On the realization of Riemannian symmetric spaces in Lie groups ${ }^{\text {N }}$

Jinpeng An *, Zhengdong Wang
School of Mathematical Science, Peking University, Beijing, 100871, PR China
Received 16 February 2005; accepted 17 February 2005

Abstract

In this paper we give a realization of some symmetric space G / K as a closed submanifold P of G. We also give several equivalent representations of the submanifold P. Some properties of the set $g K \cap P$ are also discussed, where $g K$ is a coset space in G. © 2005 Elsevier B.V. All rights reserved.

MSC: primary 22E15; secondary 57R40, 53C35
Keywords: Symmetric space; Involution; Embedded submanifold; Principal bundle

1. Introduction

Suppose G is a connected Lie group, K a closed subgroup of G. Then G / K is a homogeneous space. When G, being considered as a principal K-bundle, is trivial, there is a global section S of this bundle. In this case, there is a natural isomorphism $G / K \cong S$. This happens when G is semisimple and K is a maximal compact subgroup of G, thanks to the Cartan decomposition. If G is not a trivial K-bundle, we seldom consider G / K as a submanifold of G. In this paper, we show that when G / K has the structure of Riemannian symmetric space where K is the closed subgroup of G consist of the fixed points

[^0]0166-8641/\$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.topol.2005.02.003
of the involution of G defining the symmetric space, we can embed G / K in G as a closed submanifold in a good manner.

More precisely, let G be a connected Lie group, σ an involution of G. Let $K=\{g \in$ $G \mid \sigma(g)=g\}$, then K is a closed subgroup of G. We suppose there exists a G-invariant Riemannian structure on G / K. Then G / K becomes a Riemannian (globally) symmetric space (see Helgason [2]). In this case, we call the triple (G, σ, K) a Riemannian symmetric triple. The differential $d \sigma$ of σ gives an involution of \mathfrak{g}, the Lie algebra of G. Let \mathfrak{k} and \mathfrak{p} be the eigenspaces of $d \sigma$ in \mathfrak{g} with eigenvalues 1 and -1 , respectively. Then $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$. They satisfy the relations $[\mathfrak{k}, \mathfrak{k}] \subset \mathfrak{k},[\mathfrak{k}, \mathfrak{p}] \subset \mathfrak{p}$, and $[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k}$. Note that \mathfrak{k} is the Lie algebra of K. Note also that there exists a G-invariant Riemannian structure on G / K if and only if $\left.\operatorname{Ad}(K)\right|_{\mathfrak{p}}=\left\{\left.\operatorname{Ad}(k)\right|_{\mathfrak{p}} \in G L(\mathfrak{p}) \mid k \in K\right\}$ is compact.

In Section 2, we will prove that $P=\exp (\mathfrak{p})$ is a closed submanifold of G, and there is a natural isomorphism $G / K \cong P$. That is, G / K can be embedded as a closed submanifold of G. The most hard part of the proof is the closedness of P. We will deduce it by proving the fact that P coincides with the connected component R_{0} containing e of the set $R=\{g \in$ $\left.G \mid \sigma(g)=g^{-1}\right\}$. In fact, we will give several equivalent representations of P, namely $P=Q=R_{0}=R_{0}^{\prime}=R^{2}$. This is our main Theorem 2.5 in Section 2. Then, as a corollary, we get the natural embedding of G / K in G. In the case that G is semisimple, the relation $P=R_{0}$ was mentioned in Hermann [3, Chapter 6], but the author did not give a proof there. It is interesting to notice that we can prove each connected component of R is a closed submanifold of G, but different components may have different dimensions.

Even if P is a closed submanifold of G, it is not a global section of the principal K-bundle $G \rightarrow G / K$ in general. But since $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}, P$ is a local section around $[e]=K$. Then it is naturally to ask that how far is P from being a global section. This will be discussed in Section 3. We will prove, among other things, that $g K \cap P \neq \emptyset$ for each coset space $g K$, and almost all coset space $g K$ intersects P transversally.

2. Realization of symmetric spaces in Lie groups

We always suppose (G, σ, K) is a Riemannian symmetric triple as we have defined in Section 1 from now on. We construct the sets

$$
\begin{aligned}
& P=\exp (\mathfrak{p}), \\
& Q=\left\{g \sigma(g)^{-1} \mid g \in G\right\}, \\
& R=\left\{g \in G \mid \sigma(g)=g^{-1}\right\} .
\end{aligned}
$$

Let R_{0}, R_{0}^{\prime} be the connected component and the path component of R containing the identity e, respectively, and let $R^{2}=\left\{g^{2} \mid g \in R\right\}$. Let K_{0} be the identity component of K.

Lemma 2.1. The map $\Phi: P \times K_{0} \rightarrow G, \Phi(p, k)=p k$ is surjective.
Proof. $\forall g \in G$, we prove that there are $k \in K_{0}$ and $X \in \mathfrak{p}$ such that $g=e^{X} k$. Note that G / K_{0} is also a symmetric space, which is a covering space of G / K. We denote $x_{0}=[e] \in$ G / K_{0}, and let $x_{1}=g x_{0}$. Let $\gamma(t)$ be a geodesic in G / K_{0} such that $\gamma(0)=x_{0}$ and $\gamma(1)=$
x_{1}. Then $\gamma(t)$ is of the form $\gamma(t)=e^{t X} x_{0}$ for some $X \in \mathfrak{p}$ (see Helgason [2, Chapter IV, Section 3)]). So $x_{1}=e^{X} x_{0}$. Let $k=e^{-X} g$, we have $k x_{0}=e^{-X}\left(g x_{0}\right)=e^{-X} x_{1}=x_{0}$. So $k \in K_{0}$, and $g=e^{X} k$.

Lemma 2.2. For all $p, p^{\prime} \in P$, we have $p p^{\prime} p \in P$.
Proof. Suppose $p^{\prime}=e^{X}$, where $X \in \mathfrak{p}$. Let $p_{1}=e^{X / 2} \in P$, then $p^{\prime}=p_{1}^{2}$. By Lemma 2.1, $p p_{1}=p_{2} k$ for some $p_{2} \in P, k \in K_{0}$. Then we have $p^{-1} p_{1}^{-1}=\sigma\left(p p_{1}\right)=\sigma\left(p_{2} k\right)=p_{2}^{-1} k$, this implies $p_{1} p=k^{-1} p_{2}$. So $p p^{\prime} p=\left(p p_{1}\right)\left(p_{1} p\right)=\left(p_{2} k\right)\left(k^{-1} p_{2}\right)=p_{2}^{2} \in P$.

A neighborhood U of 0 in \mathfrak{g} is symmetric if $X \in U$ implies $-X \in U$.

Lemma 2.3. Suppose U is a symmetric neighborhood of 0 in \mathfrak{g} with $d \sigma(U)=U$ such that $\left.\exp \right|_{U}: U \rightarrow \exp (U)$ is a diffeomorphism. If $g \in \exp (U)$ satisfies $\sigma(g)=g^{-1}$, then $g \in P$.

Proof. Suppose $g=e^{X}, X \in U$. Applying the equation $\exp \circ d \sigma=\sigma \circ \exp$ to X, we have $\exp (d \sigma(X))=\sigma(\exp (X))=\exp (-X)$. Since U is symmetric and $d \sigma(U)=U$, $d \sigma(X),-X \in U$. But exp is injective on U, so we have $d \sigma(X)=-X$. This implies $X \in \mathfrak{p}$, so $g=e^{X} \in P$.

Lemma 2.4. Suppose U is a symmetric neighborhood of 0 in \mathfrak{g} with $d \sigma(U)=U$ such that $\left.\exp \right|_{U}$ is a diffeomorphism onto its image, and suppose $p \in P$. If $g \in p \exp (U) p$ satisfies $\sigma(g)=g^{-1}$. Then $g \in P$.

Proof. Since $g \in p \exp (U) p, p^{-1} g p^{-1} \in \exp (U)$. But $\sigma\left(p^{-1} g p^{-1}\right)=p g^{-1} p=$ $\left(p^{-1} g p^{-1}\right)^{-1}$. By Lemma 2.3, $p^{-1} g p^{-1} \in P$. Then by Lemma 2.2, $g \in P$.

Now we are prepared to formulate our main Theorem in this section.
Theorem 2.5. Suppose (G, σ, K) is a Riemannian symmetric triple, and let the subsets $P, Q, R, R_{0}, R_{0}^{\prime}, R^{2}$ of G be as defined above. Then $P=Q=R_{0}=R_{0}^{\prime}=R^{2}$.

Proof. We prove $P \subset R^{2} \subset Q \subset R_{0}^{\prime} \subset P$ and $R_{0}=R_{0}^{\prime}$.
(i) " $P \subset R^{2}$ ". Suppose $g \in P$, then $g=e^{X}$ for some $X \in \mathfrak{p}$. But $\sigma\left(e^{X / 2}\right)=e^{d \sigma(X / 2)}=$ $e^{-X / 2}$, so $e^{X / 2} \in R$, and then $g=\left(e^{X / 2}\right)^{2} \in R^{2}$.
(ii) " $R^{2} \subset Q$ ". Suppose $g \in R^{2}$, then $g=h^{2}, \sigma(h)=h^{-1}$. Now $h \sigma(h)^{-1}=h^{2}=g$, so $g \in Q$.
(iii) " $Q \subset R_{0}^{\prime}$ ". For $g \sigma(g)^{-1} \in Q, \sigma\left(g \sigma(g)^{-1}\right)=\sigma(g) g^{-1}=\left(g \sigma(g)^{-1}\right)^{-1}$, so $Q \subset R$. But Q is path connected and containing e, so $Q \subset R_{0}^{\prime}$.
(iv) " $R_{0}^{\prime} \subset P$ ". We first suppose that G is simply connected. Let $g:[0,1] \rightarrow R_{0}^{\prime}$ be a continuous path in R_{0}^{\prime} with $g(0)=e$, it suffices to prove $g(1) \in P$. Let $S=\{t \in[0,1] \mid$ $g(t) \in P\}$. Since $g(0) \in P, 0 \in S$, so $S \neq \emptyset$. We will prove that S is open and closed. Then by the connectedness of $[0,1], S=[0,1]$, and then we will have $g(1) \in P$.

For the openness of S, suppose $t_{0} \in S$, that is $g\left(t_{0}\right)=e^{X}$ for some $X \in \mathfrak{p}$. Let $p=e^{X / 2}$, then $g\left(t_{0}\right)=p^{2}$. Let U be a symmetric neighborhood of 0 in \mathfrak{g} with $d \sigma(U)=U$ such that
$\left.\exp \right|_{U}$ is a diffeomorphism onto its image. Then $p \exp (U) p$ is a neighborhood of $g\left(t_{0}\right)$. So there is an open neighborhood $\left(t_{1}, t_{2}\right)$ of t_{0} such that $g(t) \in p \exp (U) p, \forall t \in\left(t_{1}, t_{2}\right)$. By Lemma 2.4, $g(t) \in P$, that is $t \in S, \forall t \in\left(t_{1}, t_{2}\right)$. This proves the openness.

To prove that S is closed, we endow a left invariant Riemannian structure on G. This induces a left invariant metric $d(\cdot, \cdot)$ on G. Since G is simply connected, there is an $\operatorname{Ad}(G)$ invariant, $d \sigma$-invariant symmetric neighborhood V of 0 in \mathfrak{g} such that $\left.\exp \right|_{V}$ is a diffeomorphism onto its image (see Varadarajan [5, Theorem 2.14.6]). Then $g \exp (V) g^{-1}=$ $\exp (V), \forall g \in G$. Let $r>0$ such that $B_{r}(e)=\{g \in G \mid d(e, g)<r\} \subset \exp (V)$. Suppose $\left\{t_{n}\right\}_{n \in \mathbb{N}} \subset S$ is a sequence such that $\lim _{n \rightarrow \infty} t_{n}=t_{0}$, we prove $t_{0} \in S$. Choose $N \in \mathbb{N}$ such that $d\left(g\left(t_{N}\right), g\left(t_{0}\right)\right)<r$. Since $g\left(t_{N}\right) \in P, g\left(t_{N}\right)=p^{2}$ for some $p \in P$. So $g\left(t_{0}\right) \in g\left(t_{N}\right) B_{r}(e)=p^{2} B_{r}(e) \subset p^{2} \exp (V)=p^{2}\left(p^{-1} \exp (V) p\right)=p \exp (V) p$. By Lemma 2.4, $g\left(t_{0}\right) \in P$. Hence S is closed. This conclude the proof when G is simply connected.

For general G, let \widetilde{G} be its universal covering group with covering map $\pi: \widetilde{G} \rightarrow G$. Let the corresponding involution of \widetilde{G} is $\tilde{\sigma}$, and let $\widetilde{R}_{0}^{\prime}, \widetilde{P}$ be the corresponding subsets of \widetilde{G}. We claim that $R_{0}^{\prime} \subset \pi\left(\widetilde{R}_{0}^{\prime}\right)$. In fact, suppose $g \in R_{0}^{\prime}$. Then there is a continuous path $g(t)(t \in[0,1])$ in R_{0}^{\prime} such that $g(0)=e$ and $g(1)=g$. Let $\tilde{g}(t)$ be a lift of $g(t)$ to \widetilde{G} such that $\tilde{g}(0)=e$. Then $\pi(\tilde{g}(t) \tilde{\sigma}(\tilde{g}(t)))=g(t) \sigma(g(t))=e$, that is $\tilde{g}(t) \tilde{\sigma}(\tilde{g}(t)) \in \operatorname{ker}(\pi)$. But $\operatorname{ker}(\pi)$ is discrete and $\tilde{g}(0) \tilde{\sigma}(\tilde{g}(0))=e$, so $\tilde{g}(t) \tilde{\sigma}(\tilde{g}(t))=e$, that is $\tilde{g}(t) \in \widetilde{R}_{0}^{\prime}$. In particular, $\tilde{g}(1) \in \widetilde{R}_{0}^{\prime}$. But $g=g(1)=\pi(\tilde{g}(1))$, so $g \in \pi\left(\widetilde{R}_{0}^{\prime}\right)$. Hence we have $R_{0}^{\prime} \subset \pi\left(\widetilde{R}_{0}^{\prime}\right) \subset \pi(\widetilde{P})=$ P. Then (iv) is proved.
(v) " $R_{0}=R_{0}^{\prime}$ ". It is well known that $R_{0}^{\prime} \subset R_{0}$. To prove the converse, we let $V=$ $\{X \in \mathfrak{g}||\operatorname{Im}(\lambda)|<\pi$ for each eigenvalue λ of $\operatorname{ad}(X)\}$. Then V is an $\operatorname{Ad}(G)$ invariant, $d \sigma-$ invariant symmetric neighborhood of $0 \in \mathfrak{g}$. By Varadarajan [5, Theorem 2.14.6], there is a discrete additive subgroup Γ of \mathfrak{g} such that for $X, X^{\prime} \in V, e^{X}=e^{X^{\prime}}$ if and only if $X-X^{\prime} \in \Gamma$. Choose a neighborhood $U \subset V$ of $0 \in \mathfrak{g}$ and $r_{0}>0$ such that $\left.\exp \right|_{U}$ is a diffeomorphism onto its image and $\exp (U)=B_{r_{0}}(e)$. (G being endowed a left invariant Riemannian structure.) For a continuous function $\rho: G \rightarrow\left(0, r_{0}\right)$, let $N_{\rho}=\bigcup_{g \in R_{0}^{\prime}} B_{\rho(g)}(g)$. Then N_{ρ} is an open neighborhood of R_{0}^{\prime}. It is easy to prove that $R_{0}^{\prime} \subset N_{\rho / 2} \subset \overline{N_{\rho / 2}} \subset N_{\rho}$. We will prove that for sufficient small $\rho: G \rightarrow\left(0, r_{0}\right), N_{\rho} \cap R=R_{0}^{\prime}$. So R_{0}^{\prime} is open in R. $N_{\rho} \cap R=R_{0}^{\prime}$ implies $\overline{N_{\rho / 2}} \cap R=R_{0}^{\prime}$, so R_{0}^{\prime} is closed in R. This means that R_{0}^{\prime} is in fact a connected component of R. So we will have $R_{0}=R_{0}^{\prime}$.

Now we prove $N_{\rho} \cap R=R_{0}^{\prime}$ for sufficient small ρ. Since $\Gamma \subset \mathfrak{g}$ is discrete, there is $\varepsilon>0$ such that $B_{\varepsilon}(0) \cap \Gamma=\{0\}$. Let $K_{1} \subset K_{2} \subset \cdots \subset K_{n} \subset \cdots$ be a sequence of compact subsets of G such that $\bigcup_{n=1}^{\infty} K_{n}=G$. Let $C_{n}=\sup _{g \in K_{n}}\|d \sigma+\operatorname{Ad}(g)\|+1$. Choose $r_{n} \in\left(0, r_{0}\right)$ such that $B_{r_{n}}(e) \subset \exp \left(B_{\varepsilon / C_{n}}(0)\right)$. We claim that if the function $\rho: G \rightarrow\left(0, r_{0}\right)$ satisfies $\rho(g)<r_{n}$, for $g \in K_{n}, \forall n \in \mathbb{N}$, then $N_{\rho} \cap R=R_{0}^{\prime}$. In fact, for $g^{\prime} \in N_{\rho} \cap R$, by the definition of N_{ρ}, there exists $g \in R_{0}^{\prime}$ such that $g^{\prime} \in B_{\rho(g)}(g)$. Suppose $g \in K_{n}$. Let $g^{\prime}=g h$. By the left invariance of the Riemannian structure, $h \in B_{\rho(g)}(e) \subset B_{r_{n}}(e)$. Suppose $h=e^{X}$, where $X \in U$. By $B_{r_{n}}(e) \subset \exp \left(B_{\varepsilon / C_{n}}(0)\right)$, we know that $|X|<\varepsilon / C_{n}$. Since $g, g^{\prime} \in R, g^{-1} \sigma(h)=\sigma(g h)=\sigma\left(g^{\prime}\right)=g^{\prime-1}=h^{-1} g^{-1}$, that is $\sigma(h)=g h^{-1} g^{-1}$. But $h=$ e^{X}, this implies $\exp (d \sigma(X))=\exp (-\operatorname{Ad}(g) X)$. Since $d \sigma(X),-\operatorname{Ad}(g) X \in V, d \sigma(X)-$ $(-\operatorname{Ad}(g) X)=(d \sigma+\operatorname{Ad}(g)) X \in \Gamma$. But $|(d \sigma+\operatorname{Ad}(g)) X| \leqslant\|d \sigma+\operatorname{Ad}(g)\| \cdot|X|<$ $C_{n} \cdot \varepsilon / C_{n}=\varepsilon$. So $(d \sigma+\operatorname{Ad}(g)) X \in B_{\varepsilon}(0) \cap \Gamma=\{0\}$, that is, $d \sigma(X)=-\operatorname{Ad}(g) X$. Now
let $\gamma(t)=g e^{t X}$, then $\gamma(0)=g, \gamma(1)=g^{\prime}$. But $\sigma(\gamma(t))=\sigma\left(g e^{t X}\right)=g^{-1} \exp (t d \sigma(X))=$ $g^{-1} \exp (-t \operatorname{Ad}(g) X)=g^{-1} g e^{-t X} g^{-1}=\left(g e^{t X}\right)^{-1}=\gamma(t)^{-1}$. So $\gamma(t) \in R$. This proves $g^{\prime}=\gamma(1) \in R_{0}^{\prime} .(\mathrm{v})$ is proved.

Remark 2.1. In general, $P \varsubsetneqq R$, even in some very simple cases. For example, let $G=$ $\operatorname{SL}(2 n, \mathbb{R}), \sigma(g)=\left(g^{t}\right)^{-1}$. Then $\operatorname{diag}(-1, \ldots,-1)$ is in R, but not in P. It is obvious by the above theorem that $P=R$ if and only if R is connected (or path connected).

Remark 2.2. Using the same method as in the proof of (v) of the above theorem, we can prove that for each path component R_{i}^{\prime} of R, there are open subsets U_{i}, V_{i} of G such that $R_{i}^{\prime} \subset V_{i} \subset \overline{V_{i}} \subset U_{i}$ and $U_{i} \cap R=R_{i}^{\prime}$. Thus R_{i}^{\prime} is open and closed in R, and then R_{i}^{\prime} is in fact a connected component of R. The proof of (v) of the above theorem also shows that R_{0}^{\prime} is a closed submanifold of G of dimension $\operatorname{dim}(\operatorname{ker}(d \sigma+\operatorname{Ad}(g))), g \in R_{0}^{\prime}$. Similarly, each R_{i}^{\prime} is a closed submanifold of G of dimension $\operatorname{dim}(\operatorname{ker}(d \sigma+\operatorname{Ad}(g))), g \in R_{i}^{\prime}$. So each connected component of R is a closed submanifold of G. But different components of R can have different dimensions. For example, let $G=S O(5)$ and $\sigma(g)=s g s$, where $s=\operatorname{diag}(1,-1,-1,-1,-1)$. Then $\operatorname{dim} R_{0}^{\prime}=\operatorname{dim}(\operatorname{ker}(d \sigma+\operatorname{Ad}(e)))=4$. But $g_{0}=\operatorname{diag}(-1,-1,-1,-1,1) \in R$, and the connected component of R containing g_{0} has dimension $\operatorname{dim}\left(\operatorname{ker}\left(d \sigma+\operatorname{Ad}\left(g_{0}\right)\right)\right)=6$. We leave the detail of the proofs of these conclusions to the reader.

We define the twisted conjugate action of G on G by $\tau_{g}(h)=g h \sigma(g)^{-1}$. Then $Q=P$ is the orbit of this action containing the identity e. The next conclusion says that the symmetric space G / K can be embedded in G as a closed submanifold, which is just the set $P \subset G$.

Corollary 2.6. P is a closed submanifold of G. The map $\varphi: G / K \rightarrow P$ defined by $\varphi([g])=$ $g \sigma(g)^{-1}$ is a diffeomorphism. Under the actions of G by left multiplication on G / K and by the twisted conjugate action on P, the isomorphism φ is equivariant.

Proof. The twisted conjugate action τ is smooth, so Q, as an orbit of this action, is an immersion submanifold of G. As a connected component of R, R_{0} is closed in R. But R is closed in G, so R_{0} is closed in G. By Theorem 2.5, $P=Q=R_{0}$ is a closed submanifold of G. Notice that the isotropic subgroup of the action τ associated with the identity e is just K, so $\varphi: G / K \rightarrow P$ is a diffeomorphism. It is obviously equivariant.

Remark 2.3. Corollary 2.6 says that the symmetric space G / K can be realized in G as a closed submanifold, which is just P. But we should point out that for any subgroup K^{\prime} of G satisfying $K_{0} \subset K^{\prime} \subset K, G / K^{\prime}$ is also a symmetric space. In general, G / K^{\prime} cannot be embedded in G as closed submanifold. The submanifold $P \subset G$ is isomorphic at most one of such G / K^{\prime}, and this happens if and only if $K^{\prime}=K$.

Remark 2.4. If G is compact, the closedness of P can be implied from the fact that $P=$ R^{2}, which is much easier to be obtained than $P=R_{0}$. In fact, to prove that P is a closed submanifold when G is compact, we need only to show that $P=R^{2}=Q . P \subset R^{2} \subset Q$
have been showed in the proof of Theorem 2.5, (i) and (ii). $Q \subset P$ can be proved by the following simple argument. Let $g=h \sigma(h)^{-1} \in Q$. Since h can be expressed as $h=p k$, where $p \in P, k \in K, g=(p k)(\sigma(p k))^{-1}=(p k)\left(p^{-1} k\right)^{-1}=p^{2} \in P$.

3. How far is \boldsymbol{P} from being a section

We regard G as a principal K-bundle with base space G / K. We have proved that $P=$ $\exp (\mathfrak{p})$ is a closed submanifold of G. It is obvious that the tangent space $T_{e} P$ of P at e is \mathfrak{p}. But $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$. So P is a local section of the bundle $G \rightarrow G / K$ around [e]. If G is semisimple (or more generally, connected reductive, in the sense of Knapp [4]) and σ is the global Cartan involution of G, then $K=K_{0}$, and by the Cartan decomposition, the map $\Phi: P \times K \rightarrow G$ defined in Lemma 2.1 is a diffeomorphism. So G is a trivial K-bundle, and P is a global section. This means that for each coset space $g K, g K \cap P$ consists of just one point. But in general G is not a trivial K-bundle. So we may ask the question: for a coset space $g K$, how many points in $g K \cap P$?

Theorem 3.1. For each coset space $g K_{0}$, there is a homeomorphism between $g K_{0} \cap P$ and $\Phi^{-1}(g)$. In particular,

$$
g K_{0} \cap P \neq \emptyset .
$$

Proof. Let $\pi_{1}: P \times K_{0} \rightarrow P$ be the projection to the first factor. We prove that $\left.\pi_{1}\right|_{\Phi^{-1}(g)}$ is a homeomorphism between $\Phi^{-1}(g)$ and $g K_{0} \cap P$. First, let $(p, k) \in \Phi^{-1}(g)$, then $g=p k$. So $\pi_{1}(p, k)=p=g k^{-1} \in g K_{0} \cap P$. This proves $\pi_{1}\left(\Phi^{-1}(g)\right) \subset g K_{0} \cap P$. Let $\left(p_{1}, k_{1}\right),\left(p_{2}, k_{2}\right) \in \Phi^{-1}(g)$ and $\left(p_{1}, k_{1}\right) \neq\left(p_{2}, k_{2}\right)$. Since $p_{1} k_{1}=p_{2} k_{2}=g, p_{1} \neq$ p_{2}. This shows $\left.\pi_{1}\right|_{\Phi^{-1}(g)}$ is injective. Let $p \in g K_{0} \cap P$, then there is some $k \in$ K_{0} such that $p=g k$. So $\left(p, k^{-1}\right) \in \Phi^{-1}(g)$, and $\pi_{1}\left(p, k^{-1}\right)=p$. This means that $\left.\pi_{1}\right|_{\Phi^{-1}(g)}: \Phi^{-1}(g) \rightarrow g K_{0} \cap P$ is surjective. Since π_{1} is continuous and open, so is $\left.\pi_{1}\right|_{\Phi^{-1}(g)}$. Hence $\left.\pi_{1}\right|_{\Phi^{-1}(g)}: \Phi^{-1}(g) \rightarrow g K_{0} \cap P$ is a homeomorphism. By Lemma 2.1, Φ is surjective. So $g K_{0} \cap P \cong \Phi^{-1}(g) \neq \emptyset$. This proves the theorem.

Corollary 3.2. For each coset space $g K$,

$$
g K \cap P \neq \emptyset .
$$

Similar to the map $\Phi: P \times K_{0} \rightarrow G$, we can define the map $\Phi^{\prime}: P \times K \rightarrow G$ by $\Phi(p, k)=p k$. It is easy to see that Φ^{\prime} satisfies all the properties of Φ that we have mentioned above.

In the following we denote the left and right translations of $g \in G$ by L_{g} and R_{g}, respectively.

Lemma 3.3. Let $g \in G$. Then g is a regular value of Φ^{\prime} if and only if $g K$ intersects P transversally.

Proof. Suppose $(p, k) \in \Phi^{\prime-1}(g)$. Then

$$
\begin{aligned}
& \operatorname{Im}\left(d \Phi^{\prime}\right)_{(p, k)} \\
& \quad=\left(d \Phi^{\prime}\right)_{(p, k)}\left(T_{(p, k)}(P \times\{k\})\right)+\left(d \Phi^{\prime}\right)_{(p, k)}\left(T_{(p, k)}(\{p\} \times K)\right) \\
& \quad=T_{g}(P k)+T_{g}(p K) \\
& \quad=\left(d R_{k}\right)_{p}\left(T_{p} P\right)+\left(d R_{k}\right)_{p}\left(T_{p}(g K)\right) \\
& \quad=\left(d R_{k}\right)_{p}\left(T_{p} P+T_{p}(g K)\right) .
\end{aligned}
$$

Since $\left(d R_{k}\right)_{p}$ is an isomorphism and $\pi_{1}\left(\Phi^{\prime-1}(g)\right)=g K \cap P$, we have
g is a regular value of Φ^{\prime}

$$
\begin{aligned}
& \Longleftrightarrow \operatorname{Im}\left(d \Phi^{\prime}\right)_{(p, k)}=T_{g} G, \quad \forall(p, k) \in \Phi^{\prime-1}(g) \\
& \Longleftrightarrow T_{p} P+T_{p}(g K)=T_{p} G, \quad \forall(p, k) \in \Phi^{\prime-1}(g) \\
& \Longleftrightarrow T_{p} P+T_{p}(g K)=T_{p} G, \quad \forall p \in g K \cap P \\
& \Longleftrightarrow g K \text { intersects } P \text { transversally. }
\end{aligned}
$$

Lemma 3.4. The set of all regular values of Φ^{\prime} is right K-invariant.
Proof. For $g \in G$ and $k_{1} \in K,(p, k) \in \Phi^{\prime-1}(g) \Longleftrightarrow\left(p, k k_{1}\right) \in \Phi^{\prime-1}\left(g k_{1}\right)$. Since

$$
R_{k_{1}} \circ \Phi^{\prime}=\Phi^{\prime} \circ\left(i d \times R_{k_{1}}\right),
$$

for $(p, k) \in \Phi^{\prime-1}(g)$, we have

$$
\left(d R_{k_{1}}\right)_{g} \circ\left(d \Phi^{\prime}\right)_{(p, k)}=\left(d \Phi^{\prime}\right)_{\left(p, k k_{1}\right)} \circ\left(\operatorname{id} \times d R_{k_{1}}\right)_{(p, k)}
$$

Since $\left(d R_{k_{1}}\right)_{g}$ and (id $\left.\times d R_{k_{1}}\right)_{(p, k)}$ are isomorphisms, $\left(d \Phi^{\prime}\right)_{(p, k)}$ is an isomorphism if and only if $\left(d \Phi^{\prime}\right)_{\left(p, k k_{1}\right)}$ is an isomorphism. So g is a regular value if and only if $g k_{1}$ is a regular value. This proves the lemma.

Theorem 3.5. For almost all coset space $g K$ in $G / K, g K$ intersects P transversally.
Proof. Let G_{r} be the set of all regular values of Φ^{\prime}. By Sard's theorem, $G \backslash G_{r}$ is a set with measure zero. But Lemma 3.4 tells us that G_{r} is the union of some coset spaces $g K$. So by choosing local trivializations of the principal bundle $\pi: G \rightarrow G / K$ and using Fubini's Theorem, we know that $\pi\left(G \backslash G_{r}\right)=(G / K) \backslash \pi\left(G_{r}\right)$ has measure zero in G / K. By Lemma 3.3, $[g]=g K$ intersects P transversally, $\forall[g] \in \pi\left(G_{r}\right)$. This proves the theorem.

Corollary 3.6. For almost all coset space $g K$ in $G / K, g K \cap P$ is a discrete set. In particular, if K is compact, then $g K \cap P$ is a finite set for almost all coset space $g K$ in G / K.

Proof. Since $\operatorname{dim}(g K)+\operatorname{dim} P=\operatorname{dim} G, g K$ intersects P transversally implies that $g K \cap$ P is a 0 -dimensional submanifold of G, which is discrete. In particular, if K is compact, then so is $g K$. But $g K \cap P \subset g K$. So $g K$ intersects P transversally implies $g K \cap P$ is a finite set. By Theorem 3.5, the corollary holds.

Denote $x_{0}=[e] \in G / K$. We know that a curve $\gamma(t)(t \in \mathbb{R})$ in G / K with $\gamma(0)=x_{0}$ is a geodesic if and only if $\gamma(t)=e^{t X} x_{0}$ for some $X \in \mathfrak{p}$, and such X is unique.

Theorem 3.7. Let $g \in G$. If for every two geodesics $\gamma_{i}(t)=e^{t X_{i}} x_{0}(i=1,2)$ through the point $[g]$, where $X_{i} \in \mathfrak{p}$, we have $\left[X_{1}, X_{2}\right]=0$. Then $\#(g K \cap P) \leqslant \#(K \cap P)$.

Proof. Suppose $g=p k$, where $p \in P, k \in K$. We prove $L_{p^{-1}}(g K \cap P) \subset(K \cap P)$. Suppose $p^{\prime} \in(g K \cap P)$. Since $p \in g K, L_{p^{-1}}\left(p^{\prime}\right)=p^{-1} p^{\prime} \in K$. Let $p=e^{X}, p^{\prime}=e^{X^{\prime}}$, where $X, X^{\prime} \in \mathfrak{p}$. Since $[p]=\left[p^{\prime}\right]=[g]$, the two geodesics $\gamma_{1}(t)=e^{t X} x_{0}$ and $\gamma_{2}(t)=e^{t X^{\prime}} x_{0}$ satisfy $\gamma_{1}(1)=\gamma_{2}(1)=[p]$. By the conditions of the theorem, $\left[X, X^{\prime}\right]=0$. So $L_{p^{-1}}\left(p^{\prime}\right)=$ $e^{-X} e^{X^{\prime}}=e^{X^{\prime}-X} \in P$. This proves $L_{p^{-1}}(g K \cap P) \subset(K \cap P)$. But $L_{p^{-1}}$ is injective, this proves the theorem.

By Lemma 2.1, all coset space $g K$ is of the form $p K$ for some $p \in P$. We conclude this section by an example in which we show what the set $p K \cap P$ is for each $p \in P$.

Example. Let $G=S U(2), \sigma(g)=\left(g^{t}\right)^{-1}$. Then $K=S O(2)$.

$$
R=\left\{g \in S U(2) \mid g^{t}=g\right\}=\left\{\left.\left(\begin{array}{cc}
a+b i & c i \\
c i & a-b i
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}, a^{2}+b^{2}+c^{2}=1\right\} .
$$

So $R \cong S^{2}$ is connected, and then $P=R$. For $p \in P$, we show what the set $p K \cap P$ is. The element of $p K$ has the form $p k, k \in K$. But

$$
p k \in P \Longleftrightarrow \sigma(p k)=(p k)^{-1} \Longleftrightarrow p^{-1} k=k^{-1} p^{-1} \Longleftrightarrow k p=p k^{-1}
$$

Let $k=\left(\begin{array}{c}\cos \theta-\sin \theta \\ \sin \theta \\ \hline\end{array}\right), p=\left(\begin{array}{cc}a+b i & c i \\ c i & a-b i\end{array}\right)$. Then it is easy to show that $k p=p k^{-1} \Longleftrightarrow$ $a \sin \theta=0$. So if $a \neq 0, p k \in P \Longleftrightarrow \sin \theta=0 \Longleftrightarrow k= \pm I$. In this case $p K \cap P=\{ \pm p\}$. In particular, $K \cap P=\{ \pm I\}$. If $a=0$, then $\forall k \in K, p k \in P$. This implies $p K \subset P$. So in this case, $p K \cap P=p K$. It should be noted that all $p=\left(\begin{array}{cc}b i & c i \\ c i & -b i\end{array}\right)$ correspond the same coset space $p K$, which is the antipodal point of $[e]$ in the symmetric space $S U(2) / S O(2) \cong S^{2}$.

Acknowledgements

We would like to thank Professor U. Magnea for helpful discussion. In fact, his work with Professor M. Caselle on random matrix theory of symmetric spaces [1] is the motivation for us to concentrate on the problems of this paper.

References

[1] M. Caselle, U. Magnea, Random matrix theory and symmetric spaces, Phys. Rep. 394 (2004) 41-156.
[2] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.
[3] R. Hermann, Lie Groups for Physicists, Benjamin, New York, 1966.
[4] A.W. Knapp, Lie Groups Beyond an Introduction, second ed., Birkhäuser, Boston, 2002.
[5] V.S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations, Springer, New York, 1984.

[^0]: 4. This work is supported by the 973 Project Foundation of China (\#TG1999075102).

 * Corresponding author.

 E-mail address: anjinpeng @ pku.edu.cn (J. An).

