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Examining Variation in Recombination Levels in the
Human Female: A Test of the Production-Line Hypothesis

Ross Rowsey,1 Jennifer Gruhn,1 Karl W. Broman,2 Patricia A. Hunt,1 and Terry Hassold1,*

The most important risk factor for human aneuploidy is increasing maternal age, but the basis of this association remains unknown.

Indeed, one of the earliest models of the maternal-age effect—the ‘‘production-line model’’ proposed by Henderson and Edwards in

1968—remains one of the most-cited explanations. The model has two key components: (1) that the first oocytes to enter meiosis are

the first ovulated and (2) that the first to enter meiosis have more recombination events (crossovers) than those that enter meiosis later

in fetal life. Studies in rodents have demonstrated that the first oocytes to enter meiosis are indeed the first to be ovulated, but the asso-

ciation between the timing of meiotic entry and recombination levels has not been tested. We recently initiated molecular cytogenetic

studies of second-trimester human fetal ovaries, allowing us to directly examine the number and distribution of crossover-associated pro-

teins inprophase-stage oocytes.Our observations onover 8,000oocytes from191ovarian samplesdemonstrate extraordinary variation in

recombination within and among individuals but provide no evidence of a difference in recombination levels between oocytes entering

meiosis early in fetal life and those entering late in fetal life. Thus, our data provide a direct test of the second tenet of the production-line

model and suggest that it does not provide a plausible explanation for the human maternal-age effect, meaning that—45 years after its

introduction—we can finally conclude that the production-line model is not the basis for the maternal-age effect on trisomy.
Occurring in as many as 35% of all human pregnancies,

aneuploidy is the leading known cause of pregnancy

wastage and congenital birth defects in our species (re-

viewed in Nagaoka et al.1). The vast majority of aneuploidy

cases arematernal in origin, suggesting that egg production

is inherently error prone in humans.2 Further, this risk in-

creases dramatically with the age of thewoman: for women

in their twenties, the likelihood of having a clinically recog-

nized trisomic pregnancy is about 2%–3%, but this value

increases to over 30% for women in their forties.3

The basis of the effect of maternal age on aneuploidy re-

mains a mystery, but a number of potential mechanisms

have been proposed. One of the earliest andmost enduring

hypotheses is the ‘‘production-line model,’’ initially pro-

posed in 19684 on the basis of apparent age-dependent

changes in chiasma frequency inmouse oocytes. It ascribes

the age effect to differences in recombination and has two

key components. First, it assumes that there is a direct rela-

tionship between the timing of meiotic entry in the fetal

ovary and the timing of ovulation in the adult (i.e., oocytes

that are the first to enter meiosis are the first ovulated and

oocytes entering meiosis last are ovulated at the end of

the reproductive lifespan). Second, it assumes that meiotic

recombination rates vary with gestational age (i.e., the first

oocytes entering meiosis have higher recombination levels

than oocytes entering later). According to this model,

the last oocytes ovulated have the lowest numbers of

crossovers and might in fact have an increased frequency

of ‘‘crossoverless’’ homologs, greatly increasing the risk of

nondisjunction.

In the intervening 45 years, two lines of experimental

evidence consistent with the tenets of the production-
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line model have been produced. First, radiolabeling studies

in mice and rats have suggested that there is indeed a

production line, i.e., the first oocytes to enter meiosis

appear to be the first to be ovulated.5,6 Second, studies in

a variety of organisms have demonstrated the importance

of recombination abnormalities to the occurrence of

meiotic nondisjunction.7–9 The evidence from humans is

especially strong, given that abnormal levels or positioning

of recombination events has been detected in all trisomies

that have been appropriately studied.2,10,11 However, the

predicted relationship between recombination levels and

maternal age—i.e., that oocytes from older women have

lower levels of recombination than oocytes from younger

women—has not been demonstrated. Some genetic link-

age studies have shown a reduction in recombination in

pregnancies involving older women,12,13 but others have

either found no effect or reported an increase in recombi-

nation levels with increasing maternal age.14 Thus, the

data from linkage analyses are equivocal, and moreover,

this approach might not be appropriate for a key reason.

That is, virtually all linkage studies are based on liveborn

individuals, but the vast majority of aneuploid concep-

tuses terminate in utero. Consequently, traditional link-

age analysis of liveborn populations has limited power

to assess the relationship between recombination and

maternal-age-related aneuploidy.

Accordingly, we decided to directly test the second

tenet of the production-line model by examining meiotic

recombination in human fetal oocytes. We reasoned that

recombination differences in oocytes that initiate meiosis

at different times would be evident in a population of fetal

ovarian samples as a change in recombination levels with
ton State University, Pullman,WA 99164, USA; 2Department of Biostatistics

06, USA

y of Human Genetics. All rights reserved.

14

https://core.ac.uk/display/81997562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:terryhassold@vetmed.wsu.edu
http://dx.doi.org/10.1016/j.ajhg.2014.06.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2014.06.008&domain=pdf


Figure 1. Recombination in Human Oocytes
(A) Representative image from a pachytene-stage human fetal
oocyte. Antibodies against SYCP3 (representing the axial-lateral
elements of the SC) are visualized in red, those against the cross-
over-associated DNA-mismatch-repair protein MLH1 are in green,

The A
gestational age. Thus, we took advantage of our ongoing

analyses of fetal ovarian samples from elective termina-

tions of pregnancy at the San Francisco General Hospital

Women’s Options Center,15–17 as well as data from our pre-

vious studies at the University of Washington Medical

Center in Seattle,16 to ask whether the levels of recombina-

tion are affected by the gestational age of the fetus.

For these analyses, we collected fetal ovarian samples

from elective terminations of pregnancy, as previously

described.15–17 Our studies were conducted according to

the principles expressed in the Declaration of Helsinki

and were approved by the institutional review boards

at the University of Washington, Washington State

University, and University of California, San Francisco,

and informed consent was obtained from all study

participants.

We utilized immunofluorescence to examine crossover-

associated proteins in prophase-stage oocytes from these

samples. Specifically, we analyzed the number and distri-

bution of foci for the DNA-mismatch-repair protein

MLH1, thought to localize to approximately 90% of cross-

overs in pachytene-stage cells of mammalian species.18

Given that MLH1 foci occur in the context of the

synaptonemal complex (SC), we also visualized the SC by

using antibodies against the axial-element protein SYCP3

(Figure 1A). In total, we analyzed 8,518 cells from 191

fetal samples with gestational ages ranging from 14 to

26 weeks, and we typically examined between 25 and 65

cells per case.

Extensive individual variation was evident in the 191

cases. That is, mean MLH1 values (5SE) ranged from

51.15 1.3 to 92.35 2.1, meaning that the level of recom-

bination for the cases with the lowest MLH1 values was

only 55% of that for the cases with the highest values

(Figure 1B). Pooling the data from all cases, we calculated

the overall mean number of MLH1 foci per cell to be

66.35 0.6. If we assume that oneMLH1 focus¼ one cross-

over ¼ 50 cM, this yields a genome-wide female map

length of approximately 3,315 cM. This estimate is consis-

tent with inferred genome-wide estimates (about 3,000–

4,000 cM) from previous cytological studies of recombina-

tion in human females16,19–21 (Figure 1C). However, these

values are consistently lower than those derived from link-

age analysis, where estimates range from about 4,000 to

4,500 cM13,22–27 (Figure 1C). Previously, we16,17 suggested

two possible reasons for this discrepancy. First, all cytolog-

ical analyses have involved immunostaining assays of

MLH1 and have not assessed the fewer than 10% of cross-

overs that result from alternative recombination pathways,
and those against CREST antiserum-positive signals (recognizing
centromeric regions) are in blue.
(B) Distribution of mean MLH1 values per cell in 191 fetal ovarian
samples.
(C) Estimates of female genetic map lengths from genetic linkage
studies (left, in blue) and cytological studies of pachytene oocytes
(right, in red). References are indicated beneath each estimate.
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Figure 2. Influence of Gestational Age onGenome-wide Recom-
bination Levels
For each of the 191 cases, the mean number of MLH1 foci per case
is represented by red diamonds, and the values for individual cells
are represented by blue diamonds. No obvious effect of gestational
age on recombination levels was observed.
e.g., noninterfering crossovers associated with the endonu-

clease MUS81.28,29 Second, localization of MLH1 on SCs

appears to be asynchronous in human oocytes, and not

all foci are visible in pachytene-stage oocytes.16,21 These

caveats aside, the general conclusions from our and other

cytological studies of recombination are in good agree-

ment with data from linkage studies and provide evidence

of surprising variability in genome-wide recombination

levels in human females by comparison with human

males.16,17,19,21,24

In subsequent analyses, we tested the effects of gesta-

tional age on meiosis. Initially, we examined the mean

number of MLH1 foci per cell for each case and sorted
110 The American Journal of Human Genetics 95, 108–112, July 3, 20
cases by gestational age (Figure 2). As is evident from

Figure 2, there was no apparent effect of gestational age

on genome-wide mean MLH1 values. Figure 2 also shows

no change in the range of MLH1 values within individual

cases across multiple gestational ages. Subsequently, we

analyzed the distribution and mean number of MLH1

foci on four chromosomes known to be nondisjunction

prone or to contribute to clinical disorders (i.e., chromo-

somes 16, 18, 21, and 22). We found no association be-

tween gestational age and the placement (data not shown)

or number (Figure 3) of MLH1 foci on these chromosomes.

Importantly, in contrast to the prediction of the produc-

tion-line model, there was no increase in ‘‘crossoverless’’

chromosomes with increasing gestational age (Figure 3).

Finally, we examined the SC length, a variable known

to be directly correlated with genome-wide MLH1

values.19,30 We analyzed the SC lengths for chromosomes

16, 18, 21, and 22 but found no effect of gestational age

on SC length for any of the chromosomes (Figure S1, avail-

able online). Thus, taken together, our analyses failed to

detect any genome-wide or chromosome-specific recombi-

nation-associated changes attributable to the gestational

age of the sample.

In a final set of studies, we asked whether the age of

the mother might influence recombination levels in the

oocytes of her female fetuses (i.e., a potential grandmater-

nal-age effect). However, as is evident from Figure 4, we

found no indication of such an effect.

Two important conclusions derive from our analyses.

First, we found no evidence that the gestational age of

the fetus influences the level or positioning of crossover

events. Thus, the suggestion by Henderson and Edwards4

that a ‘‘gradient’’ in the fetal ovary causes the first-formed

oocytes to have more chiasmata than those formed last
Figure 3. Influence of Gestational Age
on the Number of Crossovers on Individ-
ual Chromosomes
For a subset of cases, we analyzed the num-
ber of MLH1 foci on individual chromo-
somes, i.e., (A) nine cases for chromosome
16, (B) seven cases for chromosome 18, (C)
11 cases for chromosome 21, and (D) 11
cases for chromosome 22. There was no
obvious effect of gestational age on the
number of MLH1 foci per chromosome;
in particular, the number of chromosomes
lacking anMLH1 focus was not affected by
gestational age.
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Figure 4. Influence of Maternal Age on Genome-wide Recombi-
nation Levels
For each of the 119 cases, the mean number of MLH1 foci per case
is represented by red diamonds, and the values for individual cells
are represented by blue diamonds. No obvious effect of maternal
age on recombination levels was observed.
appears to be incorrect. Accordingly, we conclude that

the production-line model as initially proposed is not the

cause of the maternal-age effect on human aneuploidy.

Nevertheless, the observations that led to the model—

i.e., declining numbers of chiasmata with increasing

maternal age—can easily be reconciled with our data.

That is, recent studies in rodents have indicated an age-

related loss of cohesin in oocytes.31,32 In addition to teth-

ering sister chromatids, cohesin serves to link homologous

chromosomes together during the first meiotic division.

Thus, loss of cohesion with increasing maternal age might

cause homologs tethered by single distal exchanges to slip

apart from one another and, on cytological examination of

diakinesis preparations, would yield an apparent increase

in the number of univalents.

Second, and equally important, our observations suggest

extraordinary variation in genome-wide crossover levels

among different fetal samples. Clearly, individual variation

in recombination rates has been documented previously,

e.g., in an analysis of different CEPH families, Broman

et al. reported female maps as low as 3,300 cM and as

high as 4,700 cM.23 Our observations suggest even greater

variability in that genome-wide maps ranged from approx-

imately 2,500 to over 4,600 cM among the different sam-

ples. Intriguingly, this level of variation is not evident in

the human male,17,23 suggesting that recombination is

less tightly controlled in human oogenesis than in sper-

matogenesis. Although the basis of this sex-specific differ-

ence remains unclear, it seems unlikely that it is can be

explained by the asynchrony of the process in females.

However, by combining SNP analyses of recombination-

associated loci (e.g., see Kong et al.33) with direct studies

of recombination levels, it might be possible to illuminate

the genetic underpinnings of this surprising difference in

variation between human males and females.
The A
Supplemental Data

Supplemental Data include one figure and can be found with this

article online at http://dx.doi.org/10.1016/j.ajhg.2014.06.008.
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