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Abstract

In this paper we give a realization of some symmetric sgatE as a closed submanifol®l of G.
We also give several equivalent representations of the submartfo®bme properties of the set
gK N P are also discussed, wheg& is a coset space i@.
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1. Introduction

SupposeG is a connected Lie grouk a closed subgroup a&. ThenG/K is a ho-
mogeneous space. Wheéh being considered as a princip&lbundle, is trivial, there is
a global sectiors of this bundle. In this case, there is a natural isomorphishk’ = S.
This happens whet is semisimple an& is a maximal compact subgroup 6f, thanks
to the Cartan decomposition. & is not a trivial K-bundle, we seldom conside€¥/K
as a submanifold of;. In this paper, we show that whe®/K has the structure of Rie-
mannian symmetric space whekeis the closed subgroup @f consist of the fixed points
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of the involution ofG defining the symmetric space, we can embg& in G as a closed
submanifold in a good manner.

More precisely, letlG be a connected Lie group, an involution ofG. Let K = {g €
G |o(g) =g}, thenK is a closed subgroup @ . We suppose there existsGainvariant
Riemannian structure off/K. ThenG/K becomes a Riemannian (globally) symmetric
space (see Helgason [2]). In this case, we call the t(igler, K) aRiemannian symmetric
triple. The differentialdo of o gives an involution ofy, the Lie algebra of5. Let ¢ and
p be the eigenspaces @& in g with eigenvalues 1 and 1, respectively. Theg = ¢ & p.
They satisfy the relationg, €] C ¢, [£, p] C p, and[p, p] C &. Note thatt is the Lie algebra
of K. Note also that there exists@invariant Riemannian structure @/ K if and only
if Ad(K)|p = {Ad(k)|, € GL(p) | k € K} is compact.

In Section 2, we will prove thaP = exp(p) is a closed submanifold @, and there is a
natural isomorphisné’/K = P. Thatis,G/K can be embedded as a closed submanifold of
G. The most hard part of the proof is the closednesB.dle will deduce it by proving the
fact that P coincides with the connected compondit containinge of the setR = {g €
G | o(g) = g~1}. In fact, we will give several equivalent representationsPofnamely
P=0Q0=Ro=Ry= R?. This is our main Theorem 2.5 in Section 2. Then, as a corollary,
we get the natural embedding 6f/ K in G. In the case thatr is semisimple, the relation
P = Rp was mentioned in Hermann [3, Chapter 6], but the author did not give a proof
there. It is interesting to notice that we can prove each connected compongnt &
closed submanifold of;, but different components may have different dimensions.

Even if P is a closed submanifold of7, it is not a global section of the principal
K-bundleG — G/K in general. Butsincg =t @ p, P is a local section arouni@] = K .
Then it is naturally to ask that how far B from being a global section. This will be dis-
cussed in Section 3. We will prove, among other things, gt P £ ¢ for each coset
spacegK , and almost all coset spag& intersectsP transversally.

2. Realization of symmetric spacesin Lie groups
We always supposéG, o, K) is a Riemannian symmetric triple as we have defined in

Section 1 from now on. We construct the sets

P =expp),

0={g0()  lgeG},

R={geGlo@)=¢""}.
Let Ro, R, be the connected component and the path componegt céntaining the
identity e, respectively, and leR? = {g? | g € R}. Let Kq be the identity component & .
Lemma2.l1l. Themapd: P x Ko — G, ®(p, k) = pk is surjective.

Proof. Vg € G, we prove that there aree Ko and X € p such thatg = ¢*k. Note that
G /Ko is also a symmetric space, which is a covering spaeg/& . We denotexg = [e] €
G /Ko, and letx; = gxo. Let y (¢) be a geodesic ir /K such thaty (0) = xg andy (1) =
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x1. Theny (¢) is of the formy (1) = !X xq for someX e p (see Helgason [2, Chapter 1V,
Section 3)]). Sar; = eXxq. Letk = e X g, we havekxg = e ¥ (gxp) = e ¥x1 = x0. SO
k € Ko, andg =e*k. O

LemmaZ2.2. Forall p, p’ € P, we havepp'p € P.

Proof. Suppose’ = e*, whereX e p. Let p1 = eX/2 € P, thenp’ = p2. By Lemma 2.1,
pp1 = pak for somepz € P,k € Ko. Then we have~1p;t = o (pp1) = o (p2k) = p; ',
this impliesp1p = k=1 p2. Sopp’p = (pp1)(p1p) = (p2k)(k~1p2) = p5e P. O

A neighborhood” of 0 in g is symmetridf X € U implies—X € U.

Lemma 2.3. Supposéd/ is a symmetric neighborhood 6fin g with do (U) = U such that
exply : U — exp(U) is a diffeomorphism. I§ € exp(U) satisfiesr (g) = g1, theng € P.

Proof. Supposeg = ¢X, X € U. Applying the equation expdo = o o exp to X, we
have expdo (X)) = o(exp(X)) = exp(—X). SinceU is symmetric anddo (U) = U,
do(X),—X € U. Butexp is injective o/, so we havelo (X) = —X. This impliesX € p,
sog=eXeP. O

Lemma 2.4. Supposd/ is a symmetric neighborhood 6fin g with do (U) = U such that
exp|y is a diffeomorphism onto its image, angpposep € P. If g € pexp(U)p satisfies
o(g)=g L. Theng e P.

Proof. Since g € pexplU)p, p~tgp~t e explU). But o(p~igp™ = pg~1p =
(p~tep~H 1. ByLemma23plgp~te P. ThenbylLemma2.% c P. O

Now we are prepared to formulate our main Theorem in this section.

Theorem 2.5. Suppos«G, o, K) is a Riemannian symmetric triple, and let the subsets
P, Q. R, Ro, R}, R? of G be as defined above. Théh= Q = Ry = R, = R?.

Proof. We proveP C R> C Q C Ry C P andRo = R),.

(i) “ P C R?". Supposeg € P, theng = eX for someX € p. But o (eX/2) = 47 (X/2) =
e=X/2 s0eX/?2 ¢ R, and therg = (¢X/2)% € R2,

(i) “ R? C Q. Supposeg € R?, theng = h?, o(h) =h~ L. Nowho (h) 1 =h?=g, so
ge .

(ii)* @ C Ry". Forgo(g) e Q,0(g0(e) H=0(g)gt=(go(g)™H 1 s0QCR.
But Q is path connected and containiagso O C Ry,.

(iv) “ Ry C P". We first suppose tha is simply connected. Leg: [0, 1] — R be a
continuous path irk; with g(0) = e, it suffices to proveg(1) € P. Let S = {r € [0,1] |
g(t) € P}. Sinceg(0) € P,0¢€ S, s0S # ¥. We will prove thatS is open and closed. Then
by the connectedness [, 1], S = [0, 1], and then we will havg (1) € P.

For the openness of, supposey € S, that isg(1g) = ¢* for someX e p. Let p = ¢X/?,
theng(ro) = p2. Let U be a symmetric neighborhood of 0grwith do (U) = U such that
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exp|y is a diffeomorphism onto its image. Therexp(U) p is a neighborhood of (f9). So
there is an open neighborhoed, #2) of rg such thatg(¢) € pexp(U)p, Vt € (11, 12). By
Lemma 2.4¢(¢) € P, thatist € S, Vt € (11, t2). This proves the openness.

To prove thats is closed, we endow a left invariant Riemannian structur&of his
induces a left invariant metrié(-, -) on G. SinceG is simply connected, there is an &&l)
invariant,do -invariant symmetric neighborhood of 0 in g such that expy is a diffeo-
morphism onto its image (see Varadarajan [5, Theorem 2.14.6]). Fleap(V)g ! =
exp(V),Vg € G. Let r > 0 such thatB,(e) = {g € G | d(e,g) < r} C exp(V). Sup-
pose {t,}nen C S is a sequence such that |jmyz, = 19, we provery € S. Choose
N € N such thatd(g(ty), g(to)) < r. Sinceg(ty) € P, g(ty) = p? for somep € P.
So g(10) € g(tn)B,(e) = p?B.(e) C p?exp(V) = p?(p~texp(V)p) = pexp(V)p. By
Lemma 2.4,¢(tg) € P. HenceS is closed. This conclude the proof whe&his simply
connected.

For generalG, let G be its universal covering group with covering mapG — G.
Let the corresponding involution o is &, and IetRO, P be the corresponding subsets of
G. We claim thatR;, C 7r(R ). In fact, supposg € R;. Then there is a continuous path
g() (t€[0,1]) in R6 such thatg(0) = e andg(l) = g. Letg(t) be alift of g(¢) to G such
thatg(0) =e. Thenm(g(1)o(g(t))) = g(t)o(g(t)) = e, thatisg(¢)o(g(t)) € ker(r). But
ker(sr) is discrete ang (0)6 (g(0)) = e, sog(t)&(g(t)) —e, thatisg(r) € ﬁ’ In particular
g e ﬁ(’). Butg=g(1) =n(g(1)), sog € n(RO) Hence we hav&® C n(R ) C n(P)

P. Then (iv) is proved.

(V) “Ro = Ry". It is well known that R, C Ro. To prove the converse, we |ét =
{X € g|/lm(})| < & for each eigenvalug of ad(X)}. ThenV is an AdG) invariant,do -
invariant symmetric neighborhood ofdg. By Varadarajan [5, Theorem 2.14.6], there
is a discrete additive subgroup of g such that forX, X’ € V, ¢X = X" if and only if
X — X’ e I'. Choose a neighborhodd c V of 0 € g andrg > 0 such that expy is a dif-
feomorphism onto its image and &Xp) = B,,(e). (G being endowed a left invariant Rie-
mannian structure.) For a continuous functionG — (0, rg), let N, = UgeRé Byg)(8)-

ThenN,, is an open neighborhood &,. It is easy to prove thakyy C N,/> C Nyj2 C N,.
We will prove that for sufficient smajp: G — (0,r0), N, N R = R;;. SOR| is open inR.
N,N R = R} impliesN,,2N R = R}, sOR}, is closed inR. This means thak}, is in fact a
connected component &. So we will haveRg = Ry,.

Now we proveN, N R = Ry, for sufficient smallp. Sincel” C g is discrete, there is
e >0suchthatB,(0O)NI ={0}. LetKy C Ko C---C K, C --- be a sequence of com-
pact subsets of such that J;2, K, =G. LetC, = SUR,ek, lldo + Ad(g)|l + 1. Choose
rn € (0, ro) such thatB,, (e) C exp(B;/c,(0)). We claim that if the functiom : G — (0, ro)
satisfieso(g) < r,, for g € K,,,Vn € N, thenN, N R = Ry,. In fact, forg’ € N, N R, by
the definition of N,, there existg € R such thatg’ € B, (g). Supposeg € K,,. Let
g’ = gh. By the left invariance of the Riemannian structures B, ,)(e) C By, (e). Sup-
poseh = X, whereX € U. By B, (e) C exp(Bg/c,(0)), we know that X | < ¢/C,. Since
g.8 €R g lo(h)=0(gh)=0(g)=gt=h"tg 1 thatiso(h)=gh tg~1. Buth =
eX, this implies expdo (X)) = exp(—Ad(g)X). Sincedo (X), —Ad(g)X € V, do(X) —
(—Ad(g)X) = (do + Ad(g))X € I'. But |[(do + Ad(g)X| < |ldo + Ad(g)l - IX]| <
Cn-¢/Cp=c¢.50(do +Ad(g))X € B.(0) N I" = {0}, that is,do (X) = —Ad(g)X. Now
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let y (1) = ge'™ theny (0) = g, y (1) = g'. Buto (y (1)) = 0 (ge'™) = g explrdo (X)) =
g texp(—tAd(g)X) = g tge X g7t = (g¢'*)"t = y(1))™. S0y (1) € R. This proves
¢’ =y(1) e R}. (v)is proved. O

Remark 2.1. In general,P g R, even in some very simple cases. For example(let
SL(2n,R), o (g) = (¢")~ L. Then diag—1, ..., —1) is in R, but not in P. It is obvious by
the above theorem thd = R if and only if R is connected (or path connected).

Remark 2.2. Using the same method as in the proof of (v) of the above theorem, we can
prove that for each path componeRjtof R, there are open subséts, V; of G such that

R/ CV;C Vi cU; andU; "R = R!. ThusR; is open and closed iR, and thenR is

in fact a connected component 8 The proof of (v) of the above theorem also shows
that R} is a closed submanifold @& of dimension dintker(do 4 Ad(g))). g € R;. Simi-
larly, eachR! is a closed submanifold a& of dimension dintker(do + Ad(g))), g € R!.

So each connected componentiis a closed submanifold aff. But different compo-
nents of R can have different dimensions. For example,det SQ5) ando (g) = sgs,
where s = diag(1, —1, -1, -1, —1). Then dimR;, = dim(ker(do + Ad(e))) = 4. But
go=diag(—1,-1,—-1, -1, 1) € R, and the connected component®tontainingge has
dimension dindker(do + Ad(go))) = 6. We leave the detail of the proofs of these conclu-
sions to the reader.

We define thewisted conjugate actionf G on G by 7, (h) = gho(g)~1. ThenQ =P
is the orbit of this action containing the identity The next conclusion says that the sym-
metric space5/K can be embedded i as a closed submanifold, which is just the set
PCG.

Corollary 2.6. P is a closed submanifold @f. The mapy: G/K — P defined by ([g]) =
go (g)~Lis a diffeomorphism. Under the actions @fby left multiplication onG/K and
by the twisted conjugate action dh, the isomorphisnp is equivariant.

Proof. The twisted conjugate action is smooth, soQ, as an orbit of this action, is an
immersion submanifold of;. As a connected component Bf Rg is closed inR. But R is
closed inG, so Ry is closed inG. By Theorem 2.5P = Q = Ry is a closed submanifold
of G. Notice that the isotropic subgroup of the actiomssociated with the identity is
justK, sog:G/K — P is a diffeomorphism. It is obviously equivariant

Remark 2.3. Corollary 2.6 says that the symmetric sp&ggK can be realized il as a
closed submanifold, which is jugt. But we should point out that for any subgroip of
G satisfyingKo c K’ C K, G/K’ is also a symmetric space. In genei@},K’ cannot be
embedded irG as closed submanifold. The submaniféldc G is isomorphic at most one
of suchG/K’, and this happens if and only ¥’ = K.

Remark 2.4. If G is compact, the closedness Bfcan be implied from the fact that =
R2, which is much easier to be obtained th&r= Ry. In fact, to prove that is a closed
submanifold wherG is compact, we need only to show that=R2= Q. P c R2c Q
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have been showed in the proof of Theorem 2.5, (i) and @ixc P can be proved by the
following simple argument. Le¢ = ho ()"t € Q. Sinceh can be expressed as= pk,
wherep e P,k e K, g = (pk) (o (pk)) L= (pk)(p~ k)~ = p? e P.

3. How far is P from being a section

We regardG as a principak -bundle with base spad&/K . We have proved tha? =
exp(p) is a closed submanifold af. It is obvious that the tangent spafeP of P ate
isp. Butg=¢t® p. SoP is a local section of the bundlé — G/K around[e]. If G is
semisimple (or more generally, connected reductive, in the sense of Knapp [4}) iand
the global Cartan involution af, thenK = Kg, and by the Cartan decomposition, the map
@: P x K — G defined in Lemma 2.1 is a diffeomorphism. Gois a trivial K-bundle,
and P is a global section. This means that for each coset sp&GcesK N P consists of
just one point. But in generd is not a trivial K -bundle. So we may ask the question: for
a coset spacgk, how many points igK N P?

Theorem 3.1. For each coset spageKy, there is a homeomorphism betweghkio N P and
@~1(g). In particular,

gKoN P £0.

Proof. Letwi: P x Ko — P be the projection to the first factor. We prove thats-1,
is a homeomorphism betweeh1(g) and gKo N P. First, let (p,k) € @ 1(g), then
g = pk. Som(p, k) =p =gkt € gkon P. This provesr1(® 1(g)) C gKoN P.
Let (p1, k1), (p2.k2) € ~1(g) and (p1. k1) # (p2, k2). Since p1ky = poko = g, p1 #
p2. This showsmi|g-1(,) Is injective. Let p € gKo N P, then there is somé €

Ko such thatp = gk. So (p,k™1) € ®1(g), and w1(p, k1) = p. This means that
mlq;—l(g):dfl(g) — gKo N P is surjective. Sincer; is continuous and open, so is
7l’1|<1571(g). HenCe771|¢fl(g) :®~1(g) - gKoN P is a homeomorphism. By Lemma 24,

is surjective. Sg¢ Ko N P = & ~1(g) # . This proves the theorem.o

Corollary 3.2. For each coset spacek,
gKNP#Q.

Similar to the map®: P x Ko — G, we can define the mag’: P x K — G by
®(p, k) = pk. Itis easy to see thap’ satisfies all the properties d@f that we have men-
tioned above.

In the following we denote the left and right translationsgof G by L, andR,, re-
spectively.

Lemma 3.3. Let g € G. Theng is a regular value of®’ if and only if gK intersectsP
transversally.

Proof. Supposép, k) € @' ~1(g). Then
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IM@d®")(p.1)
= (dP) ) (Tip.y (P x {k}) + @) o 1y (Tip 0 (1P} X K))
=T, (Pk) + T, (pK)
= (dR)p(TpP) + (dRy) p(Tp(gK))
=dRo)p(TpP + Tp(gK)).
Since(d Ry) p is an isomorphism andy(®'~1(g)) = gK N P, we have

g is aregular value op’
= IMdD)p1) =T,G, Y(p,k)e @' g)
> T,P+T,(gK)=T,G, Y(p,k)ed (g
< T,P+T,gK)=T,G, VpegKNnP
<= gK intersectsP transversally a

Lemma 3.4. The set of all regular values @#’ is right K -invariant.

Proof. Forg e G andky € K, (p, k) € ' ~1(g) < (p, kk1) € &'~ 1(gk1). Since
Ry, o @' =@ o(id x Riy),
for (p, k) € @' ~1(g), we have

(del)g o (ddj/)(p,k) = (d@/)(p,kkl) o (id x del)(,D,k)'

Since(d Ry,)g and(id x d Ri,) (p.x) are isomorphismsd®’)(, x) is an isomorphism if and
only if (d®")(,.kxy) is anisomorphism. Sgis a regular value if and only jfk; is a regular
value. This proves the lemman

Theorem 3.5. For almost all coset spacgK in G/K, gK intersectsP transversally.

Proof. Let G, be the set of all regular values @f'. By Sard’s theorem¢ \ G, is a set
with measure zero. But Lemma 3.4 tells us thatis the union of some coset spages.
So by choosing local trivializations of the principal bundleG — G/K and using Fu-
bini’s Theorem, we know that (G \ G,) = (G/K) \ n(G,) has measure zero ii/K .
By Lemma 3.3[g] = ¢K intersectsP transversallyy¥[g] € #(G,). This proves the theo-
rem. O

Corollary 3.6. For almost all coset spacgK in G/K, gK N P is a discrete set. In partic-
ular, if K is compact, theg K N P is a finite set for almost all coset spag& in G/K.

Proof. Since dinfgK)+dim P =dimG, gK intersectsP transversally implies thatk N

P is a 0-dimensional submanifold @f, which is discrete. In particular, ik is compact,
thensoisgK.ButgKk N P C gK. SogK intersectsP transversally impliegK N P is a
finite set. By Theorem 3.5, the corollary holdsa
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Denotexg = [¢] € G/K. We know that a curve (1) (t € R) in G/K with y(0) = xq is
a geodesic if and only i (1) = ¢'X xo for someX e p, and suchX is unique.

Theorem 3.7. Let g € G. If for every two geodesicg (1) = e'Xixg (i = 1, 2) through the
point[g], whereX; € p, we havg X1, X2] =0. Then#(gK N P) <#(K N P).

Proof. Suppose = pk, wherep € P,k € K. We proveL ,-1(gK N P) C (K N P). Sup-

posep’ € (K N P). Sincep € gK, L,-1(p') = p~1p' € K. Letp=e¥, p’' = X', where

X, X’ € p. Since[p] = [p'] = [g], the two geodesics1(r) = ¢'Xxo and y2(r) = /X xo

satisfyy1(1) = y2(1) = [p]. By the conditions of the theorerfi¥, X'] = 0. SOLp—l(p/) =

e XeX' = X=X c p. This provesL ,-1(gK N P) C (K N P). But L -1 is injective, this
proves the theorem. O

By Lemma 2.1, all coset spage is of the formp K for somep € P. We conclude this
section by an example in which we show what the;sktn P is for eachp € P.

Example. Let G = SU(2), o (g) = (¢") L. Thenk = SQ2).

R={geSUQ) g =¢g}= {(”Ebi aiibi) |a,b,ceR, a? +b% 4% = 1}.
So R = S2 is connected, and theR = R. For p € P, we show what the sgiK N P is.
The element op K has the fornpk, k € K. But

pke P < o(pk)=(pk) ! = ph=k"1p! = kp=pk L

Let k = (509~ SN0y - = (“*07 < ) Then it is easy to show thatp = pk~! <=
asing =0.Soifa #0, pk € P < sind =0«<= k ==I. In this casepK N P = {+p}.
In particular, K N P = {£I}. If a =0, thenVk € K, pk € P. This impliespK C P.
So in this casepK N P = pK. It should be noted that alp = (’Zj ;) correspond
the same coset spagek, which is the antipodal point ofe] in the symmetric space

SU(2)/S02) = 2. O
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