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Abstract 

This paper extends the order-theoretic approach to computable analysis via continuous do- 
mains to complete metric spaces and Banach spaces. We employ the domain of formal balls 

to define a computability theory for complete metric spaces. For Banach spaces, the domain 
specialises to the domain of closed balls, ordered by reversed inclusion. We characterise com- 
putable linear operators as those which map computable sequences to computable sequences and 
are effectively bounded. We show that the domain-theoretic computability theory is equivalent 
to the well-established approach by Pour-El and Richards. @ 1999 Published by Elsevier Science 
B.V. All rights reserved. 

1. Introduction 

This paper is part of a programme to introduce the theory of continuous domains 

as a new approach to computable analysis. Initiated by the various applications of 

continuous domain theory to modelling classical mathematical spaces and performing 

computations as outlined in the recent survey paper by Edalat [6], the authors started 

this work with [9] which was concerned with computability on the real line. Here we 

will deal with computability on metric and Banach spaces. 

Continuous domains were introduced independently by Dana Scott [20] and 

Yuri Ershov [lo]. Their traditional use is in programming semantics, but recently they 

have been successfully employed as computational models for spaces in classical math- 

ematics. 

A continuous domain is a partially ordered set equipped with the notions of com- 

pleteness and approximation. The completeness axiom requires existence of least upper 

bounds for all directed subsets, and the approximation axiom implies that all elements 

arise as directed suprema of their essential parts or approximants. These axioms pro- 
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vide the link to the machine-based level of recursion theory or Turing machines: We 

enumerate a convenient set of approximants and let the machine operate on this set. 

In our earlier paper [9], we started a systematic exploration of the use of continuous 

domains for computable analysis by considering computability on the real line, the 

complex plane, and Iw”. It was shown that the resulting notion of computability is 

equivalent to the work of Pour-El and Richards [ 181. Stoltenberg-Hansen and Tucker 

[22] had already shown this equivalence when one uses a so-called algebraic domain 

to model the real numbers. 

The present paper extends the continuous domain-theoretic framework to deal with 

metric spaces and Banach spaces. The domain employed for this purpose is the domain 

offormal balls, defined in [7], which, for Banach spaces, coincides with the collection 

of all closed balls ordered by reversed set inclusion. Hence every point is represented 

as intersection of a shrinking sequence of balls, a straightforward generalisation of the 

well-established representation of real numbers by shrinking sequences of intervals. 

Our main result is that the continuous domain-theoretic notion of computability struc- 

ture for a Banach space coincides with the notion of computability structure in terms of 

computable sequences suggested by Pour-El and Richards [ 181. The domain-theoretic 

setting gives rise in a natural way to a notion of computable operator, which coincides 

with the corresponding notion implicitly given in the work of Pour-El and Richards. 

While this paper was being prepared, Stoltenberg-Hansen and Tucker independently 

gave in [23] an approach to computability for Banach spaces using algebraic domains 

and proved that, under an additional technical condition which is satisfied in all known 

cases, it is equivalent with the notion of Pour-El and Richards. In loc.cit. they also 

show the effective equivalence of algebraic and continuous domain representability. 

Just as one finds different approaches to discrete computability theory, e.g. recursive 

functions, the I-calculus, Turing machines, Post systems, the RAM machine, there are 

also various different approaches to continuous computability theory or computable 

analysis, each focusing on different aspects. To name but a few, there are the so-called 

Russian [5] and Polish [ll, 141 recursion theoretic approaches, Weihrauch’s Turing 

machine approach also called Type 2 Theory of Effectivity (TTE) [ 13,24,26], the work 

of Stoltenberg-Hansen and Tucker which employ algebraic domains [21-23,3,4], and, 

finally, the axiomatic approach by Hauck [ 121 and Pour-El and Richards [ 181. 

With this work, we provide the working mathematician and computer scientist with 

continuous domains as another choice to approach continuous computability theory. In 

this approach the computational structure, i.e. the continuous domain, serves a multiple 

purpose. First, it provides the means to supply the classical space with an effective 

structure. Second, it may be used to perform actual computations. And third, it is a rich 

mathematical object and can possibly be used to re-develop the classical mathematical 

theory with the domain replacing the classical space, thus incorporating effectivity for 

free. 

In the case of the interval domain modelling the real line, the first of these points is 

addressed in our previous paper [9]. An example for the second point is the theoretical 

framework and implementation of a package providing exact real arithmetic by Edalat 
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and Potts [ 17,8]. The last point can be seen as partly covered by the well-established 

theory of interval analysis [ 15,2]. For Banach spaces as dealt with in the present paper, 

the last two points have yet to be tackled in future work. 

Note that we deliberately do not give a formal definition when a domain is a com- 

putational model for a space. We rather propose to use this term informally: A com- 

putational model for a space is a domain which is constructed in a simple way to 

represent the space and is useful in performing various computations on the space. 

We will use the terminology and results of [9]. Our main reference for recursion 

theory is Rogers [ 191 and for domain theory is Abramsky and Jung [ 11. 

2. Computability on metric spaces 

In this section, we briefly show how to extend the results of [9] to cover computabil- 

ity on metric spaces, based on the domain of formal balls which was introduced by 

Edalat and Heckmann in [7]. 

2.1. The domain of formal balls 

Suppose (X, d) is a complete metric space. Let rWt = {X E [w 1 x 2 0) denote the set 

of nonnegative real numbers. The domain of formal balls is the set 

B(X)={I}U(X x rw,‘) 

endowed with the order defined by I &A for all A E B(X) and 

(x,r)cI(y,s) ++ d(x,y)+s<r. 

The poset (B(X), C ) is a continuous domain. The way-below relation turns out to be 

I <A for all A E B(X) and 

(x,r)<(y,s) w d(x,y)+s<r. 

An element is maximal iff it is of the form (x, 0) for some x EX. The space X 

in the metric topology is via x H (x,0) homeomorphic to the set of maximal ele- 

ments with the relative Scott-topology. If X0 C X is a dense subset of X then the set 

{~]U{( )I x X,Y XE 0, ~EQ, rbO} is a basis for (B(X),c). 
For every Lipschitz-continuous function f :X -+ Y between the metric spaces (X,d) 

and (Y, d) with a Lipschitz-constant M, satisfying d( f (x), f (x’)) <Md(x,x’) for all 

X,X’ E X, there is a Scott-continuous extension g : B(X) + B(Y) to the domains of for- 

mal balls. It is defined by g(l)= I and g((x,r))=(f(x),Mr) [7, Theorem 3.11. 

2.2. EfSeective metric spaces 

If (X,d) is a separable metric space, then the domain of formal balls is w-continuous 

and we are in the position to endow it with an effective structure. 
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Definition 1. An effectively given metric space is a complete metric space with a 

countable dense subset {xc,xi,x~, . .} such that the domain of formal balls is effectively 

given with respect to the basis {Bo, Bi, . . .} with Ba = I and 

~(,,rn).1 = (&I, 14m I>, 

where (., .) : N + N is a standard pairing function. 

Theorem 2. A dense sequence x0,x1,x2,. . in a complete metric space gives rise to 

an effective representation if and only if the relation 

d(x,,x,,z)<qk 

is r.e. in n, m, k. 

Proof. The domain of formal balls is effectively given with respect to the basis {&,Bi, 

. . .} as defined above iff the order of approximation is r.e. This is the case iff the relation 

d(x,,x,~) + lqrnf I < lqml is r.e. As addition of rational numbers and the absolute value 

function are recursive in the indices, this proves the theorem. 0 

In [25] Weihrauch defines a computable metric space to be a metric space with 

a dense sequence (a,,),, E N such that the relation d(a,,a,) <qk is r.e. in n,m, k. So 

Theorem 2 means, in particular, that a complete metric space is effectively given in our 

sense if and only if it is a computable metric space in the sense of loc.cit. The stronger 

assumption of both qk < d(a,, a,,,) and d(a,, a,) < qk being r.e. is part of Moschovakis’s 

definition of a recursive metric space [16], the other part being countability of X. This 

stronger condition is implied by the requirement of < being recursive rather than 

merely r.e. Blanck investigates in [3,4] metric spaces with a countable dense subspace 

on which the distance function takes values in a computable ordered field and can be 

tracked by a recursive function. He constructs effective domain representations of these 

spaces in the spirit of Stoltenberg-Hansen and Tucker by using the ideal completion 

of the set of finite consistent sets of formal balls. 

Note that our model for metric spaces is quite similar to our model for the reals [9]. 

The dense sequence (x,),~N takes over the role of the rationals (qn)nEN. Writing the 

intervals in the form [x - Y,X + Y] makes this similarity even more apparent. In fact, 

the interval domain is isomorphic to the domain of formal balls of the real line. So it 

is not surprising that many of the definitions and results from [9] easily transfer to the 

more general setting of complete metric spaces. If (X,d) is an effective metric space we 

denote the resulting enumeration of computable elements of B(X) by 5,~ : N + B(X). 

We say that an element x EX is computable if &(n) = (x,0) for some n E N. A 

sequence (Y,)~~N in X is computable if there is a total recursive function f : N --t N 
such that (y,,O)=Mf(n)). 

Theorem 3. An element x EX is computable ifs it is the effective limit of a sequence 

(xn, )iEFU, i.e. ifs there is f : N 4 N recursive such that d(x,x,f(,)) < l/2” for all n E N. 
This equivalence is eflective. 
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Proof. The proof of the (only if) part is identical to that of Theorem 15 of [9]. For 

the (if) part, we need to change the proof of Theorem 18 of Zoc.cit. as follows. 

Assume f : N + N is such that d(x~(,,),x)62-” for all n E N. Define h: N t N total 

recursive such that 

Bh(n) = (X,.+2,. $,). 
Then Bhcn) &(x,0) and the sequence (B~c~)),,~N is increasing as d(~~(,,+~),x~(~+3,) + 

l/(2”+‘) d4x/(n+z),X)+4xJ f(n+3))+ l/(2”+‘) < 1/(2”+2)+ 1/(2”+3)+ l/(2”+‘) < l/2”. 

Since limn+oo l/2” = 0, the lub of this chain is maximal, hence this lub must be (x, 0). 

Therefore, an index for the function h is an index for (x,0). 0 

As in the case of the real line, effectivity allows us to characterise the computable 

sequences [9, Theorem 201. 

Corollary 4. A sequence (yn), l N is computable tf and only tf there is a total recur- 

sive function r : N x N -+ N such that d(X,.(,,k), ~,,)<2-~ for all n, k E N. This equiv- 
alence is effective. 

2.3. Computable functions 

Definition 5. A function f :X + Y between effectively given metric spaces is com- 
putable iff there is an extension g : B(X) + B( Y) (i.e. g((x, 0)) = (f(x), 0) for all x E X) 

which is computable in the sense of effective domain theory. 

Theorem 6. A function with a given Lipschitz constant between effectively given met- 

ric spaces is computable if and only if it maps computable sequences of points to 
computable sequences. 

Proof. Necessity of this condition is immediate. For sufficiency, assume that f :X -+ Y 
is Lipschitz-continuous and maps computable sequences to computable sequences. De- 

note the dense sequences specifying the effective structure of X and Y by (x,),~ N and 

(Yn)nE NV respectively. As f maps computable sequences to computable sequences, 

there is h : N -+ N recursive such that (f (x,), 0) = Sr(h(n)) for all n E N. Assume 

M E R is a computable Lipschitz constant for f. Then the extension g : B(X) + B( Y) 
of f is defined by g(1) = I and g((x, r)) = (f (x),Mr). It remains to show computabil- 

ity of this function. Observe that 

(~i,Iqjl)~g((x,,Iq,I)) @ d(yi,f(x,))+Mlq,I<lqjl 

* d(yi,f(x,))< max(O, Iqjl - Mlq,l) 

@ (yi,max(O, Iqjl - Mlqml)) K SdO>>. 

As h is recursive and as the arithmetic operations on the rationals are computable, this 

relation is r.e. in the indices n,m, i, j. 0 
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Remark. Note that for a Lipschitz function to be computable it is essential to explicitly 

have a Lipschitz constant. If we only know that some Lipschitz constant exists, but do 

not have one explicitly, we cannot construct the extension to the domain of balls. 

3. Computability on Banach spaces 

A Banach space is a complete normed vector space. For simplicity, we only consider 

Banach spaces over the reals. The origin in a Banach space is denoted by 0. 

3.1. Balls in Banach spaces 

With the definition d(x, II) = IIx-yll, every Banach space is a complete metric space. 

Hence, a natural candidate for endowing Banach spaces with a computability structure 

is the domain of formal balls which we met in Section 2. For normed vector spaces, 

in particular for Banach spaces, the theory simplifies significantly: For these spaces the 

poset of formal balls coincides with the set of closed balls, ordered by reversed set 

inclusion [7, Theorem 2.141. We use the notation 

for the closed ball of radius Y around the point x EX. So the domain of balls is the 

set 

B(X)={J_}U{C(X,~)IXEX, t-20) 

endowed with the order I CA for all A E B(X) and 

W,r)LW,s) H W,r)> C(y,s) 

H (lx - yll +s<r. 

Recall that the order of approximation < is given by I <A for all A E B(X) and 

C(x,r)<C(y,s) H IIx-yll +s<r. 

We are now going to extend the vector space operations and the norm to the balls. 

Addition + : B(X) x B(X) -+ B(X) is defined by 

C(x, r) + C(y, s) := C(x + y, r + s) 

and I+B=B+i:=l for all BEB(X). 
Scalar multiplication in this setting is of type .f x B(X) 4 B(X) and is defined by 

[a - 8, c( + a] . C(x,r) := C(srx, El/xl] + IaIr + w) 

and 1 B = I . I := i for all B E B(X) and I E .Y. This definition might seem rather 

involved, but we will see in Proposition 8 below that this choice of extension of 

scalar multiplication is canonical. Observe that the special cases E = 0 and r = 0 give 
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results for the scalar product [M - E, CI + E] . C(x, r) which are intuitive, namely {a} 

C(x,r) = C(crx, ]a]r) and [a - a, E + F] {x} = C(xx, ~llxl]). 

Finally, for the norm, we set 

IIW~~>ll := [II4 - r? IIXII + rl 

and 111//:=l to get I].]I:B(X)-+9. 

Proposition 7. Addition, scalar multiplication, and the norm as defined above are 
Scott-continuous. Restricted to maximal elements, they yield the usual operations. 

Proof. Monotonicity of the operations is easily verified from the definitions. For scalar 

multiplication, we have to use the fact that C(x, r) C C(y,s) implies ]lxll + r >, lly]i + s. 

In order to verify that [CI - E, a + s]C(x, r) C [a - E, c1+ E]C( y, s) we calculate 

Ilax - 4 + 4YII + 14s + f2.7 = 14~11~ - YII + s> + 4s + llYll> 

G I+ + EC7 + ll-xllI 

by the above observation. Monotonicity in the first argument is shown in a similar fash- 

ion. Preservation of directed suprema for all three operations is immediate by the char- 

acterisation in terms of limits: We have C(x, r) = Vi,, C(x,, r,) iff x = lim,,, x, and 

r = lim,,, r,,. Thus x+ y = limn+oo (x, + y) and r+s = lim,,, (m +s), so C(x, r)+ 

C(Y,S> = V%EN (a x,, r,,) + C( y, s)). Hence addition is Scott-continuous. (Recall that 

separate continuity is equivalent to joint continuity for functions f : D x D’ + E be- 

tween domains.) It is obvious that we get the usual operations in the case that r = s = c 

=o. 0 

The extension of the norm can also be seen as a special case of the extension of 

Lipschitz-continuous functions to the domain of balls for metric spaces (cf. the end 

of Section 2.1, and, for computability, Theorem 17). For every Banach space X, the 

norm ]I . II :X + R is Lipschitz-continuous with constant M = 1. The extension to the 

balls is exactly the norm for B(X) as defined above. 

We defined the operations on balls by referring to centres and radii. As we are 

dealing with subsets, another possibility would be to consider the pointwise operations. 

For addition, the two approaches coincide as the next proposition shows. In the case 

of scalar multiplication, however, the pointwise operation does not necessarily yield a 

ball as result. But we have made the best possible choice: 

Proposition 8. Suppose (X, /I . 11) is a Banach space. Then 

(1) C(x, r) + C(y, s) = {x’ + y’ I x’ E C(x, r) & y’ E C(y, s)}. 

(2) [c! - E,LY + .Z]C(x,r)l {PY]/IE [a - E,c? + E] & YE C(x,r)}. 

(3) There is no smaller ball than [U - E,CL + ~]C(x,r) which is centred at ax and 
contains the pointwise scalar product as in (2). 

(4) IIC(x,r)ll 2 {IIYII I YE W,r>I. 
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(5) There is no smaller interval than jjC(x, r)ji w IL IS centred at /{x// and contains h’ *h . 

the pointwise norm as in (4). 

Proof. Note that y E C(x, Y) iff there is x’ with l[x’II 6r and y =x + x’. Using this, 

one readily sees that the right-to-left inclusions hold. As an example, we show (2), 

the most involved case. Suppose y E C(x, Y) and /I E [a - E, cx + a]. Write y =x + x’ 

with [Ix’/] <r. Then /3y = fix + px’ = CYX + (,8 - a)x + Bx’ and II(/? - a)x + px’ll< Ip - 

WI + lPlr~4~II +(I4 + 1 E r since Ic( - PI d E. For C in (1) assume that z E C(x, r) + 

C(y,s), i.e. that z =x + y + w with /[ w <r + s. We split w as w = [r/(r + s)]w + 11 

[s/(r+s)]w and observe that II[r/(r+s)]wII = [r/(r+s)]llwl/ Gr which implies z E {x’+ 

y’ IX’E C(x,r) & y’~C(y,s)}. To see (3) for the case of ~30 note that x+(r/llxll)xE 

C(x,r) and (ct+E)(x+(r/~IxII)x)=u.x+(~~jxII+a-+ar)x/IIxII so the radius could not be 

smaller. Similarly for adO, with - E and -(r/II x x re acm E and (r/~~x~~)x. Finally 11) pl g 

(5). It suffices to note that x+(r/ll 11) x x is an element of C(x,r) and has norm ]lx]l +r. 

q 

For the case of singleton intervals, the scalar multiplication is indeed the pointwise 

defined scalar product as the latter is a ball. We will write crC(x,r) to abbreviate 

{u}C(x,r) = C(ctx, lair). Al so, as usual, A - B stands for A + (-B), i.e. A + { - 1 }B. 

3.2. EfSectively given Banach spaces 

Definition 9. An effectively given Banach space is a Banach space X with an effective 

structure for the continuous domain B(X) of balls such that addition, scalar multi- 

plication and the norm are computable functions. We denote the effective basis by 

{AoJIJz,...] d 4 an re uire further that the set {n E N I A, = I} be recursive. 

For simplicity, we denote the resulting enumeration of computable elements of B(X) 

with iJx rather than &r(x). Note that the term “effectively given Banach space” always 

refers to a given enumeration of a basis for the domain of balls. Hence a Banach space 

may be effectively given in more than one way. 

Recall that for an interval [a, b] E 9, we denote its length b - a by I [a, b] I. Hence 

for a ball A E B(X), the number I llAl/ I d eno es t its diameter. In fact, we calculate 

l/lC(x,r)lj = [[llxll - r, llxil + r]l =2r. Note that by [9, Lemma 141 and computabil- 

ity of the norm, the relations I IIAn (( ( <qm and (((AaIl 1 >qm are r.e. in n,m. 

Proposition 10. Suppose that (X, I/ . 11) 1s an eflectively given Banach space. Then 

(0) and the unit ball C(0, 1) are computable elements. Moreover, indices for these 

elements can be obtained from the effective structure. 

Proof. To get an index for the unit ball, we make use of the fact that A,, < C(0, 1) iff 

there is r > 1 with A, < C(0, r) iff there is m E N with 1 < I IlAm II I such that A, < (A, - 

A,). (Note that C(x, r)-C(x, r) = C(O,2r).) These relations are r.e. in n, m by the above 

remark and the fact that the operations are assumed computable. 
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With the unit ball at hand, we readily get an index for the origin as (0) = VI,, 

C(0, l/n) = VI,, (lln)C(O, 1). 0 

Let us now turn our interest to the Banach space X, i.e. the set of maximal elements 

of B(X). By Proposition 10 the origin 0 is a computable element of X. Are there any 

other computable elements in the Banach space? Can we lay our hands on them? The 

following proposition is the answer to these questions. We are able to find sufficiently 

many computable elements in X. 

Proposition 11. There is a total recursive function f : N --+ N such that &(f(n)) is u 

maximal element above A, for every n E N. The resulting sequence (x,)~~N of vectors, 

where C(x,, 0) = t(f(n)), is dense in X. 

Proof. Fix iz E N. We construct a recursive function g : N -+ N which gives an increas- 

ing sequence A,(o) CA,(l) C . . . with lub in the maximal elements above A,. Then f(n) 

is defined to be the derived index of the function g and the first part of the proposi- 

tion is proved. For the construction of g, set g(0) = n. To define g(m + 1) for m E N, 

consider the set M,,, = {g(m)} U {i E N 1 A,(,) <Ai}. This certainly is r.e. and hence 

so is M~={iEMmII(AillI<1/2m}. Note that the set h4; is not empty: If g(m)@MA 

then A,(,) is not maximal and so there is a maximal element of B(X) way-above it. 

This certainly implies the existence of a basis element Ai with IIIAillI < l/2” way-above 

A,(,), then i E MA. So, using the Selection Theorem, we may define g(m + 1) to be 

some element of A4;. It is clear that the total recursive function g defined by this 

procedure has the desired property. 

To see that the sequence (x,,)~~N is dense in X, suppose x EX and s>O. Now 

C(x, E) < {x}, hence there is n E N with C(x, E) <<A, < {x}. This implies A, C: C(x, E) 
and as x, EA, we certainly have IIx -x,11 <a. 0 

Observe that this construction is not possible if the basis elements A, are replaced 

by the computable elements <x(n) as the relation &(n)<<A, is not r.e. In fact, there 

is no recursive enumeration of all computable singletons. 

The above constructed sequence of computable maximal elements allows us to pass 

to a more convenient basis for B(X). Let BO = _L and 

&v7z)+1 = wnr MI 
with the sequence (x,), E N from Proposition 11. 

Theorem 12. Every efectively given Banach space is an effectively given metric space. 

In particular, the above constructed set {B0,B1,B2,. . .} is an effective basis for B(X) 
which makes the operations computable. 

Proof. The sequence (xn),, E N is dense in X. Furthermore, the relation 

II% - xmll <q!f 
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is r.e. in n,m, k as the norm is computable. Thus we are dealing with an effectively 

given metric space by Theorem 2. It remains to show computability of the opera- 

tions. This is an easy consequence of computability with respect to the given basis 

{&,A], . . .}, e.g., for addition we have 

c(x;,IqjI)~C(Xn,Iq,I) + C(X,r,Iq,~I) 

* hi - &I +xnOII + (qml + l&d <)qjl 

which is clearly r.e. in i, j,n,m, n’,m’. 0 

So the set comprising all the B, does, in fact, constitute a computability structure 

for X. How does it relate to the original structure? Let us denote the two resulting 

effective domains by (B(X),A) and (B(X), B), respectively. 

Proposition 13. The identity id : B(X) -+ B(X) is B-A computable. 

Proof. Suppose that f : N + N is the function defined in Proposition 11 and that 

no E N is the code for C(0, 1) from Proposition 10. Then 

B(,,)+I = Wnx,, lqml) 
= wm 0) + C(O, lqml > 

= S.df(n>> + kml . tY(~~o). 

As the operations are computable and f is recursive, this shows that the relation 

Ak <B, is r.e. by [9, Lemma 51. 0 

This need not be true for the other direction, in particular, there might be basis 

elements A, which are not computable w.r.t. to the B-structure. But we are not really 

interested in the balls, we are interested in the Banach space. The following proposi- 

tion shows that the identity id :X ---f X has an extension B(X) + B(X) which is A-B 

computable. Hence, the two computability theories for (X, II . 11) coincide and we may 

pass to the more convenient basis {Bo,Bl,. . .}. 

Proposition 14. There is a total recursive function f : N + N such that for every 

n E N the function 4fcn, gives an increasing chain B@,,,,,(o) 5 B4,,“I(~) C . ’ ’ with least 

upper bound C,, := v,‘,, B4,,,,I(i) below <x(n). Zf &x(n) is maximal then C,, =4x(n). 

Proof. The idea how to define f is essentially the same as in the proof of of [9, 

Theorem 151. Employing Proposition 11, we can avoid partiality of f. In detail we 

proceed as follows: 

(1) Start with a natural number n. 

(2) Recall from [9, Section 3.11 that the enumeration 4x of the set of all computable 

elements of B(X) is defined by constructing a total recursive function qx : N + N 
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with the property that for each natural number n the function &x(n) is total and 

such that we get a chain A4,X,.,(c) CAb,,X,“)(i) C . . . with least upper bound &(n). 

(3) Apply Proposition 11 to get a sequence (Xh(i))iEN with Xh(i) E Ag,,Y,,,,(;) for all i E N. 

(4) Define g: RJ + N recursive such that \IIA~~Xix(“,(i)I]] <qs(i) < ]]]A~,,(,,ci,]]] + l/2’. 

(5) Then B(h(i),g(i))+t = C(xh(+ qg(i)) 2 A+n,c.,(i). 
(6) Now we have to make the sequence Ba, B,, . . . increasing. We use the same method 

as in the algorithm for obtaining the enumeration of computable elements in an 

effectively given domain described in [9] just after Proposition 3: 

(a) Define j(O)= (h(O),g(O)) + 1. 

(b) Start with i=O and k= 1. 

(c) The set P = {L’ak I Bj(i) < BQ(P),~(/))+I} C N is r.e. 

(d) Write P= UrnEN P, where the test L E P,,, is recursive in e, m. 

(e) Now, starting with m = 1, each of these sets is tested for the existence of C -$rn 

with e E P,. Whenever no such element is found, we let j(i + m) = j(i) and 

check for the next value of m. 

(f) If, at some stage, there is L’ <m with L E P, then set j(i+ m) = (h(f), g(/‘)) + 1, 

increment i by m, set k = / + 1, and go to step (3.2). 

(7) Now Bj(a) C B,(t) C . . . and VT,, Bj(i) C LY(~>. 
We define f(n) to be the derived index of the function i. It remains to verify that 

C, = (x(n) if the latter is maximal. Maximality of (x(n) means that 1imicN I IIA@,,,(.,ci, II 1 

= 0, so we also have 

(1) 

as qg(i) < i]]As,,,,(i)]] + l/2’ by construction (step (4)). Therefore, it suffices to show 

that for all i, k E N there is ea k such that B (/z(i),g(i))+l K B(wM))+I. This ensures 
that the sequence (Bj(i))icN is not eventually constant and thus its limit is maximal 

by (1). As qg(i)>IIIA~~xc,,(i)II, by (1) there is la&k with qg(i) - IIIA~‘lx(~,(i)/I>q~,~/). 

As c>.i, we have xh(r) EA~~,(.,(/) CAbgX(“)(i). But also xh(i) EA~~~(~)(;), hence /]xh(i) - 

xMdI 6 I IIA4,,~,b(i) II <467(i) - qy(O. This implies B(/z(i),y(i))+l <B(~(Y).~(/))+I. 0 

Thus, the effective structure on X as a Banach space coincides with the constructed 

effective metric space structure. From now on, we will assume the more convenient 

latter form of presentation via a dense sequence (x~)~~N in X and the basis consisting 

of i and the C(xi, ]qjl) as defined above. The results concerning computability of 

points and sequences in metric spaces specialise as follows. 

Corollary 15. (1) An element x EX is computable ifs it is an <fictive limit of a 

sequence (x,, )i E N, i.e. ifs there is f : N + N recursive such that IIx --x.fcn) /I < l/2” for 

all n E N. This equivalence is efective. 

(2) A sequence (y,, ),, E rm is computable if and only ij’ there is a recursive func- 

tion r: N x N + N such that jIxrCn,k, - ynll ~2~~ f or all n, k E fU This equivalence is 

efective. 
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3.3. Computable operators 

As expected, we define those operators to be computable which have a computable 

extension. 

Definition 16. A linear operator f :X + Y between effectively given Banach spaces 

is computable iff there is an extension g : B(X) -+ B(Y) (i.e. g({x}) = {f(x)} for all 

x E X) which is computable in the sense of effective domain theory. 

Recall that a linear operator f :X 4 Y between Banach spaces is bounded if there 

is ME [w such that Ilf(x)li <MIIxII for all xgX. The smallest such bound A4 is the 

norm II f II of f, By linearity, boundedness is equivalent to Lipschitz-continuity. Even 

more, continuity at the origin implies boundedness. 

Theorem 17. A linear operator is computable if and only if it maps computable 

sequences of points to computable sequences and is bounded with an explicitly given 

bound. 

Proof. As boundedness is equivalent to Lipschitz-continuity the (if) part is a direct 

consequence of Theorem 6. For the (only if) part, it is clear that computable sequences 

are mapped to computable sequences. To obtain a bound, suppose g : B(X) 4 B(X) is 

the computable function extending f. Then M:= IlIg(C(O, 1)~~~ is a bound for f. To 

see this, suppose g(C(0, 1)) = C(y, r) and x EX with llxjl = 1. Then C(0, 1) C C(x, 0), 

hence C( y, r) = g(C(0, 1)) G g( C(x, 0)) = C( f (x), 0), thus 11 y - f (x)11 + 0 d r. But we 

also have C(0, 1) C C(O,O) which implies C(y, r) C C(O,O), thus II yll <r. Therefore 

Ijf(x)IIGr+r=M. L inearity implies that A4 is a bound. q 

Remark. (a) As in the case of Lipschitz functions on metric spaces (Theorem 6) it 

is essential to have a bound explicitly given; the mere knowledge of existence of a 

bound will not suffice to construct the extension to the domain of balls. 

(b) Since every computable function is continuous and continuity and Lipschitz- 

continuity coincide for linear operators on Banach spaces, we do not need to assume 

in Theorem 17 that the function is Lipschitz-continuous. This is in contrast to the case 

of metric spaces (Theorem 6), where this assumption had to be made. In fact, there 

are continuous and computable operators on metric spaces which are not Lipschitz- 

continuous, e.g. the squaring function x H x2 on the real line. 

(c) One might ask the question why computable operators do not necessarily have a 

computable norm. Apart from the fact that there are bounded operators which appear to 

be computable but have non-computable norm, 2 this would not be analogous with the 

classification of computable functions on the reals. In that context, effective uniform 

continuity on computable intervals was crucial. Of course, every bounded operator 

is effectively uniformly continuous, the modulus given by some computable bound. 

2 Marian Pour-El, personal communication. 
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Demanding that the norm be computable would correspond to demanding the optimal 

modulus of continuity to be effective in the case of the real-valued functions. Certainly, 

this need not be the case. 

3.4. Computability structure in the sense of Pour-El and Richards 

We want to compare our notion of computability structure for Banach spaces with 

the one from [18]. The definition of Pour-El and Richards reads as follows: 

Definition 18. Suppose (X, )] . 11) is a Banach space. A PR-computability structure for 

X is a nonempty set Y(X) of sequences in X (referred to as computable sequences) 
such that the following three axioms are satisfied. 

Linear forms: If (Y,,~J,(z,)~EN E YV), and (mk)n,k~~ and (.M)~,~~N are com- 
putable double sequences of real numbers and if d : N + N is recursive then (w,),~N 

is computable, where 

0 ) 

wn = c CrnkYk + S”kZk). 

k=O 

Limits: If (ynk)n,&k, is a computable double sequence which effectively converges to 

(G)H as k + ~0, then (z,)~EN E Y(X). 

Norm: If (Y~)~E N E y(x) then (IIY~II)Mv is a computable sequence of real numbers. 

(As usual, a double sequence (ykn)k,nEN is computable, if the sequence 

(y,,(,),nz(n))n~~ is computable.) The space is effectively separable, if there is a se- 

quence (e,)ncrm E 9’(X) such that the linear span of {eo,el,ez,. . .}, i.e. the set of all 

finite linear combinations of vectors from this set, is dense in X. 

Theorem 19. The computable sequences in an effectively given Banach space X con- 
stitute a PR-computability structure for X. The resulting space is eflectively separa- 
ble. 

Proof. Let us start with the (linear forms) axiom. Suppose $ : N* + N is the recur- 

sive function defining addition on B(X), i.e. 4;i(n) + t(m) = &(n @ m). Similarly, let 

o : N* 4 N implement scalar multiplication. In the given situation, there are recursive 

functions f,, fi : N --) k~ and fr,fs : N2 + N* such that Y,, = Sx(fXn)), z, = Sx(fXn)), 
r& = SR(J(n, k)), and S,& = &(fs(n, k)) for all n, k E N. To determine an index h(n) 
for the element w,, we use the following algorithm: 

(I) Set a = no, where no is an index for the origin C(O,O). 

(2) Set k=O. 

(3) Set b=a~((f,(n,k)Ofy(k)~(f,(n,k)Of,(k))). 

(Hence Mb) = <x(a) + rnkYk + snkzk.) 

(4) Set a= b. Increment k. 

(5) If k>d(n) then set h(n) =a. Otherwise go to step (3). 

It is clear that this gives the desired result t(h(n)) = w,. Furthermore, the algorithm is 

effective in n. Thus h : N + N is recursive and so the sequence (w,),+N is computable. 
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Now the (limits) axiom. If (Ynk)n,kE~ is a computable double sequence in X then, 

by Corollary 15(2), there is Y : N2 + N such that 

IlXr(M - Y,,(,),n(n) II G $ 

for all n, k E N. The double sequence (Ynk)n,kE~ converges to (z,)~~N, hence we also 

have 

for all n, i E N. Putting these together, we get 

IIXr((n.i).k) - znll G IIXr((n.i),k) - Ynill + IlYni - ZnI/ < $ + i 

for all n, k, i E N. Thus setting r’(n, k) :== r( (n, k + I), k + 1) yields 

for all n, k E bl, so the limit sequence (.z,)~~N is computable by Corollary 15(2). 

The (norm) axiom is an immediate consequence of our axioms and the fact that 

computable functions preserve computability of sequences. 

Finally, effective separability follows from Proposition 11. 0 

So every effectively given Banach space comes with a computability structure in the 

sense of Pour-El and Richards such that the space is effectively separable. Our aim 

is to show that the two notions coincide. We start with a Banach space (X, I/ . II) and 

a specified set of sequences ,V(X) satisfying the axioms to give a PR-computability 

structure on X. Furthermore, we assume (e,),EN to be a sequence with dense linear 

span. In order to be able to define an effective basis for the domain of balls B(X), we 

need a dense sequence. The natural candidate is the rutional linear span of (e,)nE~. Let 

us recall how to enumerate the set N * of finite sequences over N (see for example [ 19, 

p. 7 11). For a natural number n > 0, let &, : N + N” denote the n-tupling function. (De- 

fined inductively via (., .).) Then rj : N -+ N * is defined by $(O) = () and Il/((n, m) + 1) 

=&(n). Now we define x0 = 0 and 

Q(n)-1 
X n+~ = 2 hei, 

where ~(n>=(ao,al,...,a,,(,)-1). 

Lemma 20. There are total recursive fitnctions ,f : N + N and C&O : N2 + N such 
that xf‘(,,) = e,, x,6,,, =x,, + x,, and x,6,,, = q,, ‘x,,,. 

Clearly, {x, I n E N} is dense in X. We set Bo := 1 and 

B(n,k)+l := C(x,, I9klX 



A. Edalat. P. Siinderhaufl Theoretical Computer Science 219 (1999) 169-184 183 

so the set {Ba,B 1,. . .} is a countable basis of B(X). For the proof of the following 

theorem, we need the Effective Density Lemma from [18]: 

Lemma 21 (Theorem 2-l of [IS]). Suppose that Y(X) is a PR-computability struc- 
ture for the Banach space (X, I] . 11) and that (e n ) Ned E 9’(X) has dense linear span. 

Then a sequence (Y~)~ E N is in Y(X) tf and only if there is a double sequence 
(pnk )n,kf~ and recursive functions d : N2 + N and j : N3 --t N such that 

Pnk = c $(n.k,i)ei 
i=O 

and such that I]pnk - y,, 1) < 1/2k for all n, k E N. 

Theorem 22. The above constructed basis for B(X) makes (X, /I. 11) an efictively 
given Banach space. 
quences from Y(X). 

Proof. We have 

The computable sequences on this space are exactly the se- 

+n,qk) K ch,qk’) @ t% --d/I + (qk’( < IskI. 

By the (norm) and (linear forms) axiom, this relation is r.e. in n,n’, k, k’. 

Computability of the operations and the norm is shown in the same manner as in 

the proof of Theorem 12. Instead of referring to computability w.r.t. the original basis 

for B(X) we have to refer to the three axioms for sequences, of course. Let us give 

the details for addition: Using the recursive function 6 : N2 + N from Lemma 20, we 

see that C(xi, lqi! I) GC CCG, Iqnl I > + C(.X~, lqml I) 8 C(xi, lqit I > K C(X,~~, lqnl ( + lqmf I> iff 
llxi - x,,gm I( + lq,,! I + lqrnf I < lqi/ / which is r.e. in all indices by the (norm) and (linear 

form) axioms. Hence addition is computable. 

So it remains to verify that the resulting set S’(X) of computable sequences coincides 

with the original Y(X). Assume (Y,,)~!=N E Y(X). By the Effective Density Lemma 21 

it is the limit of a double sequence of recursive rational linear combinations of the e,. 

This means that it is the limit of a recursive double sequence of the x,. By Corollary 15, 

this implies (yn)nE~ f Y’(X). Conversely, the recursive function f of Lemma 20 shows 

that (e,),,N E Y’(X). We know from Theorem 19 that the set Y(X) satisfies the 

(linear forms) and (limits) axioms, so this implies Y’(X) C Y(X). 0 

Vice versa we can start with an effective Banach space in the sense of the present 

paper, take the resulting set of computable sequences, considered as a computability 

structure in the sense of [ 181, and finally perform the above construction to get another 

effective structure for the domain of balls. Propositions 13 and 14 show that this 

structure is equivalent to the one we started with. This yields: 

Theorem 23. The domain-theoretic notion of computability structure for Banach 
spaces coincides with the notion of Pour-El and Richards from [18]. 
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