LETTER TO THE EDITOR

Nuclear Magnetic Resonance of ²³Na in Suspensions of Pig Erythrocyte Ghosts: A Comment on the Interpretation of Tissue ²³Na Signals

Dear Sir:

In preceding papers (1, 2), one of us presented an interpretation of the nuclear magnetic resonance (NMR) signal of ²³Na in biological tissue. According to this interpretation, the peculiar magnetic behavior of ²³Na nuclei in tissue (i.e., reduced resonance intensity, two different transverse relaxation times T_2 , and a single longitudinal relaxation time T_1 [3–7; other references can be found in ref. 1]) can be attributed to the nuclear quadrupole interactions of a fraction of tissue ²³Na and electric field gradients in the neighborhood of (or within) subcellular membranes (or other components of the particulate fractions); and this fraction of tissue ²³Na in state B) will be in rapid exchange with the remaining tissue ²³Na, which is characterized by a short correlation time (\ll the Larmor period) and a single Larmor frequency. ²³Na in state B will possess, in the absence of exchange, (*i*) two different T_2 and/or (*ii*) more than one Larmor frequencies in the first order perturbation effect.

It is well known that the time of exchange of Na⁺ across the cell membrane is far longer than T_2 of ²³Na in NaCl solution (57 ms for dilute solution [8]). Accordingly, as pointed out before (2), if ²³Na in state B is absent on (or in the neighborhood of) the outer surface of the cell membrane (i.e., if the outer surface of the cell membrane does not possess the ability to depress the resonance intensity of ²³Na), the observed signal of tissue ²³Na is quite difficult to explain by the current interpretation.

However, Jardetzky and Wertz (9) reported that the resonance intensity of ²³Na in whole dog blood, erythrocyte ghost suspension in saline, and other samples containing the cell membrane of erythrocytes is identical to that of physiological saline. In a more recent paper, Yeh et al. (10) concluded that no "NMR-invisible sodium" occurs in packed human erythrocytes and its hemolyzate. These results seem to render unlikely the occurrence of ²³Na in state B in the cell membrane.

We carefully reexamined this point and found that erythrocyte ghosts possess the ability to depress the resonance intensity of ²³Na (Table I). Adult pig blood was collected into 1/10 vol of 0.1 M ethylenediaminetetraacetic acid (EDTA) neutralized with NaOH. All further procedures were performed at $1-3^{\circ}$ C. The erythrocytes were washed three times with 6 vol of 150 mM NaCl containing 1 mM EDTA neutralized with NaOH by centrifugation at 200 g for 5 min. The packed cells were hemolyzed by the addition of 10 vol of 14 mM Tris-1 mM maleate-HCl buffer containing 1 mM EDTA, pH 8.2-8.4 (solution H). The erythrocyte ghosts were washed five times with 5 vol of solution H by centrifugation at 20,000 g for 25 min. A small pink button at the bottom of the centrifuge tube was discarded. The ghosts were further washed twice with 4 vol of 14 mM Tris-3.5 mM maleate-HCl buffer, pH 6.8-7.0, by centrifugation at 20,000 g for 25 min. The ghosts were further packed by centrifugation at 75,000 g for 60 min. To 1,620 mg and 810 mg aliquots of the packed ghosts were added 180 mg and 990 mg, respectively, of maleate-NaCl-NaOH buffer, pH 6.8-7.0. To other 1,620 mg aliquots were added 180 mg of maleate-NaCl-NaOH buffer containing guanidine hydrochloride (G-HCl), pH 6.8-7.0. The final concentrations of Na⁺ and maleate in the 1.8 g samples were 138 mmol/kg sample and about 10 mmol/kg sample, respectively. The NMR signal (derivative of absorption mode) of ²³Na in the 1.8 g samples was obtained at 22-24°C with a wide-line spectrometer

BIOPHYSICAL JOURNAL VOLUME 16 1976

Ghost concn.	Resonance intensity	Loss in intensity per 1% ghosts
% as dry wt	%	%1%
2.48	85.5 ± 1.0	5.8 ± 0.4
4.95	73.3 ± 1.2	5.4 ± 0.3
4.95	98.7 ± 1.0	$\sim 0.3 \pm 0.2$
(+ G-HCl, 0.6 mol/kg sample)		

 TABLE I

 RESONANCE INTENSITY OF ²³NA IN SUSPENSIONS OF PIG ERYTHROCYTE GHOSTS

The resonance intensity of 23 Na is expressed in percentage of the intensity expected from the Na content. The value after a \pm sign is the SEM of five samples. G-HCl is guanidine hydrochloride.

(Varian Associates, Palo Alto, Calif.; model V-4200B with a V-3606 electromagnet) in the same manner as described in a preceding paper (1). A relatively large amplitude of field modulation was used. This gave practically identical line widths to the signals of all the samples examined. The erythrocyte ghosts were practically hemoglobin free. With phase-contrast microscopy, they were markedly shrunk and almost all of them were in the forms of crenated spheres and crenated discs; no fragmentation was observed. The results are shown in Table I.

The ability (per unit dry wt) of erythrocyte ghosts to depress resonance intensity of ²³Na was roughly twice as large as that of the whole homogenate of rat liver. In the presence of guanidinium ion (600 mmol/kg sample), the resonance intensity of ²³Na was restored to near the 100% level; this suggests that the observed loss in the resonance intensity of ²³Na in ghost sus pensions does not arise as an artifact.

The present result disagrees with that of Jardetzky and Wertz (9). But in their short report the concentration of ghosts was not specified. In dilute suspensions of ghosts (1%) or less as dry wt) and also in whole blood and packed erythrocytes, the loss in the resonance intensity of ²³Na was barely detectable.

Of course, the present result does not necessarily imply that the outer surface of the cell membrane possesses the ability to depress the resonance intensity of ²³Na. Lindblom (11) observed, however, a quadrupole splitting of the ²³Na signal in lamellar liquid crystals of lecithin (64% by wt)-sodium cholate (16%)-water (20%). This observation suggests that the ability to depress the resonance intensity of ²³Na is widely distributed among subcellular membranes, which contain, as main constituents, phospholipids and other molecules with anionic groups. In fact, this ability is found in mitochondrial (900 $g \times 10$ min to 8,000 $g \times$ 10 min), heavy microsomal (8,000 $g \times 10$ min to 20,000 $g \times 40$ min), and light microsomal (20,000 $g \times 40$ min to 100,000 $g \times 60$ min) fractions of rat liver homogenate (10% homogenate in 0.25 M sucrose); and the abilities (per unit dry wt) of these subcellular fractions are some 1.5-2 times larger than that of the whole liver homogenate (unpublished result). Since both surfaces of the cell membrane also possess anionic groups of phospholipids and other molecules, it is reasonable to assume that ²³Na in state B occurs on the outer surface of the cell membrane and on its inner surface as well.

In summary, (a) pig erythrocyte ghosts possess the ability to depress the resonance intensity of 23 Na; (b) available evidences and discussion suggest that both surfaces of the cell membrane possess this ability; and (c) accordingly, a difficulty in interpreting the tissue 23 Na signal seems overcome. The effect of guanidinium ion on the resonance intensity of 23 Na in suspensions of pig erythrocyte ghosts was also reported.

We thank Dr. N. Miyamoto (Research Institute of Electrical Communication, Tohoku University, Sendai, Japan) for his suggestions and making the NMR spectrometer available for this study.

Received for publication 1 October 1975 and in revised form 23 February 1976.

REFERENCES

- MONOI, H. 1974. Nuclear magnetic resonance of tissue ²³Na. I. ²³Na signal and Na⁺ activity in homogenate. *Biophys. J.* 14:645.
- MONOI, H. 1974. Nuclear magnetic resonance of tissue ²³Na. II. Theoretical line shape. Biophys. J. 14:653.
- COPE, F. W. 1967. NMR evidence for complexing of Na⁺ in muscle, kidney, and brain, and by actomyosin. The relation of cellular complexing of Na⁺ to water structure and to transport kinetics. J. Gen. Physiol. 50:1353.
- 4. CZEISLER, J. L., O. G. FRITZ, JR., and T. J. SWIFT. 1970. Direct evidence from nuclear magnetic resonance studies for bound sodium in frog skeletal muscle. *Biophys. J.* 10:260.
- 5. COPE, F. W. 1970. Spin-echo nuclear magnetic resonance evidence for complexing of sodium ions in muscle, brain, and kidney. *Biophys. J.* 10:843.
- 6. BERENDSEN, H. J. C., and H. T. EDZES. 1973. The observation and general interpretation of sodium magnetic resonance in biological material. Ann. N. Y. Acad. Sci. 204:459.
- SHPORER, M., and M. M. CIVAN. 1974. Effects of temperature and field strength on the NMR relaxation times of ²³Na in frog striated muscle. *Biochim. Biophys. Acta.* 354:291.
- EISENSTADT, M., and H. L. FRIEDMAN. 1966. Nuclear magnetic relaxation in ionic solution. I. Relaxation of ²³Na in aqueous solutions of NaCl and NaClO₄. J. Chem. Phys. 44:1407.
- 9. JARDETZKY, O., and J. E. WERTZ. 1956. Detection of sodium complexes by nuclear spin resonance. Am. J. Physiol. 187:608.
- 10. YEH, H. J. C., F. J. BRINLEY, JR., and E. D. BECKER. 1973. Nuclear magnetic resonance studies on intracellular sodium in human erythrocytes and frog muscle. *Biophys. J.* 13:56.
- LINDBLOM, G. 1971. Ion binding in liquid crystals studied by NMR. III. ²³Na quadrupolar effects in a model membrane system. Acta Chem. Scand. 25:2767.

HIROSHI MONOI Department of Physiology YOSHITERU KATSUKURA Department of Radiology Tohoku University School of Medicine Sendai, Japan 980