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$1. INTRODUCTION 

LET L c R3 c S3 = R3 U { a~} be a link which is alternating with respect to the projection 
rr: [w3+[wz. We assume L has been isotoped to eliminate trivial crossings as in Fig. l(a), and, 
more generally, crossings which decompose L as a (possibly trivial) connected sum 
L = L’ # L” as in Fig. l(b). 

Our first result says that L can be split or non-prime link only in the obvious ways: 

THEOREM 1. (a) Zf n(L) is connected, then L is non-split, i.e. S3 - L is irreducible. 
(6) Zf L is non -split, then L is prime tffor each disc D c R2 (the projection plane) with 8D 

meeting n(L) transversely in just two non-double points, x(L) fl D is an embedded arc. 

The next special property we prove for alternating links is: 

THEOREM 2 (The Meridian Lemma). Zf L is a non-split prime alternating link, and if 
S c S3 - L is a closed incompressible surface, then S contains a circle which is isotopic in 

S3 - L to a meridian of L. 

COROLLARY 1. A non -split prime alternating link is simple. That is, every incompressible 
torus in S3 - L is peripheral (isotopic to the boundary of a tubular neighborhood of a 
component of L). 

COROLLARY 2. Zf L is a non-split prime alternating link which is not a torus link, then 
S3 - L has a complete hyperbolic structure (of$nite volume). 

After Theorem 2, it is natural in the study of closed incompressible surfaces S c S3 - L 
(for L alternating) to consider the operation of meridian surgery, indicated in Fig. 2. Such 
meridian surgery always preserves incompressibility, as one can easily verify. After finitely 
many meridian surgeries, S becomes “pairwise incompressible,” in the following sense: 

De$nition. Let S c S3 - L be a properly embedded surface. Then S is called pairwise 
incompressible if for each disc D c S3 meeting L transversely in one point, with 
D n S = aD, there is a disc D’ c S U L meeting L transversely in one point, with aD’ = dD. 

With this definition, Theorem 2 can be rephrased to say that there is no closed 
incompressible, pairwise incompressible surface in S3 - L. 
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Fig. 1. 
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L 

Fig. 2. 

The study of closed incompressible surfaces S c S3 - L thus breaks into two parts: (1) 

analyzing the incompressible, pairwise incompressible surfaces in S3 - L having all their 
boundary components meridians of L, and (2) understanding when the “peripheral 
tubing” operation, inverse to meridian surgery, preserves incompressibility. Part (2) is dealt 
with in [2]. Concerning (1) we have: 

THEOREM 3. Let L be a non-split prime alternating link and suppose S c S” - L is an 
incompressible, pairwise incompressible surface having n > 0 boundary components, all of 
which are meridians of L (hence n must be even). Then: 

(a) If n = 2, S is an annulus, necessarily peripheral since L is prime. 
(b) If n = 4 or 6, S has genus zero. 
(c) For fixed n, there are only finitely many such surfaces S, up to isotopy. 

In the course of proving (b), it will be seen that all incompressible 4-punctured spheres 
S c S3 - L, with 8s consisting of meridians, can be recognized fairly easily in the 
projection n(L). 

By (a) of Theorem 3, ‘to make a closed incompressible surface S c S3 - L of genus 2 2 
pairwise incompressible at least two meridian surgeries are necessary. So the following 
theorem is relevant for alternating knots. 

THEOREM 4. Let K cS3 be any knot, and let S cS3 - K be a closed incompressible 
surface such that there exist disjoint discs D,, D, cS3 satisfying: 

(i) Di intersects K transversely in one point 
(ii) D, n S = aD, 

(iii) aD, is not isotopic to aD2 on S. 
Then S remains incompressible in any closed manifold obtained by a non-trivial Dehn surgery 
on K. 

Most of the results in this paper are restatements and amplifications of results that were 
contained in my thesis [l]. It was pointed out to me by Allen Hatcher that there is a gap 
in the proof of Theorem 4.1 in [l]. As of this writing this error has not been rectified. 

I wish to thank Allen Hatcher for the considerable contribution he has made to the 
writing of this paper. 

32. PROOFS 

Let S* = Iw* U {a}. We position L so that it lies on S* except near crossings of L, where 
L lies on a “bubble” as shown in Fig. 3. 

Let S+*(S_?) be S’ with each disc of S’ inside a bubble replaced by the upper (lower) 
hemisphere of that bubble. Let B, 3 be the ball in S3 bounded by S,’ and lying above S,‘, 
and let B_’ be the ball below S_? with dB_3 = S_‘. (We will use the notation S,’ to mean 
S,’ or S_* and similarly for other symbols with subscript + .) 

Let S c S3 - L be a surface whose boundary curves are all meridians of L which do not 
intersect the bubbles. We may isotope S to meet each ball bounded by a bubble in 
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Fig. 3. 

saddle-shaped discs, as in Fig. 4, by first isotoping S to be transverse to the polar axis of each 
bubble, then push S outward from that axis. We may suppose S meets S+* and S_* 
transversely. To each component C of S fl S, * can be associated a cyclic word u’+ (C) in the 
letters P (= puncture) and S (= saddle), which records, in order, the intersections of C with 
L and with the bubbles, respectively. (Strictly, w*(C) depends on an orientation for C.) 
u’*(C) must have even length, and the number of boundary components of S equals the 
total number of P’s in all the w*(C)‘s (or in all the w_(C)‘s). 

We consider one of the following situations. 
(1) n(L) is connected and S is a 2-sphere not bounding a ball in S3 - L. 

(2) S’ - L is irreducible, and S is an annulus giving a non-trivial connected sum 
decomposition L = L, # L,. 

(3) S’ - L is irreducible, L is prime, and S is incompressible and pairwise incom- 
pressible. 

LEMMA 1. In each of the cases (l-3), the surface S can be replaced by another surface S’ 
of the same type (isotopic to S in case (3)) such that: 

(i) no word w*(C) associated to S’ is empty 
(ii) no loop of S’ fl S, 2 meets a bubble in more than one arc. 

To prove (i), let C be an innermost loop of S fl S+* with w+(C) empty, with C’ a nearby 
isotopic circle on S n 8, ‘. C’ bounds a disc D c d+’ with D n S = 8D = C’. In case (l), 
surgering S along D yields two 2-spheres, at least one of which does not bound a ball in 
S3 - L, and we replace S by this 2-sphere. In cases (2) and (3), C’ also bounds a disc D’ on 
S, and the 2-sphere D U D’ bounds a ball in S’ - L, so we isotope S by isotoping D’ to D, 
rel C’. This isotopy eliminates any loops of S fl S+* in D’; in particular, it eliminates C if 
C c D’. In all three cases (l-3) we call the new surface S again, and then perform the same 
procedure on a loop of S n S,’ - C which is innermost among the trivial loops of 
S fl S,’ - C; and so on, when all loops of S fl S+* have been considered, we operate in the 
same way on the loops of S fl S_*. After this has been done, (i) holds. Also, every loop of 
S fl Sk’ bounds a disc in B,‘. 

For (ii). suppose some component C of S fl S+* (S fl S_2 is treated similarly) meets the 

I 
I 
i 

Fig. 4. 
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upper hemisphere H of a bubble in two or more arcs. Let D c S,’ be a disc bounded by 
C, chosen so that D n H contains a rectangle R whose boundary consists of two arcs of C 
and two arcs of dH. Replacing C if necessary by another component of S fY S_’ inside D. 

we may assume S fl int(R) = 8. We now have two possibilities, according to whether R 

meets L or not; see Fig. 5. C bounds a disc D c S n B, 3. Let B c D be a band joining the 
two arcs of C fl R. If R fl L # 8 (Fig. 5a), these two arcs belong to the same saddle c. so 
B U r~ contains a circle isotopic in S3 - L to a meridian of L. This is impossible in case (1). 
In case (2), S can be meridionally surgered along the core circle of B U o into two annuli. 
each with fewer saddles than S, and at least one of these two annuli must be of type (2). In 
case (3), since S is pairwise incompressible, it can be isotoped to eliminate the saddle cr. 

If R n L = 0, let D’ c B+3 be a disc with aD’ consisting of an arc of B and an arc of R. 

In all cases (l)-(3) we may assume D’ fl S c aD’. Then we may use D’ to isotope S so as 
to eliminate the two saddles of S containing the two arcs of R fl B.0 

If S satisfies (i) and (ii) of Lemma 1, we say S is in standardposition. Notice that we have 
not used the hypothesis that L is alternating. If L is alternating, it is easy to see that S n S +’ 
has the following alternating property: 

If B, and B2 are two bubbles crossed in succession by a loop C of S fl S + 2, then: 
(*) (i) If the two arcs of L flS, ’ in B, and B2 lie on opposite sides of C, then C crosses 

L (at punctures) an even number of times between crossing B, and B, (Fig. 6a). 
(ii) If the two arcs of L fl Sk2 in B, and B2 lie on the same side of C, then C crosses L 

and an odd number of times between crossing B, and B2 (Fig. 6b). 

Proof of Theorem 2. If this were false, S c S3 - L would be a closed incompressible, 
pairwise incompressible surface, which would be assumed to be standard position. Let C 
be an innermost circle of S fl S+*, bounding a disc D c S,’ with D n S = aD = C. Since 
S is closed, w+(C) = S’ with i 2 2. In two successive bubbles which C crosses. the arcs of 
L must lie on opposite sides of C, by the alternating property (*). One of these two arcs 
of L must then lie inside D, so we are in the situation. of Fig. 5(a), where C crosses the 

L--:I-‘L L#L 
L 

(a) 

Fig. 5 

(b) 

-C (b) 

Fig. 6. 
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same bubble twice, contradicting (ii) of Lemma 1. Thus we have S fl S+* = 8, hence also 
S n S_’ = 0, which is impossible if S so incompressib1e.n 

Proqf qf Theorem la. Let S c C3 - L be a 2-sphere not bounding a 3-ball in S3 - L. 
We may assume S satisfies (i) and (ii) of Lemma 1. Then the same innermost circle 
argument applies as in the proof of Theorem 2 preceding.0 

Proofof Corollary I. Let T c S3 - L be an incompressible torus. By Theorem 2, T can 
be meridionally surgered to an annulus A c S’ - L. Since L is prime, A is peripheral, hence 
also T.0 

Proof of Corollary 2. This is a matter of checking that the hypotheses of Thurston’s 
“Monster Theorem” [4] apply; namely, L must be non-trivial, non-split, simple, and S3 - L 
must contain no essential annuli. From [3], the latter condition means that L must not be 
a cable link. But the only simple cable links are torus links.0 

LEMMA 2. If L is alternating and S c S3 - L is a surface in standard position in either 
case (2) or (3), then no word w + (C) has the form w+(C) = P’Sj with j > 0. Further, each word 

w,(C) contains at least two P’s. 

Proof. Suppose w+(C) = P’S’, j > 0, for some loop C of S n S+2. Let o,, . . . , crj be the 
saddles which C meets. Passing from S, * to S_ *, these saddles have the effect of surgering 
S fl S, * j times along C. If j = 1, as in Fig. 7(a), C becomes in S fl S_ * a loop C’ which 
violates (ii) of Lemma 1. Ifj > 1, we look at either disc D c S* that n(C) bounds. By (*), 
we have at least one crk with ~(a,) c D. Then n(S n S_*) fl int(D) must contain some arcs 
with endpoints on 8D. Let tl be such an arc which is edgemost in D. The two possible 
configurations for a, depending on whether the endpoints of a lie in the same or different 
bubbles, are shown in Fig. 7(b) and (c). In either case, a gives a loop C’ of S fl $5 which 
violates (ii) of Lemma 1 .l-J 

Proof of Theorem 16. Let S be an annulus splitting L as a non-trivial connected sum. 
By Lemma 1, we can put S in standard position. Since S is an annulus, there are just two 
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P’s in all the words w+(C). By Lemma 2, S n S,’ then consists of a single circle C. If 
C crossed any bubbles, then a saddle which C met would also meet a loop C’ of S n S,‘. 
with C’ # C by (ii) of Lemma 1, a contradiction. So MJ_ (C) = P’. and the result 
immediately follows.0 

Proof of Theorem 3a. The same argument which proves Theorem 1 b also proves this. 0 

LEMMA 3. Let S c S’ - L satisfy: 

(i) No word w+(C) associated to a loop C of S fl S,? is empty. 
(ii) No loop of S Yl S,2 crosses the same bubble more than once. 
Then if S has n (meridian) boundary components, each word w,(C) has at most II - 2 

S’s. 

Proof. Let C be an innermost loop of S fl S,’ such that w+(C) # P’, and write 
w + (C) = P’SP’S . . . P’mS with Ii 2 0. By the alternating property (*), each i, must be odd 
(in particular, I, > 0), since C is innermost. Now let us change the system of loops of 
S n S, 2 to a new system of loops in S+2 by the following steps (see Fig. 8): 

(1) Delete C from S II S+2. 
(2) At each saddle cri (I < i I m) which C meets, let C, be the loop of S’ n S,’ sharing 

a saddle with C at rr,. Then deform C, off the bubble containing ci, to obtain a curve C: 
which crosses L. 

The resulting system of loops in S+2 is S’ ll S, 2 for some surface S’ c S’ - L which 
also satisfies (i) and (ii), clearly. The number of boundary components of S’ is at most 

n, since we have added m boundary components in step 2 while removing 1 Ii 2 m / 
boundary components in step 1. 

Now we prove the Lemma. Let C, be a given circle of S n S, ‘. We apply the operation 
S H S’ of the preceding paragraph repeatedly, using loops C # C,,, until there are no S’s 
left in any words w+(C). In the end, C, has changed to a loop C’, with w +(Ch) = P’, i I n. 

At each replacement S M S’, the number of letters in w+(C,J does not change. Initially. 
w, (C,) contains at least two P’s, by Lemma 2. So the number of S’s in the original M’_ (C,,) 

is at most i - 2 I n - 2.0 

Proof of Theorem 36. When n = 4, there are at most two loops in S n S,’ since each 
w+(C) contains at least two P’s, by Lemma 2. If S fl S, ’ has only one loop, its word must 

be P4 (by the argument which proved Theorem lb), making S a 4-punctured sphere. If 
S n S,’ has two loops C, and C,, then w+(C,) and w+(C,) each contain two P’s, If w+(C,) 
and w+(C,) are not both P2 (which would make S the disjoint union of two annuli), then 
by Lemma 2, both w+(C,) and w+(C,) contain at least two S’s. By Lemma 3, both words 
contain at most two S’s. Thus w +(C,) = w + (C,) = PSPS. In this case S U S_’ must also 
have two loops C; and C;, with the same word PSPS. Now we can compute the Euler 
characteristic of the surface s^ formed by capping with disks the boundary circles of S. It 
is x(S)=n_ -nn,+n+, where n, is the number of components of S 17S,’ and n, is the 

Fig. 8 
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Fig. 9. 

number of saddles of S, which is half the total number of S’s in all words w+(C). In the 
case at hand, ~(3) = 2 - 2 + 2 = 2, so S has genus zero. Figure 9 below shows this pattern 
S fl S, *. The simplest link for which this pattern arises is the Borromean rings; here S is 
a sphere which separates two components of L from each other, and is punctured 4 times 
by the third component of L. The general case of this configuration 

~1, (C,) = w + (C,) = PSPS is obtained from the Borromean rings case by replacing the four 
crossings of the Borromean rings which do not involve saddles of S by arbitrary 2-strand 
tangles. 

When n = 6, the analysis is similar to the case n = 4, but there are at most three loops 
in S n S, *. We leave details to the reader.0 

Proof of Theorem 3c. Each word w+(C) contains at least two P’s by Lemma 2, so the 
number of loops in S n S, * is at most n/2. Since each word w+(C) contains at most n 
P’s and (by Lemma 3) at most n - 2 S’s, the number of possible words w+(C) is bounded. 
Each word w,(C) can be realized by only finitely many loops C in S+*. So there are only 
finitely many possibilities for S n S+*, with fixed n, hence only finitely many possibilities 

for S (up to isotopy).O 

Proof of Theorem 4. If a non-trivial Dehn surgery on K produced a 3-manifold in which 
S were compressible, then a compressing disc for S would yield a disc-with-punctures 
D c S3 - K with D fl S = a,,D, the “outer” boundary circle of D, and the “inner” 
boundary circles aD - l&D non-meridian loops on (the boundary of a tubular neigh- 
borhood of) K. We make D transverse to D, U D2 and then simplify the intersections of 
D with D, and D, in the usual way, until all components of D n (Dl U Dz) are arcs running 
from d,D to aD - a$. If the circles of aD - &,D wrap around D q (>O) times 
longitudinally, then emanating from each circle of dD - &,D there are q arcs of D fi D, 
alternating with q arcs of D fl Dz. There must be a rectangle R c D with 

R fl [aD U (D fl 0,) U (D il D2)] = dR, the four arcs of aR lying successively on a,D, 
D fl D,, dD - d,D, and D fl Dz, as in Fig. IO(a). But then there is a compressing disc D’ 

(a) (b) 

Fig. 10. 
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for S in S’ - K. lying in a neighborhood of R U D, U D1, as shown in Fig. IO(b). The 

boundary 2D’ of this compressing disc is non-trivial in S since ?D, and 2D2 are not parallel 

in S.0 
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