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In this paper we reconsider the basic topological and metric structures on spaces of
probability measures and random variables, such as e.g. the weak topology and the total
variation metric, replacing them with more intrinsic and richer approach structures. We
comprehensibly investigate the relationships among, and basic facts about these structures,
and prove that fundamental results, such as e.g. the portmanteau theorem and Prokhorov’s
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© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we reconsider the basic topological and metric structures on spaces of probability measures and spaces of
random variables. It turns out that many topological structures and metrics used in the literature [4,6,16,19,23] are merely
respectively the topological coreflections and the metric coreflections of more natural and structurally richer approach struc-
tures. For the sake of simplicity, throughout the paper we will consider a Polish space S and the set P (S) of probability
measures on it. When dealing with random variables we will consider a fixed probability space (Ω, A, P ) and the set of
S-valued random variables R(S) defined thereon. As far as the topological structures are concerned we will deal in partic-
ular with the weak topology on P (S) and with convergence in probability on R(S). The important classical metrics which
we will encounter are the Prokhorov metric ρ and the total variation metric dTV , the former of which, as is well known,
metrizes the weak topology on probability measures, and in the case of random variables the Ky-Fan metric K [4] and the
indicator metric dI [23].
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On P (S) we propose an approach structure, in particular a non-metric distance δw which is more closely related to, and
certainly is strongly inspired by, the weak topology and which we hence also call the weak approach structure. This approach
also has a unifying effect in the sense that δw has several equivalent expressions, obtained by judiciously putting together
the building blocks either from the weak topology, or somewhat surprisingly, also from the Prokhorov metric or from the
total variation metric. On R(S) too we propose a natural approach structure which is similarly linked to convergence in
probability [4,14] and to the indicator metric [23].

The systematic use of this distance, and the preservation of its numerical information, allows for an isometric or quan-
titative study of various important concepts in stochastic theories. In this paper, apart from a study of the new structures,
their basic properties and interrelation we restrict ourselves to weak compactness and tightness. For compactness we fall
back on the well-known concept of measure of non-compactness [3] as used also in functional analysis [22] and which
was canonically recaptured in the setting of approach structures in [10]. Not to confuse with (probability) measures we will
however refer to such quantitative values differently and speak of index of (relative, sequential) compactness rather than
measure of (relative, sequential) compactness. In the same philosophy and along similar lines, we will introduce a weak and
a strong index of tightness and we will prove a quantitative version of Prokhorov’s theorem.

For more background information on measures of compactness see [3,7], on probabilistic concepts see [11,17,20,21] and
on topological concepts see [5].

2. Preliminaries

There are many papers and a basic reference work [9] on approach theory and we would like to refer the interested
reader to those for more indepth information. In these preliminaries we restrict our attention to the basic concepts required
for the paper.

Approach spaces can be introduced in various equivalent ways, here we will use the characterizations using gauges,
distance and limit operator. Note that we do not suppose that pseudo-quasi-metrics (shortly called pq-metrics) are finite.

An approach space is a set equipped with any of the above mentioned structures and if needed we will make clear on
which set any of these structures is considered by using the set as an index.

2.1. A gauge G on X is a collection of pq-metrics that is closed under the formation of finite suprema and locally
saturated, meaning that the following condition is satisfied

(G) Whenever e is a pq-metric such that ∀x ∈ X, ∀ε > 0, ∀ω < ∞, ∃d ∈ G : e(x, ·) ∧ ω � d(x, ·) + ε then e ∈ G .

If X and Y are approach spaces and f : X → Y is a function, then f is called a contraction if

∀d ∈ GY : d ◦ ( f × f ) ∈ G X .

For practical reasons, one often works with a gauge basis instead of with the entire gauge. By definition this is nothing more
than an ideal basis. We recall that a set H of pq-metrics is called an ideal basis if for any d, e ∈ H there exists c ∈ H such
that d ∨ e � c. We then say that such a basis H generates a gauge G if saturating H according to the saturation condition
(G) gives the entire collection G . An approach space is called uniform if the gauge has a basis of p-metrics.

2.2. A distance on a set X is a function δ : X × 2X → [0,∞] with the following axioms:

(D1) ∀x ∈ X: δ(x, {x}) = 0,
(D2) ∀x ∈ X: δ(x,∅) = ∞,
(D3) ∀x ∈ X , ∀A, B ∈ 2X : δ(x, A ∪ B) = min{δ(x, A), δ(x, B)},
(D4) ∀x ∈ X , ∀A ∈ 2X , ∀ε ∈ [0,∞]: δ(x, A) � δ(x, A(ε)) + ε where A(ε) = {x | δ(x, A) � ε}.

The transitions between gauges and distances is given by the formulas

δ(x, A) = sup
d∈G

inf
a∈A

d(x,a) and G =
{

d
∣∣ ∀A ⊂ X: inf

a∈A
d(·,a) � δ(·, A)

}
,

these transitions being of course inverse to each other. In terms of distances, a function f : X → Y is a contraction if

∀x ∈ X, ∀A ⊂ X: δY
(

f (x), f (A)
)
� δX (x, A).

2.3. Given a subset A ⊂ X , we will use the notation F(A) (resp. U(A)) for the collection of all filters (resp. ultrafilters) on
X containing the set A, and ẋ for the principal filter {A ⊂ X | x ∈ A}. A function λ : F(X) → [0,∞]X is called a limit operator
if it satisfies

(L1) ∀x ∈ X: λẋ(x) = 0.
(L2) For any family (Fi)i∈I of filters on X , λ(

⋂
i∈I Fi) = supi∈I λFi .
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(L3) For any F ∈ F(X) and any selection of filters (S(x))x∈X on X ,

λ
(

D(S, F )
)
� λF + sup

x∈X
λ
(

S(x)
)
(x).

In condition (L3) D(S, F ) stands for the so-called diagonal filter D(S, F ) := ⋃
F∈F

⋂
y∈F S(y).

The transition between limits and distances is given by the following formulas

λF (x) = sup
A∈sec F

δ(x, A) and δ(x, A) = inf
U ∈U(A)

λU (x),

with sec F := {A ⊂ X | ∀F ∈ F : F ∩ A �= ∅}, the transitions again being inverse to each other.
In terms of limit operators a function f : X → Y is a contraction if

∀F ∈ F(X): λY
(
stack f (F )

) ◦ f � λX F
where stack F := {H ⊂ X | ∃F ∈ F : F ⊂ H}.

In terms of a gauge or gauge base B the limit is given by the formula

λF (x) = sup
d∈B

inf
F∈F

sup
y∈F

d(x, y).

2.4. Approach spaces together with contractions form the topological construct App. The relation among this category
and several well-known other categories is depicted in the following diagram where r (resp. c) next to an arrow means the
embedding is concretely reflective (resp. coreflective).

pMet r

r

UApp

r

CRegc
r

r

pqMet c App Topr
c

We mention the following salient facts about the above diagram. The interested reader who wants more information on it
is referred to [9].

(1) If (X, T ) is a topological space then it is embedded into App by associating with it the approach space (X, G(T ))

where G(T ) is the gauge consisting of all pq-metrics which generate topologies coarser than T , i.e.

G(T ) := {e pq-metric | Te ⊂ Td}.
The embedding of Top in App becomes especially elegant when characterized with distances or limit operators. For a topo-
logical space, we have that the associated distance is either 0 or ∞, more precisely δ(x, A) = 0 if x ∈ A and δ(x, A) = ∞
otherwise, and likewise the limit operator is either 0 or ∞ depending on whether the filter converges or not.

(2) Top is embedded in App simultaneously concretely reflectively and coreflectively. If X is an approach space, then the
Top coreflection is determined by the closure operator which states that x ∈ A if and only if δ(x, A) = 0 which means in
terms of the gauge that ∀ε > 0, ∀d ∈ G,∃y ∈ A: d(x, y) < ε , i.e. this coreflection is determined by the neighborhood system
with subbase {Bd(x, ε) | d ∈ G, ε > 0}.

(3) pqMet is embedded in App by associating with any pq-metric space (X,d) the approach space (X, G(d)) where the
gauge G(d) is generated by {d}. In this case this is simply the principal ideal G(d) := {e pq-metric | e � d}.

(4) pqMet (resp. pMet) is concretely coreflectively embedded in App. If (X, G) is an approach space, then the pqMet
(resp. pMet) coreflection is determined by the pq-metric (resp. p-metric)

d(x, y) := sup
e∈G

e(x, y) resp. d(x, y) := sup
e∈G

e(x, y) ∨ e(y, x)

where G may be replaced by any base, or in terms of the distance d(x, y) := δ(x, {y}) (respectively d(x, y) := δ(x, {y}) ∨
δ(y, {x})).

(5) The category UApp of the so-called uniform approach spaces is the full subcategory of App with objects those spaces
which have a gauge generated by p-metrics. Hence it is the epireflective hull of pMet in App. It is also easily seen that UApp
is actually concretely reflective in App analogously to the way CReg is embedded in Top.

(6) Given a source ( f j : X → X j) j∈ J where all X j are approach spaces the initial gauge is given by the base{
sup
j∈K

d j ◦ ( f j × f j)
∣∣ K ⊂ J finite, d j ∈ G j

}
and the initial limit is given by

λF = sup
j∈ J

λ j f j(F ) ◦ f j.
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2.5. Given an approach space X its measure of compactness is defined as

μc(X) := sup
U ∈U(X)

inf
x∈X

λU (x).

An approach space X is called 0-compact if μc(X) = 0. A topological approach space is 0-compact if and only if it is compact,
and a pseudometric approach space is 0-compact if and only if it is totally bounded [9,2,10].

In general, however, compactness of the topological coreflection is strictly stronger and we refer to this property as being
compact.

2.6. In an approach space X , a filter F is said to be Cauchy if infx∈X λF (x) = 0. For p-metric spaces it is easily seen
that this notion coincides with the usual notion of a Cauchy filter, and for topological spaces this simply means the filter
is convergent. This concept allows for a completeness theory for uniform approach spaces which extends the completeness
theory for p-metric spaces. An approach space is said to be complete if every Cauchy filter converges (in the topological
coreflection). An important result says that an approach space is complete if and only if its pseudometric coreflection is
complete (we note that in case of non-completeness the completions on the other hand are in general totally different).

3. Spaces of probability measures

Let S be a Polish space with a fixed complete metric d, with topology T , and with Borel sets B. P (S) will denote the
set of all probability measures on B. One of the most important and most widely used structures on P (S) is the so-called
weak topology, which we denote by T w [4,14]. Although this topology is called the weak topology, from the point of view of
functional analysis it would better have been called the weak* topology, but we will adhere to the usual term. We consider
the Banach space of all continuous bounded real-valued functions Cb(S) equipped with the supremum norm and consider
its continuous dual Cb(S)′ . P (S) is embedded in Cb(S)′ by the assignment

P(S) → Cb(S)′ : P �→
(

f �→
∫

f dP

)
and as such is identified with the dual unit sphere. Thus it inherits the weak* topology induced on Cb(S)′ by Cb(S) via
restriction. This weak* topology is a locally convex topology generated by the collection of seminorms {p f | f ∈ Cb(S), 0 �
f � 1} where

p f (P ) :=
∣∣∣∣ ∫ f dP

∣∣∣∣
and the restriction to P (S) is called the weak topology on probability measures. The above collection of seminorms however
generates a collection of pseudometrics

d f (P , Q ) =
∣∣∣∣∫ f dP −

∫
f dQ

∣∣∣∣
and it is immediately clear that this collection of pseudometrics is a subbasis for a gauge in the sense of 2(1), precisely{

sup
f ∈H

d f
∣∣ H ⊂ Cb(S) finite, 0 � f � 1 ∀ f ∈ H

}
is an ideal basis which generates a unique and canonical approach structure on P (S) which we refer to as the weak approach
structure on probability measures. All associated structures will be denoted by the index w . Thus the gauge generated by
the above base will be denoted G w .

We begin by verifying what are the topological and metric coreflections of the weak approach structure. As we are
dealing with concrete coreflections, in the following theorem we only mention the structures since the underlying sets
remain invariant.

Proposition 3.1. The Top-coreflection of a space with the weak approach structure is determined by the weak topology and the pMet-
coreflection is determined by the total variation metric

δw

Top
c

Met
c

T w dTV

Proof. For the topological coreflection this is an immediate consequence of 2(4)(2) and the definition of the weak topology
(see e.g. below or [14]). For the metric coreflection this follows from 2(4)(4) and the definition of the total variation metric
(again see e.g. below or [15]). �
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We recall that the weak topology [4,14] has various different but equivalent bases Bi
w , i = 1, . . . ,4, for the neighbor-

hoods. Let P ∈ P (S). Then B1
w consists of the sets V 1(P , G, ε) where G is a finite collection of open sets, ε > 0 and

V 1(P , G, ε) := {
Q ∈ P(S)

∣∣ ∀G ∈ G: Q (G) > P (G) − ε
}
.

B2
w consists of the sets V 2(P , F , ε) where F is a finite collection of closed sets, ε > 0 and

V 2(P , F , ε) := {
Q ∈ P(S)

∣∣ ∀F ∈ F : Q (F ) < P (F ) + ε
}
.

B3
w consists of the sets V 3(P , H, ε) where H is a finite collection of continuous (resp. uniformly continuous or Lipschitz)

functions taking values in [0,1], ε > 0 and

V 3(P , H, ε) :=
{

Q ∈ P(S)
∣∣ ∀ f ∈ H:

∣∣∣∣∫ f dP −
∫

f dQ

∣∣∣∣ < ε

}
.

B4
w consists of the sets V 2(P , E , ε) where E is a finite collection of P -continuity sets, ε > 0 and

V 2(P , E , ε) := {
Q ∈ P(S)

∣∣ ∀E ∈ E :
∣∣P (E) − Q (E)

∣∣ < ε
}
.

We also recall that the total variation metric [15] is defined as

dTV(P , Q ) := sup
B∈B

∣∣P (B) − Q (B)
∣∣

and is equally well given by various formulas analogous to the various bases for the weak topology given above, and notably
by

dTV(P , Q ) = sup
f ∈Cb(S),0� f �1

∣∣∣∣∫ f dP −
∫

f dQ

∣∣∣∣.
From 3.1 it follows that the distance δw , in a natural way, “distancizes” the weak topology. Note that whereas there are

a variety of metrics which metrize the weak topology, the canonicity of the weak distance comes from the fact that it is
built, as we will now see (especially in 3.3) by exactly the same “building-blocks” as the weak topology itself.

As in the case of the weak topology, the weak approach structure, notably its gauge G w has various different bases. For
any finite collection G of open sets, we let

dG
1 : P(S) × P(S) −→ [0,∞] : (P , Q ) �→ sup

G∈G

(
P (G) − Q (G)

) ∨ 0

and we put D1 := {dG
1 | G finite collection of open sets}. For any finite collection F of closed sets, we let

dF
2 : P(S) × P(S) −→ [0,∞] : (P , Q ) �→ sup

F∈F

(
Q (F ) − P (F )

) ∨ 0

and we put D2 := {dF
2 | F finite collection of closed sets}. For any finite collection H of continuous maps, with range [0,1],

we let

dH
3 : P(S) × P(S) −→ [0,∞] : (P , Q ) �→ sup

f ∈H

∣∣∣∣∫ f dP −
∫

f dQ

∣∣∣∣
and we put D3 := {dH

3 | H ⊂ Cb(S) finite, ∀ f ∈ H: 0 � f � 1}. As before, continuous maps may be replaced by uniformly
continuous maps or Lipschitz maps. For any finite collection E of P -continuity sets we put

dE
4 : P(S) × P(S) −→ [0,∞] : (P , Q ) �→ sup

E∈E

∣∣P (E) − Q (E)
∣∣

and we put D4 := {dE
4 | E finite set of P -continuity sets}. For any α > 0 we let

dα
5 : P(S) × P(S) −→ [0,∞] : (P , Q ) �→ sup

A∈B

(
P (A) − Q

(
A(α)

)) ∨ 0

and we put D5 := {dα
5 | α > 0}.

The collections Di , i ∈ {1,2}, consist of pseudo-quasi-metrics, whereas the collections Di , i ∈ {3,4}, consist of pseudo-
metrics. The mappings dα

5 do not individually satisfy the triangle inequality, however, as is easily verified, they do satisfy
the combined inequality

dα
5 (P , Q ) � dα/2

5 (P , R) + dα/2
5 (R, Q )

for any α > 0 and any P , Q , R ∈ P (S), which is sufficient to generate a distance [9]. This last collection is inspired by the
so-called Prokhorov metric [4] which is defined as

ρ(P , Q ) := inf
{
α > 0

∣∣ ∀A ∈ B S : P (A) � Q
(

A(α)
) + α

}
.

Actually all collections generate the same distance, namely δw . In order to prove this we collect the main technical argu-
ments in the following preliminary lemma which will be used several times.
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Lemma 3.2. The following hold.

(1) For each P ∈ P (S), ε > 0 and α > 0 there exists a finite collection G of open sets in S such that for every Q ∈ P (S)

sup
A∈B S

(
P (A) − Q

(
A(α)

))
� sup

G∈G

(
P (G) − Q (G)

) + ε.

(2) For each P ∈ P (S), ε > 0 and F ⊂ S closed there exists an α > 0 such that for every Q ∈ P (S)

Q (F ) − P (F ) � sup
A∈B S

(
P (A) − Q

(
A(α)

)) + ε.

(3) For each P ∈ P (S), ε > 0 and F ⊂ S closed there exists f ∈ Cb(S) with 0 � f � 1 such that for all Q ∈ P (S)

Q (F ) − P (F ) �
∣∣∣∣∫ f dP −

∫
f dQ

∣∣∣∣ + ε.

(4) For each f ∈ Cb(S) such that 0 � f � 1 and ε > 0 there exists a finite set of closed sets F such that for all P , Q ∈ P (S)∣∣∣∣∫ f dP −
∫

f dQ

∣∣∣∣ � sup
F∈F

(
Q (F ) − P (F )

) + ε.

Proof. (1) By separability we can choose a finite collection of open balls (Bi)
j
i=1 with radii α/4 such that P (S \⋃ j

i=1 Bi) � ε .
Then the collection

G := {
(Bi1 ∪ · · · ∪ Bik )

(α/2)
∣∣ 1 � i1 < · · · < ik � j

}
satisfies the requirement. Indeed, take a probability measure Q in P (S) and a Borel set A in S . Let I be the set of those
natural numbers 1 � i � j for which Bi ∩ A �= ∅ and put B := ⋃

i∈I Bi . Then we have

P (A) � P (B) + P

(
S
∖ j⋃

i=1

Bi

)
� P

(
B(α/2)

) + ε

� sup
G∈G

(
P (G) − Q (G)

) + Q
(

B(α/2)
) + ε.

In view of the fact that B(α/2) ⊂ A(α) , we conclude that

P (A) � sup
G∈G

(
P (G) − Q (G)

) + Q
(

A(α)
) + ε

whence the claim.
(2) We can choose α > 0 such that P (F (α)) � P (F ) + ε . For any probability measure Q in P (S) we then have

Q (F ) − P (F ) �
(

Q (F ) − P
(

F (α)
)) + ε

� sup
A∈B S

(
Q (A) − P

(
A(α)

)) + ε.

(3) Again we can choose α > 0 such that P (F (α)) � P (F ) + ε . Then the function f defined by

f (x) :=
(

1 − 1

α
d(x, F )

)
∨ 0, ∀x ∈ S

satisfies the requirement.
(4) Choose k ∈ N0 such that 1

k � ε and, for all i ∈ {1, . . . ,k}, let

Fi :=
{

i

k
� f

}
and consider the collection F := {Fi | i ∈ {1, . . . ,k}}. Then for any P ∈ P ,

1

k

∑
F∈F

P (F ) �
∫

f dP � 1

k
+ 1

k

∑
F∈F

P (F )

from which it is easily seen that the collection F satisfies the requirement. �
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Proposition 3.3 (Distance portmanteau theorem). All collections Di , i ∈ {0, . . . ,5}, are bases for G w and hence generate the same
distance δw . Writing out this distance explicitly then gives the following expressions where P ∈ P (S) and Γ ⊂ P (S)

δw(P ,Γ ) = sup
G

inf
Q ∈Γ

sup
G∈G

(
P (G) − Q (G)

) ∨ 0 (1)

= sup
F

inf
Q ∈Γ

sup
F∈F

(
Q (F ) − P (F )

) ∨ 0 (2)

= sup
E

inf
Q ∈Γ

sup
E∈E

∣∣P (E) − Q (E)
∣∣ (3)

= sup
C

inf
Q ∈Γ

sup
f ∈C

∣∣∣∣∫ f dP −
∫

f dQ

∣∣∣∣ (4)

= sup
α>0

inf
Q ∈Γ

sup
A∈B

(
P (A) − Q

(
A(α)

)) ∨ 0 (5)

where the suprema in (1)–(4) are respectively taken over all finite collections G (resp. F ) of open (resp. closed) sets, E of P -continuity
sets, C of continuous (resp. uniformly continuous or Lipschitz) with range [0,1].

Proof. In order to see that all collections are equivalent bases for the same gauge it suffices to use the foregoing lemma
and the saturation condition (G) for gauges. The formulas (1)–(5) then follow immediately from the definition of a distance
generated by a gauge (see 2.2) and from the foregoing Lemma 3.2. �

There is another interesting way to characterize δw . In [19] Topsøe showed that the weak topology on P (S) is the initial
topology for the source(

ωG : P(S) −→ ([0,∞], Tr
) : P �→ P (G)

)
G∈T ,

where Tr stands for the so-called right-limit topology on [0,∞] which is generated by the open sets of type ]a,∞]. This
however is nothing else but the topology of the topological coreflection of the space P := ([0,∞], δP) where δP(x, A) :=
(x − sup A) ∨ 0. P is an initially dense object in App [9]. The next result shows that Topsøe’s theorem also holds in our
setting.

Proposition 3.4. The weak distance δw on P is initial for the source(
ωG : P(S) −→ P : P �→ P (G)

)
G∈T .

Proof. Since the maps ωG only attain finite values and since a subbase for the initial gauge is given by{
d ◦ (ωG × ωG)

∣∣ G open,d ∈ GP

}
where GP stands for the gauge of P, this is an immediate consequence of the fact that a base for the gauge of P is given by
the pseudo-quasi-metrics

[0,∞] × [0,∞] → [0,∞] : (x, y) �→ (x ∧ a − y ∧ a) ∨ 0

where a < ∞ [9]. Note however that all values which come into play are bounded by 1 and hence it suffices to consider
the pseudo-quasi-metric d(x, y) = (x − y) ∨ 0. The above subbase for the initial gauge hence generates the base D1. �
Theorem 3.5 (Convergence portmanteau theorem). Given a sequence (Pn)n and P in P (S) we have

λδw (Pn)(P ) = sup
G

lim sup
n

(
P (G) − Pn(G)

) ∨ 0 (6)

= sup
F

lim sup
n

(
Pn(F ) − P (F )

) ∨ 0 (7)

= sup
A

lim sup
n

∣∣P (A) − Pn(A)
∣∣ (8)

= sup
f

lim sup
n

∣∣∣∣∫ f dP −
∫

f dPn

∣∣∣∣ (9)

= sup
α>0

lim sup
n

sup
A∈B

(
P (A) − Pn

(
A(α)

)) ∨ 0 (10)

the suprema respectively running over all open sets, closed sets, P -continuity sets in S, and all continuous (or uniformly continuous, or
Lipschitz) functions f from S to [0,1].
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Proof. We only prove the first equality, the formulas (6)–(10) then follow from this upon applying once again Lemma 3.2.
From 3.4 and the formula for an initial limit [9] it follows that

λ(Pn)(P ) = sup
G∈T

λP

(
Pn(G)

)(
P (G)

)
.

Now it suffices to remark that all values are finite (less than 1) and hence, as in 3.4 the structure of P which comes
into play is only the structure in finite points (the interval [0,1]) and there the structure is simply a pseudo-quasi-metric
(d(x, y) = (x − y) ∨ 0). Hence it follows from the formula for the limit in a pseudo-quasi-metric space [9] that

λP

(
Pn(G)

)(
P (G)

) = inf
n

sup
k�n

(
P (G) − Pk(G)

) ∨ 0

and the formula follows. �
By explicitly writing down when the expressions in the foregoing result become zero, one obtains all characterizations

of weak convergence in the classic portmanteau theorem.

Corollary 3.6 (Classic portmanteau theorem). ([4,14]) A sequence (Pn)n in P (S) converges weakly to P ∈ P (S) if and only if any of
the following equivalent properties hold

∀G open: P (G) � lim inf Pn(G), (11)

∀F closed: lim sup
n

Pn(F ) � P (F ), (12)

∀P -continuity set A: lim
n

Pn(A) = P (A), (13)

∀ f ∈ F
(

S, [0,1]): lim
n

∫
f dPn =

∫
f dP (14)

where F (S, [0,1]) stands for all continuous (or uniformly continuous, or Lipschitz) functions from S to [0,1].

Another fundamental fact about the weak topology is that if f : X → Y is a continuous function then its canonical
extension f̂ : P (X) → P (Y ) defined by f̂ (P )(B) := P ( f −1(B)), for all B ∈ B(Y ), is continuous with respect to the weak
topologies. The result here is considerably stronger.

Proposition 3.7. If f : X → Y is a continuous function and we equip P (X) and P (Y ) with the weak approach structures, then
f̂ : P (X) → P (Y ) is a contraction.

Proof. Let G be a finite collection of open sets in Y , and let P , Q ∈ P (X); then

dG
0

(
f̂ (P ), f̂ (Q )

) = sup
G∈G

(
P
(

f −1(G)
) − Q

(
f −1(G)

)) ∨ 0

= dH
0 (P , Q ),

where H := { f −1(G) | G ∈ G}. This proves that

dG
0 ◦ f̂ × f̂ = dH

0 ∈ G w ,

which by 2.1 proves our claim. �
Corollary 3.8. ([19]) If f : X → Y is continuous then f̂ : P (X) → P (Y ) is continuous with respect to the weak topologies.

Corollary 3.9. If f : X → Y is continuous then f̂ : P (X) → P (Y ) is nonexpansive with respect to the total variation metrics.

If we put Pol for the category of completely metrizable separable topological spaces (Polish spaces) and continuous maps
then it follows from 3.7 that

Pol → App :

{
S → (P(S), δw),

f → f̂

is functorial.
The relation between the various “quantitative” structures which came into play is given in the following result. Note

that simple examples show that in general the inequalities are strict. We recall that ρ stands for the Prokhorov metric and
dTV for the total variation metric [4] (see Section 2 for the definitions). We also note that ρ � dTV is a known inequality
[23].
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Proposition 3.10. The following inequalities (as approach distances) hold: ρ � δw � dTV .

Proof. Fix a probability measure P and a collection of probability measures Γ on S . To prove that ρ � δω let δw(P ,Γ ) < γ .
Then by definition we can find a measure Q γ ∈ Γ such that

sup
A∈B S

(
P (A) − Q γ

(
A(γ )

))
< γ

and hence

ρ(P ,Γ ) = inf
Q ∈Γ

inf
{
α > 0

∣∣ ∀A ∈ B S : P (A) � Q
(

A(α)
) + α

}
� γ .

This, by the arbitrariness of γ , implies that ρ(P ,Γ ) � δw(P ,Γ ). The second inequality is an immediate consequence of the
fact that dTV is the metric coreflection of the weak approach structure. �

It is known that the weak topology is completely metrizable. However whereas this requires the choice of a new “exter-
nal” structure (a complete compatible metric) the weak approach structure does not require this, it is complete itself.

Theorem 3.11. The weak approach structure is complete.

Proof. From [9] (see also 2.6) we know that in order to verify that an approach space is complete it is sufficient to verify
that its metric coreflection is complete. It is however a well-known fact that dTV is a complete metric [8]. �
Proposition 3.12. The weak approach structure is first countable in the sense that for each P ∈ P (S) the localized gauge

G w(P ) := {
d(P , ·) ∣∣ d ∈ G w

}
has a countable base, consequently by and large, sequences suffice.

Proof. Although by definition the weak approach structure was constructed making use of the (non-separable) Banach
space Cb(S), when considering the various bases for the weak gauge G w , in particular D3 we mentioned that we could also
restrict ourselves to uniformly continuous maps S → [0,1]. Now since S is a separable metrizable space it can be embedded
in a countable product of unit intervals and consequently there exists an equivalent totally bounded metrization of S . The
completion Ŝ of S under this metric hence is compact and the Banach spaces C (̂S) and U (S) of uniformly continuous maps
are isomorphic. Ŝ being compact, C (̂S) and hence also U (S) are separable. Then it follows that also the space of uniformly
continuous maps S → [0,1] is separable (always under the supremum-norm). If E is a countable dense subset then it
follows immediately from the definition of D3 (with uniformly continuous maps) that an alternative equivalent base for G w

is given by

D′
3 := {

dH
3

∣∣ H ⊂ E finite, ∀ f ∈ H: 0 � f � 1
}
.

As this base is countable, so are the localized bases D′
3(P ) = {d(P , ·) | d ∈ Ds

3}. �
4. Spaces of random variables

In this section we consider spaces of random variables. Let (Ω, A, P ) be a fixed probability space and let R(S) be the
set of all S-valued random variables on Ω . In this context an important topology is given by the topology T p of convergence
in probability and a natural metric is the so-called indicator metric [23] dI where

dI (X, Y ) := P
({

ω
∣∣ d

(
X(ω), Y (ω)

)
> 0

}) = P
({

ω
∣∣ X(ω) �= Y (ω)

})
.

Note that dI (X, Y ) = 0 if and only if X and Y are equal almost everywhere.
R(S) is naturally endowed with an approach structure as follows. We consider the functions ϕa, a > 0, determined by

ϕa(X, Y ) = P
({

ω ∈ Ω
∣∣ d

(
X(ω), Y (ω)

)
� a

})
, X, Y ∈ R(S).

Each function, for a fixed a, gives the probability that the random variables X and Y lie at a distance larger than or equal
to a. Again, as in the case of the base D5 for G w these functions do not satisfy the triangle inequality. However, again, they
too satisfy a combined triangle inequality.

Lemma 4.1. For any a,b > 0 and X, Y , Z ∈ R(S) we have

ϕa+b(X, Z) � ϕa(X, Y ) + ϕb(Y , Z).
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Proof. This follows from

ϕa+b(X, Z) = P
({

ω ∈ Ω
∣∣ d

(
X(ω), Z(ω)

)
� a + b

})
� P

({
ω ∈ Ω

∣∣ d
(

X(ω), Y (ω)
)
� a

} ∪ {
ω ∈ Ω

∣∣ d
(
Y (ω), Z(ω)

)
� b

})
� P

({
ω ∈ Ω

∣∣ d
(

X(ω), Y (ω)
)
� a

}) + P
({

ω ∈ Ω
∣∣ d

(
Y (ω), Z(ω)

)
� b

})
= ϕa(x, y) + ϕb(y, z). �

Hence it follows again from [9] that this collection generates a gauge G p . We will denote the distance generated by G p
by δp and refer to the approach structure as the c.i.p. approach structure (c.i.p. for convergence in probability).

As was the case for the weak approach structure in the foregoing section, here too we can find alternative bases, one of
which is particularly interesting. For any a > 0 put

Ka(X, Y ) := inf
{
θ

∣∣ ϕθa(X, Y ) � θ
}
.

Then it follows immediately from 4.1 that the maps Ka are pseudometrics. Actually K1 is nothing else than the so-called
Ky-Fan metric [4]. Let us denote B1 := {ϕa | a > 0} and B2 := {Ka | a > 0}.

Proposition 4.2. Both B1 and B2 generate the c.i.p. approach structure on random variables.

Proof. By definition B1 generates δp . Let δ stand for the distance generated by B2. Since for any a and θ we have that
ϕθa(X, Y ) < θ implies Ka(X, Y ) � θ we immediately have δ � δp . Conversely, if 0 < θ < δp(X,Σ), then there exists a > 0
such that θ < infY ∈Σ ϕa(X, Y ). Letting b := aθ−1 it follows that θ � infY ∈Σ Kb(X, Y ) which proves that δp � δ. �

Again we first look at the topological and metric coreflections.

Proposition 4.3. The Top coreflection of a space with the c.i.p. approach structure is determined by the topology of convergence in
probability and the pMet coreflection is determined by the indicator metric

δp

Top
c

Met
c

T p dI

Proof. It suffices to notice that, for any X ∈ R(S), a basis for the neighborhoods of X in the topological coreflection is given
by the collection of sets{

Y ∈ R(S)
∣∣ P

({
ω ∈ Ω

∣∣ d
(

X(ω), Y (ω)
)
� a

})
< ε

}
, a ∈ [0,∞[, ε > 0,

and that this collection is also precisely a basis for the topology of convergence in probability. As for the metric coreflection
it suffices to notice that, for any X, Y ∈ R(S), we have

sup
a>0

P
({

ω ∈ Ω
∣∣ d

(
X(ω), Y (ω)

)
� a

}) = P
({

ω ∈ Ω
∣∣ d

(
X(ω), Y (ω)

)
> 0

}) = dI (X, Y ). �
Proposition 4.4. The limit operator λp on R(S) (for sequences of random variables) is given by the following formula:

λp
(
(Xn)n

)
(X) = sup

a>0
lim sup

n→∞
P
({

ω ∈ Ω
∣∣ d

(
X(ω), Xn(ω)

)
� a

})
.

Proof. Since the basis for the gauge given by the functions ϕa is increasing with decreasing a this follows at once from the
formula for a limit derived from a gauge (basis) as given in 2.3. �

Of course it also follows at once from this formula that the topological coreflection is given by convergence in probability
since the limit operator will produce a zero value exactly if (Xn)n converges to X in probability, i.e.

∀a > 0: lim
n

P
({

ω ∈ Ω
∣∣ d

(
X(ω), Xn(ω)

)
� a

}) = 0.

In analogy with the results for spaces of probability measures here too our construction is functorial, however of a more
metric nature, which is to be expected from the prominent role played by the metric in the definition of the maps ϕa .

Proposition 4.5. Suppose S and T are Polish spaces with fixed metrics dS and dT . If f : S → T is a contraction and we equip R(S)

and R(T ) with the c.i.p. approach structures then f̃ : R(S) → R(T ) is a contraction where f̃ is defined by f̃ (X) := f ◦ X.
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Proof. We denote by ϕa
S and ϕa

T the maps (made by means of the metrics dS and dT ) which constitute bases for the
c.i.p. approach gauges on R(S) and R(T ) respectively. It suffices now to note that for any a > 0 and any X, Y ∈ R(S)

ϕa
T ( f ◦ X, f ◦ Y ) � ϕa

S(X, Y ). �
If we put Polm for the category of complete separable metric spaces and contractions then it follows from 4.5 that

Polm → App :

{
S → (R(S), δp),

f → f̃

is functorial.
In analogy to Theorem 3.10 we have the following result where K stands for the Ky-Fan metric [4], which we recall is

given by

K (X, Y ) := inf
{
α > 0

∣∣ P
{
ω

∣∣ d
(

X(ω), Y (ω)
)
� α

}
� α

}
.

In the following proposition the inequality K � dI is known [23].

Proposition 4.6. The following inequalities (as approach distances) hold: K � δp � dI .

Proof. This is an easy consequence of the definitions and the fact that the gauge of the c.i.p. approach structure is generated
by the collection B2 = {Kγ | γ > 0} (see 4.2). �

Again, as was the case for the weak approach structure, the c.i.p. approach structure turns out to be complete, and this
irrespective of whether the original metric on S was complete or not.

Theorem 4.7. The c.i.p. approach structure is complete.

Proof. From [9] (see also 2.6) we know that in order to verify that an approach space is complete it is sufficient to verify
that its metric coreflection is complete. So all we have to do is show that de indicator metric is complete. Let (Xn)n be
dI -Cauchy and choose a subsequence (Xkn )n with the property that for each n, P (Xkn �= Xkn+1) � 1

2n . By the Borel–Cantelli
lemma we now have that P (A) = 0 if we set A := ⋂

m

⋃
n�m{Xkn �= Xkn+1}. Observe that for each ω ∈ Ω \ A the sequence

Xkn (ω) is eventually constant. We denote this constant value by X(ω). Now X is an almost everywhere defined random
variable and it is obvious that (Xkn )n converges almost everywhere, and hence also in probability, to X . We claim that even
dI (Xkn , X) converges to 0 as n tends to ∞.

In order to prove this claim, fix ε > 0 and let n0 be such that for all m � n � n0 we have dI (Xkn , Xkm ) � ε . Now since for
all k ∈ N0 and all m � n � n0 we have

P

(
d(Xkn , X) >

1

k

)
� P

(
d(Xkn , Xkm ) >

1

2k

)
+ P

(
d(Xkm , X) >

1

2k

)
� ε + P

(
d(Xkm , X) >

1

2k

)
,

we get, after letting first m → ∞ and then k → ∞, that P (d(Xkn , X) > 0) � ε for all n � n0 whence the claim, and we are
done. �
Proposition 4.8. The c.i.p. approach structure is first countable in the sense that for each P ∈ P (S) the localized gauge

G p(P ) := {
d(P , ·) ∣∣ d ∈ G p

}
has a countable base, consequently by and large, sequences suffice.

Proof. This is an immediate consequence of the definition of either the base B1 or the base B2 as in both cases the indices
of the functions in the base may be restricted to range e.g. over the sequence { 1

n | n � 1}. �
We end this section with some important relations between the structures which we have introduced on P (S) and

R(S) respectively. We recall that if X is a random variable, then its law is the probability measure P X in P (S) defined by
P X (B) := P (X−1(B)), for all B ∈ B (the so-called image measure).

It is well known that convergence in probability of a sequence of random variables implies weak convergence of their
laws. Since δp has the topology of convergence in probability as topological coreflection and δw has the weak topology as
topological coreflection it is natural to ask what becomes of the above property in the new setting.
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Proposition 4.9. The function

L : (R(S), δp
) −→ (

P(S), δw
) : X −→ P X

is a contraction, and consequently for any sequence of random variables (Xn)n and any random variable X, we have

λw
((

L(Xn)
)

n

)(
L(X)

)
� λp

(
(Xn)n

)
(X).

Proof. Let X ∈ R(S) and A ⊂ R(S). We use the following expressions

δw
(
L(X), L(A)

) = sup
H

inf
Y ∈A

dH
3

(
L(X), L(Y )

)
and

δp(X, A) = sup
a>0

inf
Y ∈A

ϕa(X, Y )

where H ranges over finite sets of uniformly continuous maps with range [0,1]. Let H be such a set and let ε > 0 be fixed.
For all f ∈ H, choose θ f > 0 such that, for all x, y ∈ S , d(x, y) � θ f ⇒ | f (x) − f (y)| � ε and put θ := min f ∈H θ f . Then it
will suffice to prove that, for all Y ∈ A, we have dH

3 (L(X), L(Y )) � ϕθ (X, Y ) + ε. This follows from

dH
3

(
L(X), L(Y )

) = sup
f ∈H

∣∣∣∣∫ f ◦ X dP −
∫

f ◦ Y dP

∣∣∣∣
� sup

f ∈H

( ∫
{d(X,Y )<θ}

| f ◦ X − f ◦ Y |dP +
∫

{d(X,Y )�θ}
| f ◦ X − f ◦ Y |dP

)
� sup

f ∈H

(
ε + P

({
ω

∣∣ d
(

X(ω), Y (ω)
)
� θ

}))
= ε + ϕθ (X, Y ). �

Corollary 4.10. ([4]) If a sequence of random variables (Xn)n converges in probability to a random variable X, then it also converges
in law to X.

Corollary 4.11. If a sequence of random variables (Xn)n converges to a random variable X in the topology generated by the indicator
metric, then their laws converge to the law of X in the total variation metric.

A converse to 4.10 also holds in case the limit random variable is constant. This result too has the appropriate general-
ization.

Proposition 4.12. If x ∈ S and (Xn)n is a sequence of random variables on S, then we have that λp((Xn)n)(x) � λw((L(Xn))n)(Px).

Proof. Suppose that 0 < a < λp((Xn)n)(x); then it follows from 4.4 that we can find b > 0 such that

∀n∃m � n: P
({

d(Xm, x) � b
})

� a.

Now define

f : M −→ [0,1] : y −→ d(x, y)

b
∧ 1.

Then f is a continuous map on S and∣∣∣∣ ∫ f dP Xm −
∫

f dP x

∣∣∣∣ =
∣∣∣∣ ∫ f dP Xm

∣∣∣∣
�

∣∣∣∣ ∫
{d(Xm,x)�b}

f ◦ Xm dP

∣∣∣∣
� a,

and consequently a � λw(((L(Xn))n))(Px), which proves our claim. �
Corollary 4.13. ([4]) If x ∈ S and (Xn)n is a sequence of random variables which converges in law to Px, then it also converges in
probability to the random variable with constant value x.
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The combined results of 3.7, 4.5 and 4.9 show that if f : S → T is a contraction then the following is a commutative
diagram of contractions for the weak and c.i.p. approach structures. As an immediate consequence, applying the topological
and metric coreflections, the diagram is also a commutative diagram of continuous maps for the weak topologies and the
topologies of convergence in probability and a commutative diagram of contractions for the total variation metrics and the
indicator metrics.

R(S)
f̃

L

R(T )

L

P(S)
f̂

P(T )

5. A version of Prokhorov’s theorem

In analogy with the index of compactness (see [9,10,2] and 2.5), for a set Γ ⊂ P (S) we define its index of relative
sequential compactness (w.r.t. δw ) as the number

cδw (Γ ) := sup
(Pn)n

inf
(Pkn )n

inf
P∈P(S)

λδw (Pkn)(P )

the supremum being taken over all sequences (Pn)n in Γ and the first infimum over all subsequences (Pkn )n . We have the
following important theorem.

Theorem 5.1. A collection of probability measures Γ ⊂ P (S) is weakly relatively sequentially compact if and only if cδw (Γ ) = 0.

Proof. The ‘only if ’-part follows immediately from the definition of cδw (Γ ). The ‘if ’-part however requires a more technical
argument and, maybe surprisingly, involves the fact that δw (or equivalently dTV ) is complete. Let Γ be a collection of
probability measures on S such that cδw (Γ ) = 0 and consider a sequence (Pn)n in Γ . Choose a subsequence (Pk2(n))n and a
probability measure Q 2 ∈ P (S) such that

λδw (Pk2(n))(Q 2) � 1/2.

Now choose a further subsequence (Pk2◦k3(n))n and a probability measure Q 3 ∈ P (S) such that

λδw (Pk2◦k3(n))(Q 3) � 1/3.

We may continue this procedure ending up for each m � 2 with a sequence (Pk2◦···◦km(n))n and a probability measure
Q m ∈ P (S) such that

λδw (Pk2◦···◦km(n))(Q m) � 1/m. (15)

For simplicity in notation, for any m we will let km := k2 ◦ · · · ◦ km so that (Pkm(n))n stands for the mth consecutive subse-
quence of (Pn)n . We claim that (Q m)m is a dTV -Cauchy sequence. Indeed, fix q > p � 2, then for each n and α > 0 we have
the estimate

sup
A∈B S

(
Q p(A) − Q q

(
A(2α)

))
� sup

A∈B S

(
Q p(A) − Pkq(n)

(
A(α)

)) + sup
A∈B S

(
Q q(A) − Pkq(n)

(
A(α)

))
entailing that

sup
A∈B S

(
Q p(A) − Q q

(
A(2α)

))
� lim sup

n
sup
A∈B S

(
Q p(A) − Pkq(n)

(
A(α)

)) + lim sup
n

sup
A∈B S

(
Q q(A) − Pkq(n)

(
A(α)

))
� lim sup

n
sup
A∈B S

(
Q p(A) − Pkp(n)

(
A(α)

)) + lim sup
n

sup
A∈B S

(
Q q(A) − Pkq(n)

(
A(α)

))
which, applying inequality (15) twice, finally leads to

dTV(Q p, Q q) = sup
α>0

sup
A∈B S

(
Q p(A) − Q q

(
A(α)

))
� λδw (Pkp(n))(Q p) + λδw (Pkq(n))(Q q)

� 1/p + 1/q.
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Hence, (Q m)m is a dTV -Cauchy sequence. The completeness of dTV allows us to conclude that (Q m)m must converge in total
variation to a probability measure P . Now consider the diagonal sequence (P ′

n := Pkn(n))n , which is a subsequence of (Pn)n .
We will prove that (P ′

n)n converges weakly to P , demonstrating the fact that Γ is weakly relatively sequentially compact.
Fix ε > 0 and choose m such that dTV (P , Q m) < ε/2 and 1/m < ε/2. Then for each n and α > 0 we have the estimate

sup
A∈B S

(
P (A) − P ′

n

(
A(2α)

))
� sup

A∈B S

(
P (A) − Q m

(
A(α)

)) + sup
A∈B S

(
Q m(A) − P ′

n

(
A(α)

))
which, applying inequality (15), entails that

lim sup
n

sup
A∈B S

(
P (A) − P ′

n

(
A(2α)

))
� sup

A∈B S

(
P (A) − Q m

(
A(α)

)) + lim sup
n

sup
A∈B S

(
Q m(A) − P ′

n

(
A(α)

))
� sup

A∈B S

(
P (A) − Q m

(
A(α)

)) + lim sup
n

sup
A∈B S

(
Q m(A) − Pkm(n)

(
A(α)

))
� ε/2 + 1/m < ε.

Since the foregoing inequality holds for all ε > 0 and α > 0, we see that λδw (P ′
n)(P ) = 0, which implies the weak conver-

gence of (P ′
n)n to P . �

We recall that a collection Γ of probability measures on S is said to be tight iff for every ε > 0 there exists a compact
set K ⊂ S such that for all P ∈ Γ we have P (S \ K ) < ε . We generalize this notion in two ways. For a collection Γ ⊂ P (S)

we define its weak index of tightness as the number

tw(Γ ) := sup
G

inf
G0

sup
P∈Γ

P

(
X
∖⋃

G0

)
where G ranges over all open covers of S and G0 over all finite subcollections of G .

Theorem 5.2. For a metric d metrizing S and Γ ⊂ P (S) we have

tw(Γ ) = sup
δx

inf
Y

sup
P∈Γ

P

(
S
∖ ⋃

x∈Y

Bd(x, δx)

)
,

the first supremum ranging over all choices δx > 0, x ∈ S, and the infimum over all finite sets Y in S.

Proof. Let us denote the right hand side by b(Γ ).
tw(Γ ) � b(Γ ): Fix ε > 0 and an open cover G of S and assume that G consists of countably many Gn increasing to S . For

each x ∈ S we let nx be the smallest natural number for which x ∈ Gnx and we choose δx > 0 so small that Bd(x, δx) ⊂ Gnx .
Now pick a finite set Y in S so that P (S \ ⋃

x∈Y B(x, δx)) � b(Γ ) + ε for all P ∈ Γ . Observe that since Y is finite, it must be
contained in a set Gn0 belonging to G . Furthermore, for each x ∈ Y we have B(x, δx) ⊂ Gnx ⊂ Gn0 , by construction of nx . It
follows that P (S \ Gn0 ) � P (S \ ⋃

x∈Y B(x, δx)) � b(Γ ) + ε for all P ∈ Γ . Hence we infer that tw(Γ ) � b(Γ ).
b(Γ ) � tw(Γ ): Fix ε > 0, δx > 0 for all x ∈ S and let G be the open cover consisting of all balls Bd(x, δx). Since we can

pick finitely many xi such that P (S \ ⋃
i Bd(xi, δxi )) � tw(Γ ) + ε , it easily follows that b(Γ ) � tw(Γ ). �

We recall the definition of an Atsuji space. A metric space is called an Atsuji space if any pair of nonempty disjoint
closed subsets lie at a strictly positive distance from each other or equivalently if any open cover has a Lebesgue number
[1,13] which is why they are also called Lebesgue spaces. Typical extreme examples are a compact space on the one hand
and a discrete space, e.g. N, on the other.

Proposition 5.3. If (S,d) is (moreover) an Atsuji space then it is possible to replace the choice of radii (δx)x in the foregoing result by
a fixed choice for all points, i.e. then

tw(Γ ) = sup
δ>0

inf
Y

sup
P∈Γ

P

(
S
∖ ⋃

x∈Y

Bd(x, δ)

)
the infimum ranging over all finite sets Y in S.

Proof. This is an immediate consequence of the fact that in an Atsuji space every open cover has a Lebesgue number. �



850 B. Berckmoes et al. / Topology and its Applications 158 (2011) 836–852
We define the strong index of tightness of Γ as the number

ts(Γ ) := inf
K

sup
P∈Γ

P (S \ K )

the infimum being taken over all compact sets K ⊂ S . Observe that the inequality tw(Γ ) � ts(Γ ) always holds true. The
following theorem illustrates the fact that both indices indeed generalize the classical notion of tightness.

Theorem 5.4. A collection Γ of probability measures on a complete separable metric space S is tight if and only if tw(Γ ) = 0 if and
only if ts(Γ ) = 0.

Proof. We restrict the proof to the only non-trivial assertion, namely that tw(Γ ) = 0 implies tightness of Γ . Fix ε > 0.
Choose a countable dense subset {xi | i ∈ N} then for any m � 1 the family of balls (B(xi,1/m))i is an open cover and thus
there exists a finite subset (B(xi,1/m))i=0,...,nm such that

∀P ∈ Γ : P

(
X
∖ nm⋃

i=0

B(xi,1/m)

)
� ε

2n
.

Put

K :=
∞⋂

m=1

nm⋃
i=0

B(xi,1/m)

then K is compact and for all P ∈ Γ , P (X \ K ) � ε . �
That the indices of compactness and tightness also produce meaningful non-zero values is shown by the following simple

example.

Example 5.5. Consider the real line with the usual Borel σ -algebra, fix α > 0 and let Γ be the set of all probability measures

Pn := (1 − α)δ0 + αδn

where δx stands for the Dirac measure at x and where n is any natural number � 1. Then it is easily verified that both the
weak and strong index of tightness and the index of relative sequential compactness are equal to α.

Theorem 5.7 will provide us with important inequalities generalizing Prokhorov’s theorem. For its proof some preparation
is required.

For a collection Γ of probability measures on a separable metric space S and ε > 0 we will consider the set

Γ (ε) := {(
1 − ε′)P + ε′ Q

∣∣ P ∈ Γ, Q ∈ P(X), 0 � ε′ � ε
}
, (16)

see e.g. [12] for the use of these types of “contaminated” sets in robust statistics. The following lemma furnishes an estimate
for the index of relative sequential compactness of such sets.

Lemma 5.6. For a set Γ ⊂ P (S) and ε > 0 we have the estimate

cδw

(
Γ (ε)

)
� cδw (Γ ) + ε.

Proof. Take Γ ⊂ P (S) and ε > 0. Then for a sequence (Rn)n where

Rn := (1 − εn)Pn + εn Q n

in Γ (ε) and δ > 0 we find a subsequence (Pkn ) of (Pn) and probability measure P such that

sup
α>0

lim sup
n

sup
A∈B S

(
P (A) − Pkn

(
A(α)

))
� cδw (Γ ) + δ.

Now the inequality

sup
α>0

lim sup
n

sup
A∈B S

(
P (A) − Rkn

(
A(α)

))
= sup

α>0
lim sup

n
sup
A∈B S

(
P (A) − Pkn

(
A(α)

) + εkn(Pkn − Q kn)
(

A(α)
))

� sup
α>0

lim sup
n

sup
A∈B S

(
P (A) − Pkn

(
A(α)

)) + ε

�
(
cδw (Γ ) + δ

) + ε

establishes the desired result. �
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The reason for introducing both a weak and strong index of tightness will become clear in our general form of a
Prokhorov theorem for distances, as they turn out to provide respectively a lower and an upper bound for the index of
weak compactness, which in consequence allows us to derive some further interesting results.

Theorem 5.7 (Prokhorov for distances). For every collection Γ of probability measures on a complete separable metric space S the
following inequalities are valid

tw(Γ ) � cδw (Γ ) � ts(Γ ).

Proof. tw(Γ ) � cδw (Γ ): Suppose that cδw (Γ ) < γ and choose ε > 0 such that cδw (Γ ) < γ − ε . Take a countable open cover
G := {Gn | n ∈ N} and suppose that for all n ∈ N there exists Pn ∈ Γ such that

Pn

(
n⋃

i=0

Gi

)
< 1 − γ .

Since cδw (Γ ) < γ − ε there exists a subsequence (Pkn )n and a P ∈ P (X) such that

λδw (Pkn → P ) < γ − ε.

This implies that for all n

P

(
n⋃

i=0

Gi

)
� sup

m
inf

l�m
Pkl

(
n⋃

i=0

Gi

)
+ γ − ε

� sup
m,km�n

inf
l�m

Pkl

( kl⋃
i=0

Gi

)
+ γ − ε

� 1 − γ + γ − ε = 1 − ε.

However, since
⋃n

i=0 Gi ↑ X this is impossible. Hence there exists a finite subset G0 ⊂ G such that for all P ∈ Γ we have
P (X \ ⋃

G0) � γ , and thus tw(Γ ) � γ .
cδw (Γ ) � ts(Γ ): Fix ε > 0. Now we are allowed to pick a compact set K ⊂ S such that the inequality P (S \ K ) � ts(Γ )+ε

is valid for every probability measure P ∈ Γ . If we put Γ (· | K ) := {P (· | K ) | P ∈ Γ }, then the relation P = P (K )P (· | K ) +
P (S \ K )P (· | S \ K ) shows that Γ ⊂ Γ (· | K )(ts(Γ )+ε) (see 16). Now note that if there exists a compact set K ⊂ S containing
the support of every probability measure P in a set Λ ⊂ P (S then Λ) is weakly relatively sequentially compact. (Indeed,
since the Daniell–Stone theorem allows us to identify the space of probability measures on S whose support is contained
in K with the space of positive linear functionals λ on C(K ) for which λ(1) = 1, provided with the weak∗ topology, it
suffices to observe that the latter is a closed subspace of the closed dual unit ball of C(K ), and that this ball is compact and
metrizable due to the Banach–Alaoglu theorem, see e.g. [18].) Applying this, Lemma 5.6 and Theorem 5.1, we conclude that

cδw (Γ ) � cδw

(
Γ (· | K )

(
ts(Γ ) + ε

))
� cδw

(
Γ (· | K )

) + ts(Γ ) + ε

= ts(Γ ) + ε

whence the desired inequality. �
Corollary 5.8. ([4,14]) Let Γ be a collection of probability measures on a complete separable metric space S. Then Γ is weakly relatively
sequentially compact if and only if it is tight.

Proof. Let Γ be weakly relatively compact, then by Theorem 5.1 cδw (Γ ) = 0, and by Theorem 5.7 tw(Γ ) = 0. Now Theo-
rem 5.4 allows us to conclude that Γ is tight.

Conversely, let Γ be tight. Then again by Theorem 5.4 we see that ts(Γ ) = 0, and by Theorem 5.7 cδw (Γ ) = 0. Now
Theorem 5.1 implies that Γ is weakly relatively compact. �

Although at present the precise situation with regard to the weak and strong indices of tightness is not yet completely
understood we do have the following results.

Theorem 5.9. Assume that there exists a sequence (Un)n of relatively compact open sets which increases to S. Then for Γ ⊂ P (S) we
have

tw(Γ ) = cδw (Γ ) = ts(Γ ).
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Proof. It suffices to show that in this case ts(Γ ) � tw(Γ ). Let ε > 0. Now it is possible to find a Un such that supP∈Γ P (S \
Un) � tw(Γ ) + ε . Let K be the compact set Un and observe that, since Un ⊂ K , we have supP∈Γ P (S \ K ) � supP∈Γ P (S \
Un) � tw(Γ ) + ε . We conclude that ts(Γ ) � tw(Γ ). �

Theorem 5.9 has the following obvious corollary for Euclidean spaces.

Corollary 5.10. For Γ ⊂ P (Rd) we have tw(Γ ) = cδw (Γ ) = ts(Γ ).
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