the nucleon mass shifts to the predictions of ChPT [6] with

(22))mem
p

∣∣
ChPT= −4πα

(
f1 + f3 + f2

2

)
, )mem

n

∣∣
ChPT= −4πα

(
f1 + f3 − f2

2

)
we obtain following relations for the coupling constantsf1, f2 andf3:

(23)f2 = − 1

2R(2π)3/2

[
1− 29

18
κ + 89

48
κ2

]
, f1 + f3 = − 1

4R(2π)3/2

[
1− 125

18
κ + 473

48
κ2

]
.

Our numerical result forf2 = −8.7±0.7 MeV is in good agreement with the value off2 = −8.3±3.3 MeV [6,14]
extracted from the analysis of the elastic electron scattering cross section using the Cottingham formula [17]. For
f1 + f3 we get−1.5± 0.1 MeV.
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We furthermore give a prediction for the separate values off1, f3 and the ratiof1/f2 as deduced from our model
analysis ofe2 corrections to theπN amplitude. We denote the corresponding matrix element associated with the

nucleon flavor transitionN1 → N2 by M
(e2);ij
N1N2

. In the Coulomb gauge only six diagrams (Fig. 2(a)–(f)) contribute
to the radiative correction to theπN amplitude at threshold. The contribution of the other diagrams (Fig. 2(g)–(o))
vanishes. The contributions of the different diagrams of Fig. 2 are as follow:

M
(e2);ij
N1N2

∣∣
a+b

= − e2

F 2 · N〈φ0|
∫

d4x

∫
d4y Dµν(x − y)ψ̄0(x)γ

µ

(24)× (
T ijGψ(x, y)Q + QGψ(x, y)T ij

)
γ νψ0(y)|φ0〉N

for Fig. 2(a) and (b) whereT ij = 2δij τ3 − δi3τ j − δj3τ i ,

(25)M
(e2);ij
N1N2

∣∣
c
= ie2

F 2 · N〈φ0|
∫

d4x

∫
d4y Dµν(x − y)ψ̄0(x)γ

µT ijψ0(x)ψ̄0(y)γ
νQψ0(y)|φ0〉N

for Fig. 2(c),

M
(e2);ij
N1N2

∣∣
d+e

= − e2

F 2 · N〈φ0|
∫

d4x

∫
d4y Dµν(x − y)ψ̄0(x)γ

µγ 5

(26)× (
ε3ikε3jm + ε3jkε3im)

τ kGψ(x, y)γ νγ 5τmψ0(y)|φ0〉N
for Fig. 2(d) and (e),

(27)

M
(e2);ij
N1N2

∣∣
f

= ie2

F 2 · N〈φ0|
∫

d4x

∫
d4y Dµν(x − y)ψ̄0(x)γ

µγ 5ε3ikε3jmτ kψ0(x)ψ̄0(y)γ
νγ 5τmψ0(y)|φ0〉N

for Fig. 2(f).
Truncating the quark propagator to the ground state mode theπN scattering amplitude at threshold including

first-order radiative corrections is

Me2πN
inv = − 1

(4π)3

∫
d3q

�q2

{
MπN

f1

[[
G

p
E

(−�q2)]2 − 19�q2

6m2
N

[
G

p
M

(−�q2)]2 + 114

25

d2+(�q2)

d2−(�q2)
G2

A

(−�q2)]
+ MπN

f2

[[
G

p
E

(−�q2)]2 − 5�q2

18m2
N

[
G

p
M

(−�q2)]2
]}

(28)= − 1

8R

1

(2π)3/2

{
MπN

f1

[
41

3
− 115

2
κ + 953

16
κ2

]
+ MπN

f2

[
1− 29

18
κ + 89

48
κ2

]}
,

where

MπN
f1

= −4πα

F 2
�N

{
�π2 − (

π0)2
}
N and MπN

f2
= −4πα

F 2
�N{�π2τ3 − (�π �τ )π0}N

and

d±
(�q2) = 1± �q2R2

4

κ

1− 2κ
.

The contribution of the Coulomb photons to the amplitudeMe2πN
inv is parametrized by the proton charge form factor

(GE), transverse photons are related to the proton magnetic(GM) and axial nucleon(GA) f.f. where the latter is
given by [13]

(29)GA

(−�q2) = gA exp

(
− �q2R2

4

)
d−

(�q2).
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Again, as in the case of e.m. mass shifts, the amplitudeMe2πN
inv is gauge-independent. In ChPT the corresponding

amplitude is given by [6]

(30)Me2πN
inv

∣∣
ChPT= f1M

πN
f1

+ f2

4
MπN

f2
.

Comparing of Eqs. (28) and (30) we get the same expression forf2 as already obtained from the e.m. mass
shift (23). We also deduce the following relations:

f1 = − 1

8R(2π)3/2

[
41

3
− 115

2
κ + 953

16
κ2

]
, f3 = 1

8R(2π)3/2

[
35

3
− 785

18
κ + 1913

48
κ2

]
.

The predicted ratio forf1/f2 depends on only one model parameterρ (or κ) which is related to the axial nucleon
chargegA calculated at zeroth order. In addition, the constantsf1, f2 andf3 depend on the size parameterR of the
bound quark. For our “canonical” set of parameters,gA = 1.25 andR = 0.6± 0.05 fm, used in the calculations of
nucleon e.m. form factors and meson–baryon sigma terms [13] we obtain:

(31)f1 = −19.5± 1.6 MeV, f2 = −8.7± 0.7 MeV, f3 = 18± 1.5 MeV,
f1

f2
= 2.2.

Using these values off1 andf2 we can estimate the isospin-breaking correction to the energy shift of theπ−p

atom in the 1s state. The strong energy-level shiftε1s of theπ−p atom is given by the model-independent formula
[14]: ε1s = εLO

1s + εNLO
1s = εLO

1s (1+ δε), where the leading order (LO) or isospin-symmetric contribution isεLO
1s and

the next-to-leading order (NLO) or isospin-breaking contribution isεNLO
1s . The quantityεLO

1s is expressed with the
help of the well-known Deser formula [18] in terms of theS-waveπN scattering lengths withεLO

1s = −2α3µ2
cAstr

andAstr = (2a1/2 + a3/2)/3. The reduced mass of theπ−p atom is denoted byµc = mpMπ+/(mp + Mπ+) and
Astr = (88.4 ± 1.9) × 10−3M−1

π+ is the strong (isospin-invariant) regular part of theπ−p scattering amplitude at
threshold [19] (for the definitions of these quantities see Ref. [14]). In ChPT the quantityδε , the ratio of NLO to
LO corrections, is expressed in terms of the LECsc1, f1 andf2

(32)δε = µc

8πMπ+F 2
πAstr

[
8c1

(
M2

π+ − M2
π0

) − e2(4f1 + f2)
] − 2αµc(lnα − 1)Astr.

The quantityc1 is the strong LEC from the ChPT Lagrangian [5,7] andFπ = 92.4 MeV is the physical value
of the pion decay constant [14]. In Ref. [13] we obtainedc1 = −1.16± 0.1 GeV−1 using the PCQM approach.
Our prediction forc1 is close to the valuec1 = −0.9m−1

N deduced from theπN partial wave analysis KA84
using Baryon Chiral Perturbation Theory [7]. Substituting the central values for our couplingsf1 = −19.5 MeV,
f2 = −8.7 MeV andc1 = −1.16 GeV−1 into Eq. (32), we getδε = −2.8× 10−2. Our estimate is comparable to a
prediction based on a potential model for theπN scattering [19]:δε = −2.1× 10−2.

In conclusion, we give predictions for theO(p2) electromagnetic (e.m.) low-energy couplings (LECs)f1, f2
andf3 as originally set up in the ChPT effective Lagrangian. The magnitude off2 and its relation tof1 andf3 are
obtained from an analysis of the nucleon e.m. mass shift and the leading radiative corrections to theπN scattering
amplitude at threshold. Using our values forf1 andf2 we also predict the isospin-breaking correction to the strong
energy shift of theπ−p atom in the 1s state. Latter prediction is extremely important for the ongoing experiment
“Pionic Hydrogen” at PSI, which intends to measure the ground-state shift and width of pionic hydrogen (π−p-
atom) at the 1% level [20].
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