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Preferences over Projects (SPA-P). They proved that the problem of finding a maximum
stable matching in SPA-P is APX-hard and gave a polynomial-time 2-approximation
algorithm. In this paper, we give an improved upper bound of 1.5 and a lower bound
of 21/19 (> 1.1052).
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1. Introduction

Assignment problems based on the preferences of participants, which originated from the famous Hospitals/Residents
problem (HR) [3], are important almost everywhere, such as in education systems where students must be allocated to
elementary schools or university students to projects. In the university case, each student may have preferences over certain
research projects supervised by professors and usually there is an upper bound on the number of students each project
can accept. Our basic goal is to find a “stable” allocation where no students (or projects or professors if they also have
preferences over students) can complain of unfairness. This notion of stability was first introduced by Gale and Shapley in
the context of the famous Stable Marriage problem in 1962 [2].

The Student-Project Allocation problem (SPA) is a typical formulation of this kind of problem originally described by Abra-
ham, Irving, and Manlove [1]. The participants here are students, projects, and lecturers. Each project is offered by a single
lecturer, though one lecturer may offer multiple projects. Each project and each lecturer has a capacity. Students have pref-
erences over projects, and lecturers have preferences over students. Our goal is to find a stable matching between students
and projects satisfying all of the capacity constraints for projects and lecturers. They proved that all stable matchings for a
single instance have the same size, and proposed linear-time algorithms to find one [1].

Manlove and O’Malley [8] proposed a variant of SPA, called SPA with Preferences over Projects (SPA-P), where lecturers have
preferences over projects they offer rather than preferences over students. In contrast to SPA, they pointed out that the
sizes of stable matchings may differ, and proved that the problem of finding a maximum stable matching in SPA-P, denoted
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MAX-SPA-P, is APX-hard. They also presented a polynomial-time 2-approximation algorithm. Specifically, they provided a
polynomial-time algorithm that finds a stable matching, and proved that any two stable matchings differ in size by at most
a factor of two.

1.1. Our contributions

In this paper, we improve both the upper and lower bounds on the approximation ratio for MAX-SPA-P. We give an
upper bound of 1.5 and a lower bound of 21/19 (> 1.1052) (under the condition that P �= NP). For the upper bound, we
modify Manlove and O’Malley’s algorithm spa-p-approx [8] using Király’s idea [7] for the approximation algorithm to find a
maximum stable matching in a variant of the stable marriage problem (MAX-SMTI). We also show that our analysis is tight.
For the lower bound, we give a gap-preserving reduction from (a variant of) MAX-SMTI. Our reduction also gives a lower
bound of 1.25 under the Unique Games Conjecture.

2. Preliminaries

Here we give a formal definition of SPA-P and MAX-SPA-P, derived directly from the literature [8]. An instance I of SPA-P
consists of a set S of students, a set P of projects, and a set L of lecturers. Each lecturer �k ∈ L offers a subset Pk of projects.
Each project is offered by exactly one lecturer, i.e., Pk1 ∩ Pk2 = ∅ if k1 �= k2. Each student si ∈ S has an acceptable set of
projects, denoted Ai , and has a strict order on Ai according to preferences. Each lecturer �k also has a strict order on Pk
according to preferences. Also, each project p j and each lecturer �k has a positive integer, called a capacity, denoted c j
and dk , respectively.

An assignment M is a subset of S × P where (si, p j) ∈ M implies p j ∈ Ai . Let (si, p j) ∈ M and �k be the lecturer who
offers p j . Then we say that si is assigned to p j in M , and p j is assigned si in M . We also say that si is assigned to �k in M
and �k is assigned si in M .

For s ∈ S , let M(s) be the set of projects to which s is assigned in M . For r ∈ P ∪ L, let M(r) be the set of students
assigned to r in M . If M(si) = ∅, we say that the student si is unassigned in M , otherwise si is assigned in M . We say that
the project p j is under-subscribed, full, or over-subscribed with respect to M according to whether |M(p j)| < c j , |M(p j)| = c j ,
or |M(p j)| > c j , respectively, under M . If |M(p j)| > 0, we say that p j is non-empty, otherwise, it is empty. Corresponding
definitions apply to each lecturer �.

A matching M is an assignment such that |M(si)| � 1 for each si , |M(p j)| � c j for each p j , and |M(�k)| � dk for each �k .
For a matching M , if |M(si)| = 1, we may use M(si) to denote the unique project to which si is assigned. The size of a
matching M , denoted |M|, is the number of students assigned in M .

Given a matching M , a (student, project) pair (si, p j) blocks M , or is a blocking pair for M , if the following three conditions
are met:

1. p j ∈ Ai .
2. Either si is unassigned or si prefers p j to M(si).
3. p j is under-subscribed and either

(a) si ∈ M(�k) and �k prefers p j to M(si), or
(b) si /∈ M(�k) and �k is under-subscribed, or
(c) si /∈ M(�k), �k is full, and �k prefers p j to �k ’s worst non-empty project,
where �k is the lecturer who offers p j .

Given a matching M , a coalition is a set of students {si0 , si1 , . . . , sir−1 } for some r � 2 such that each si j is assigned in M
and prefers M(si j+1) to M(si j ), where j + 1 is taken modulo r. A matching that has no blocking pair nor coalition is stable.
Refer to [8] for the validity of this definition of stability. SPA-P is the problem of finding a stable matching, and MAX-SPA-P
is the problem of finding a maximum stable matching.

We say that A is an r-approximation algorithm if it satisfies OPT(I)/A(I) � r for all instances I , where OPT(I) and A(I)
are the sizes of the optimal and the algorithm’s solutions for I , respectively.

3. Approximability

3.1. Algorithm spa-p-approx-promotion

Manlove and O’Malley’s algorithm spa-p-approx [8] proceeds as follows. First, all students are unassigned. Any student (s)
who has non-empty preference list applies to the top project (p) on the current list of s. If the lecturer (�) who offers p has
no incentive to accept s for p, then s is rejected. When rejected, s deletes p from the list. Otherwise, (s, p) is added to the
current matching. If, as a result, � becomes over-subscribed, � rejects a student from �’s worst non-empty project to satisfy
the capacity constraint. This continues until there is no unassigned student whose preference list is non-empty. Manlove
and O’Malley proved that the obtained matching is stable.

We extend spa-p-approx using Király’s idea [7]. During the execution of our algorithm spa-p-approx-promotion, each
student has one of two states, “unpromoted” or “promoted”. At the beginning, all of the students are unpromoted. The ap-
plication sequence is unchanged. When a student (s) becomes unassigned with her preference list exhausted, s is promoted.
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When promoted, s returns to her original preference list (i.e., all of the previous deletions are canceled) and starts a second
sequence of applications from the top of her list. For the decision rule for acceptance or rejection by the lecturers, they
will prefer promoted students to unpromoted students within the same project. The formal description of spa-p-approx-

promotion is given as Algorithm 1.

Algorithm 1 spa-p-approx-promotion

1: M := ∅.
2: Let all students be unpromoted.
3: while (there exists an unassigned student si such that si ’s list is non-empty or si is unpromoted) do
4: if (si ’s list is empty and si is unpromoted) then
5: Promote si .
6: end if
7: p j := first project on si ’s list.
8: �k := lecturer who offers p j .
9: /* si applies to p j */

10: if (A. (p j is full) or (�k is full and p j is �k ’s worst non-empty project)) then
11: if ((si is unpromoted) or (there is no unpromoted student in M(p j))) then
12: Reject si .
13: else
14: Reject an arbitrary unpromoted student in M(p j) and add (si , p j) to M .
15: end if
16: else if (B. �k is full and prefers �k ’s worst non-empty project to p j ) then
17: Reject si .
18: else if (C. Otherwise) then
19: Add (si , p j) to M .
20: if (�k is over-subscribed) then
21: pz := �k ’s worst non-empty project. /* note that �k prefers p j to pz . */
22: if (M(pz) contains an unpromoted student) then
23: Reject an arbitrary unpromoted student in M(pz).
24: else
25: Reject an arbitrary student in M(pz).
26: end if
27: end if
28: end if
29: end while
30: Return M .

When a student si applies to a project p j but is instantly rejected, we say that p j rejects si and si is rejected by p j .
Similarly, when a student si being assigned to p j is rejected (due to another student’s application), we say that p j rejects si

and si is rejected by p j .

3.2. Correctness

It is straightforward to show that spa-p-approx-promotion outputs a matching in polynomial time. We will now show
that the output matching M is stable. We first prove two useful lemmas:

Lemma 3.1. Suppose that, during the execution of spa-p-approx-promotion, a project pa rejected a promoted student. Then (i) after
that point, no student can be accepted to pa, and (ii) no unpromoted student can be assigned to pa in M.

Proof. Suppose that a promoted student s is rejected by pa . Let �k be the lecturer who offers pa . It is easy to see that just
after this rejection, no unpromoted student can be assigned to pa . We show that after that point, if a student s′ applies to
pa when there is no unpromoted student assigned to pa , then s′ must be rejected. It is easy to see that the lemma follows
by using this fact inductively.

Note that just after this rejection, either (1) pa is full or (2) pa is under-subscribed and �k is full. We consider Case (2)
first. Since pa is under-subscribed but s was rejected by pa , just before this rejection pa must be �k ’s worst non-empty
project or even worse than �k ’s worst non-empty project. Then after this rejection, pa remains �k ’s worst non-empty project
or worse than that. Note that now �k remains full until the end of the execution. Then after this point, when any student
applies to pa , only Cases A (line 10) or B (line 16) of the algorithm can apply. Since there is no unpromoted student in
M(pa), s′ must be rejected.

In Case (1), if pa is still full when s′ applies to pa , Case A of the algorithm applies and hence s′ must be rejected since
M(pa) contains no unpromoted student. If pa is under-subscribed when s′ applies to pa , then some student was already
rejected by pa . At that time, �k must have been full and pa was �k ’s worst non-empty project. Therefore, �k is still full and
pa is �k ’s worst non-empty project or worse than �k ’s worst non-empty project. Then we can apply the same argument as
in Case (2). �
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Lemma 3.2. Suppose that, during the execution of spa-p-approx-promotion, a project pa has rejected a student. Then after that
point, no unpromoted student can be accepted to pa.

Proof. The proof is basically similar to that of the previous lemma, and hence we give only a brief sketch. Let �k be the
lecturer who offers pa . After the rejection point, �k or pa is full. If �k is full but pa is under-subscribed, then pa must be �k ’s
worst non-empty project or worse than that. Then, afterwards, �k has no incentive to accept an unpromoted student to pa .
Next, suppose that pa is full after the rejection point. As long as pa remains full, pa rejects an unpromoted student. If pa

becomes under-subscribed, then �k must be full and pa is �k ’s worst non-empty project or worse than that. Hence we can
apply the same argument as the former case. �

To prove the stability, we need to prove that there is no coalition or blocking pair.

Lemma 3.3. The output matching M is coalition-free.

Proof. Suppose that there is a coalition {si0 , si1 , . . . , sir−1 } for some r � 2. Let pi j = M(si j ) for each j (0 � j � r − 1). Thus si j

prefers pi j+1 to pi j (where j + 1 is taken modulo r). Therefore, at some point of the execution, pi j+1 was deleted from si j ’s
list. Note that during the execution of the algorithm, one project may be deleted from a student’s list twice (because of a
promotion). Hereafter, a “deletion” means the final deletion unless otherwise stated.

Now suppose without loss of generality that among such deletions, the first occurrence was the deletion of pi1 from si0 ’s
list. First, suppose that si0 is eventually unpromoted. Note that si1 applied to and was accepted by pi1 after si0 was rejected
by pi1 . Therefore si1 is eventually promoted by Lemma 3.2. Then si1 was rejected by pi2 when si1 was promoted. This
means that si2 is eventually promoted by Lemma 3.1(ii). Repeating this argument, we can conclude that sir−1 is eventually
promoted. Then this contradicts Lemma 3.1(ii) since pi0 rejected the promoted student sir−1 but is assigned an unpromoted
student si0 in M .

Next suppose that si0 is eventually promoted. Then since pi1 rejected a promoted student si0 , after that pi1 accepts no
student by Lemma 3.1(i). This contradicts the fact that si1 was accepted to pi1 later. �
Lemma 3.4. The output matching M has no blocking pair.

Proof. Assume that there exists a blocking pair (sr, pt) for M . Then it is clear that sr was rejected by pt during the execution
(recall that this rejection is the second one if sr was eventually promoted). Let �k be the lecturer who offers pt . Rejections
occur at lines 12, 14, 17, 23, and 25. If this rejection occurred at line 17, 23, or 25, then pt was already �k ’s worst non-empty
project or worse than that, and this is also the case in M . We know that �k was full at this rejection point, and remains full
in M . Therefore, (sr, pt) cannot block M . If this rejection occurred at line 12 or 14 as a result of �k being full and pt being
�k ’s worst non-empty project, then the same argument holds. Therefore suppose that this rejection occurred at line 12 or
14 as a result of pt being full. Since (sr, pt) blocks M , pt is under-subscribed in M . Then pt changed from being full to
being under-subscribed at some point. This can happen only when �k is full and pt is �k ’s worst non-empty project. Again,
we can use the same argument to show that (sr, pt) cannot block M , a contradiction. �

The following lemma follows immediately from Lemmas 3.3 and 3.4.

Lemma 3.5. spa-p-approx-promotion returns a stable matching.

3.3. Analysis of the approximation ratio

For a given instance I , let M be a matching output from spa-p-approx-promotion, and let Mopt be a largest stable
matching for I .

Lemma 3.6. |Mopt| � 3
2 |M|.

Proof. Based on M and Mopt , we define a bipartite graph G M,Mopt = (U , V , E) as follows: each vertex in U corresponds to
a student in I , and each vertex in V corresponds to a position of a project in I . Precisely speaking, for each project p j
whose capacity is c j , we create c j “positions” of p j , each of which can accept at most one student, and each vertex in V
corresponds to each such position. We use si to denote the vertex in U corresponding to a student si and p j,1, p j,2, . . . , p j,c j

to denote the vertices in V corresponding to a project p j .
If a student si is assigned to a project p j in M (Mopt , respectively), we include an edge (si, p j,t) for some t (1 � t � c j),

called an M-edge (Mopt-edge, respectively), in E . If si is assigned to the same project p j both in M and Mopt , then M- and
Mopt-edges corresponding to this assignment include the same position of p j , which means we give parallel edges (si, p j,t)

for some t . We also ensure that there are no two vertices p j,t1 and p j,t2 such that p j,t1 is matched in M but not in Mopt ,
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and p j,t2 is matched in Mopt but not in M . In such a case, there will be M-edge (si1 , p j,t1 ) and Mopt-edge (si2 , p j,t2 ). Then
we can remove (si1 , p j,t1 ) and add (si1 , p j,t2 ) instead.

Note that each vertex of G M,Mopt has degree at most two. Therefore its connected components (other than isolated
vertices) are alternating paths or alternating cycles. Now we will modify G M,Mopt while retaining this property and keeping
the numbers of M-edges and Mopt-edges unchanged. Note that the resulting graph may not correspond to a feasible solution
for I . We use this modification only for the purpose of comparing the sizes of M and Mopt .

A connected component consisting of only one Mopt-edge is called a Type-I component. A connected component which is
a length-three alternating path consisting of two Mopt-edges and one M-edge in the middle is called a Type-II component.
We show that there are no Type-I or Type-II components in the resulting bipartite graph. If this is true, the connected
component having the largest ratio of the number of Mopt-edges to that of M-edges is a length-five alternating path with
three Mopt-edges and two M-edges, which has the ratio of 1.5. This proves the lemma.

Consider a Type-I component (si, p j,t). Let �k be the lecturer who offers p j . Since p j,t is not matched in M , p j is under-
subscribed in M . Then �k must be full in M since otherwise (si, p j) blocks M . Because p j,t is matched in Mopt but not
in M , we can find a vertex pa,x in V which is matched in M but not in Mopt , where pa is offered by �k . We can remove
(si, p j,t) and add (si, pa,x) to remove this Type-I component.

Consider a Type-II component si − pa,x − s j − pb,y . Note that pa �= pb due to the construction of G M,Mopt . Since si is
unassigned in M , si is promoted. Then si applied to pa when promoted, but was rejected. Therefore s j must be promoted
by Lemma 3.1(ii). This means that s j applied to pb at least once, but was rejected. Let �k be the lecturer who offers pb . As
mentioned several times before, this rejection can happen only when (1) pb is full or (2) �k is full and pb is �k ’s worst non-
empty project or worse than that, and either (1) or (2) also holds for the output matching M . However pb,y is unmatched
in M , so (2) must hold for M and hence �k is full in M . Since �k is full in M but pb,y is matched only in Mopt , there must
be a vertex pc,z in V which is matched in M with some vertex, say sd , but not matched in Mopt , where pc is offered by �k .
If we remove the edge (s j, pb,y) and add (s j, pc,z), then we will have an alternating path si − pa,x − s j − pc,z − sd · · · of
length at least four. Hence this Type-II component is removed.

Note that in both of these cases, we used the property that �k is full in M . This implies that for each Type-I or Type-II
component, we can find a distinct vertex in V which is matched only in M to perform the above mentioned replacement.
We do this replacement for all Type-I and Type-II components in G M,Mopt . This operation does not change any M-edges, so
the number of students assigned to each lecturer or project in M is unchanged. In particular, a lecturer or a project full
in M is still full in the modified graph.

As a result of these operations, we may still have a Type-II component. This can happen only when we removed a Type-I
component, such as (si, p j,t), using a length-two path, such as pa,x − sr − pb,y , where (sr, pa,x) is an M-edge and (sr, pb,y) is
an Mopt-edge. In this example, we removed (si, p j,t) and added (si, pa,x), and as a result we now have a Type-II component
si − pa,x − sr − pb,y . Note that pa and p j must be offered by the same lecturer, such as �k , because of the definition of the
operation for Type-I components. Also, by the construction of G M,Mopt , pa and p j must be different projects because p j,t is
matched only in Mopt and pa,x is matched only in M .

If pb is also offered by �k , then corresponding to the Mopt-edge (sr, pb,y), we can find a vertex pc,z in V which is
matched in M but not in Mopt , where pc is offered by �k , since �k is full in M . Then we can remove this Type-II component
by replacing (sr, pb,y) with (sr, pc,z). Otherwise, let �k′ (�= �k) be the lecturer who offers pb . Suppose that sr prefers pb
to pa . Since pb is under-subscribed in M , �k′ must be full in M , since otherwise (sr, pb) blocks M . Then we can use the
same argument as before to show the existence of a vertex pc,z which is matched in M but not in Mopt , where pc is offered
by �k′ , and we can replace (sr, pb,y) with (sr, pc,z). Suppose that sr prefers pa to pb . If �k prefers pa to p j , then (sr, pa)

blocks Mopt , a contradiction (note that pa,x is not matched in Mopt and hence pa is under-subscribed in Mopt). If �k prefers
p j to pa , then (si, p j) blocks M , a contradiction. We have exhausted all of the cases, and have shown that all Type-I and
Type-II components can be removed. This completes the proof. �

The following theorem follows immediately from Lemmas 3.5 and 3.6.

Theorem 3.7. spa-p-approx-promotion is a 1.5-approximation algorithm for MAX-SPA-P.

3.4. Tightness of the analysis

We give an instance to show that our analysis of the approximation ratio is tight. There are three students s1, s2, and s3
and one lecturer �1 with d1 = 3. Lecturer �1 offers three projects p1, p2, and p3, where c1 = c2 = c3 = 1. The preferences of
the students and the lecturer are as follows:

s1: p1 �1: p3 p2 p1
s2: p1 p2
s3: p2 p3

Note that the matching {(s1, p1), (s2, p2), (s3, p3)} of size three is stable, but the following execution of spa-p-approx-

promotion yields a stable matching of size two {(s2, p1), (s3, p2)}:
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1. s1 applies to p1 and is accepted.
2. s3 applies to p2 and is accepted.
3. s2 applies to p1 and is rejected.
4. s2 applies to p2 and is rejected.
5. s2 is promoted.
6. s2 applies to p1 and is accepted; s1 is rejected.
7. s1 is promoted.
8. s1 applies to p1 and is rejected.

3.5. Promoting many times

In the course of spa-p-approx-promotion, each student is promoted at most once. One of the natural extensions is then
to let a student be promoted more than once, where a student with more promotions is more preferred (within the same
project). Unfortunately, however, we have a simple example to show that this extension does not improve the approximation
ratio. There are three students s1, s2, s3, three lecturers �1, �2, �3, and four projects, p1 and p2 offered by �1, p3 offered by
�2, and p4 offered by �3. All of the capacities of lecturers and projects are one. Preference lists are defined as follows:

s1: p2 �1: p1 p2
s2: p3 p1 �2: p3
s3: p3 p4 �3: p4

First note that {(s1, p2), (s2, p3), (s3, p4)} of size three is a maximum stable matching. Now, consider the following
execution of the extended algorithm:

1. s3 applies to p3 and is accepted.
2. s2 applies to p3 and is rejected.
3. s2 applies to p1 and is accepted.

Then, afterwards, no matter how many times s1 is promoted, s1 will be rejected by p2. Hence the extended algorithm
produces a stable matching of size two. Note that this is also another tight example for Section 3.4.

4. Inapproximability

We first define the following optimization variant of the stable marriage problem, which we call MAX-SMTI-1T (abbrevia-
tion of “Maximum stable marriage problem with ties and incomplete lists with one-sided ties”). In an input, we have sets of
men and women. Each man has an acceptable set of women, whom he is willing to be matched with, and has a preference
list that orders his acceptable women in a strict order. Similarly, each woman has an acceptable set of men, and has a
preference list for them. The women’s preference lists may contain ties, meaning that two or more men in the same tie are
considered to be of equal preference for her. A matching is a set of disjoint (man, woman)-pairs (m, w) such that m and w
are acceptable to each other. If (m, w) is a pair in a matching M , we write M(m) = w and M(w) = m. For a matching M ,
a (man, woman)-pair (m, w) /∈ M is a blocking pair if (i) m and w are acceptable to each other, (ii) either m is unmatched or
prefers w to M(m), and (iii) either w is unmatched or prefers m to M(w). A matching that has no blocking pair is stable.
MAX-SMTI-1T is the problem of finding a stable matching of maximum size. For an instance I of MAX-SMTI-1T, let OPT(I)
be the size of a maximum stable matching for I . The following proposition is obtained by letting p = 1/3 in Theorem 3.2
of [4].

Proposition 4.1. (See [4].) For any ε > 0, if there is a polynomial-time algorithm that, given a MAX-SMTI-1T instance I with N men
and N women, distinguishes between the following two cases, then P = NP.

(1) OPT(I) � 7/3−ε
3 N.

(2) OPT(I) <
19/9+ε

3 N.

We prove a similar hardness for MAX-SPA-P by a reduction from MAX-SMTI-1T. For an instance I ′ of MAX-SPA-P, let
OPT(I ′) be the size of a maximum stable matching for I ′ .

Theorem 4.2. For any ε > 0, if there is a polynomial-time algorithm that, given a MAX-SPA-P instance I ′ with N ′ students, distin-
guishes between the following two cases, then P = NP.

(1) OPT(I ′) � 7/3−ε
3 N ′ .

(2) OPT(I ′) <
19/9+ε

3 N ′ .
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m1: w1 w3 w2 w1: (m1 m2) (m3 m4)

m2: w3 w1 w2 w2: m2 m1 m4

m3: w4 w1 w3: m1 (m2 m4)

m4: w3 w2 w1 w4 w4: m3 m4

Fig. 1. A MAX-SMTI-1T instance I .

s1: p1,1 p3,1 p2,2 �1: p1,1 p1,2

s2: p3,2 p1,1 p2,1 �2: p2,1 p2,2 p2,3

s3: p4,1 p1,2 �3: p3,1 p3,2

s4: p3,2 p2,3 p1,2 p4,2 �4: p4,1 p4,2

Fig. 2. The MAX-SPA-P instance I ′ corresponding to I .

Proof. Let I be a MAX-SMTI-1T instance with N men and N women. Without loss of generality, we assume that acceptability
is symmetric, i.e., a man m includes a woman w in his list if and only if w includes m in her list. We construct a MAX-SPA-P
instance I ′ with N ′ students. Our reduction satisfies conditions (i) N ′ = N and (ii) OPT(I ′) = OPT(I). Then it is not hard to
see that Proposition 4.1 implies Theorem 4.2.

For each man mi of I , we create a student si of I ′ , and for each woman w j of I , we create a lecturer � j of I ′ . For each
woman w j , let T j,1, T j,2, . . . , T j,t be the ties in w j ’s preference list in the order of preference, where a man not in a tie
is considered as a tie of size one. Then, we create projects p j,1, p j,2, . . . , p j,t that are offered by � j , where � j ’s preference
list includes these projects in this order. Suppose that in I , a man mi includes a woman w j at the dth position in his list,
and mi is in a tie T j,k of woman w j ’s list. Then, in I ′ , student si includes the project p j,k at the dth position of the list.
The capacity of each lecturer and each project is one. This completes the reduction. It is not hard to see that the reduction
can be done in polynomial time. To illustrate the reduction, we give an example of MAX-SMTI-1T instance I in Fig. 1 and
corresponding MAX-SPA-P instance I ′ in Fig. 2. In a woman’s list in Fig. 1, men in the same tie are included in parenthesis.

Clearly condition (i) holds. In the rest of the proof, we show that condition (ii) holds. To see this, we show that (A) if
there is a stable matching M of I , then there is a stable matching M ′ of I ′ such that |M ′| = |M|, and (B) if there is a stable
matching M ′ of I ′ , then there is a stable matching M of I such that |M| = |M ′|. The statement (A) implies OPT(I ′) � OPT(I)
and (B) implies OPT(I) � OPT(I ′), which together implies condition (ii).

We show (A) first. Given a stable matching M of I , we create a matching M ′ of I ′ as follows: Suppose that a man mi is
matched with a woman w j in M . Then, by construction, si ’s list includes a project p j,k offered by the lecturer � j , and such k
is unique. In M ′ , we assign a student si to p j,k . If mi is unmatched in M , then si is unassigned in M ′ . It is straightforward to
check that M ′ satisfies all of the capacity constraints and that |M ′| = |M|. Suppose that M ′ admits a blocking pair (si, p j,k).
Then, si is unassigned or prefers p j,k to M ′(si). Also, � j is unassigned, or assigned a student si′ to a project p j,k′ and � j
prefers p j,k to p j,k′ . Then, in M , mi is unmatched or prefers w j to M(mi), and w j is unmatched or prefers mi to M(w j)

(= mi′), i.e., (mi, w j) is a blocking pair for M , contradicting the stability of M . Hence, we can conclude that M ′ admits no
blocking pair.

Now suppose that M ′ admits a coalition {si0 , si1 , . . . , sir−1 }, that is, si j prefers M ′(si j+1) to M ′(si j ) for each j. Then,
remove this coalition from M ′ , that is, reassign si j to M ′(si j+1) for each j. Note that an application of this operation does
not change the matching size. Also, note that no new blocking pair is created because no one becomes worse off. We apply
this operation as long as there is a coalition. This sequence of operations must terminate in finite number of steps because
at least two students become better off by one application. Hence at the termination, we have a stable matching of size |M ′|.

Next we show (B). Let M ′ be a stable matching for I ′ . We construct a matching M of I as follows: If a student si
is assigned to a project p j,k in M ′ , then a man mi is matched with a woman w j in M (note that w j is in mi ’s list by
construction). If si is unassigned in M ′ , then mi is unmatched in M . Again, it is easy to see that M is a stable matching and
|M| = |M ′|. This completes the proof. �
Corollary 4.3. Assume that P �= NP. Then for any constant δ > 0, there is no polynomial-time (21/19 − δ)-approximation algorithm
for MAX-SPA-P.

Proof. By Theorem 4.2, we see that the existence of a polynomial-time algorithm that distinguishes between the following
two cases implies P = NP for an arbitrary small positive constant ε:

(1) OPT(I ′)� 7/3−ε
3 N ′ .

(2) OPT(I ′) <
19/9+ε

3 N ′ .

Suppose that there is a polynomial-time approximation algorithm T for MAX-SPA-P whose approximation ratio is at
most 21/19 − δ for some δ. Then consider these conditions with fixed constant ε such that ε < 361δ

360−171δ
.

If an instance of Case (1) is given to T , it outputs a solution whose size is at least 7/3−ε
3 N ′ 1

21/19−δ
. If an instance of

Case (2) is given to T , it outputs a solution whose size is less than 19/9+ε
3 N ′ . Since 7/3−ε

3 N ′ 1
21/19−δ

>
19/9+ε

3 N ′ from the
definition of ε , T can distinguish between Cases (1) and (2), which implies P = NP. This completes the proof. �
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As mentioned in Remark 3.6 of [4], MAX-SMTI-1T is hard to approximate within 1.25 − δ for any positive constant δ if
Minimum Vertex Cover problem is hard to approximate within 2 − ε for any positive constant ε (note that the “if-part” is
true if the Unique Games Conjecture is true [6]). Using the reduction in the proof of Theorem 4.2, we can prove the same
hardness for MAX-SPA-P:

Theorem 4.4. Assume that, for any positive constant ε , there is no polynomial-time (2 − ε)-approximation algorithm for Minimum
Vertex Cover problem. Then, for any positive constant δ, there is no polynomial-time (1.25 − δ)-approximation algorithm for MAX-
SPA-P.

Proof. Suppose that, for some δ′ , there is a polynomial-time (1.25 − δ′)-approximation algorithm A for MAX-SPA-P. Then,
the following algorithm B is a polynomial-time (1.25 − δ′)-approximation algorithm for MAX-SMTI-1T: Given an instance
I of MAX-SMTI-1T, B first translates it to an instance I ′ of MAX-SPA-P using the reduction in the proof of Theorem 4.2. It
then solves I ′ using A and obtains a solution M ′ , and transforms it to a solution M of I in the same manner as given in the
proof of Theorem 4.2. Then, by Remark 3.6 of [4], there is a polynomial-time (2 −ε′)-approximation algorithm for Minimum
Vertex Cover problem for some ε′ , which contradicts our assumption. �
5. Conclusions

In this paper, we improved the upper and lower bounds on the approximation ratio for MAX-SPA-P. One research direc-
tion is to further improve the upper bound. For example, a state of the art approximation algorithm for MAX-SMTI-1T [5]
generalizes Király’s idea [7] using a Linear Programming approach. Its approximation ratio of 25/17 (	 1.4706) is slightly
better than 1.5. One possible next step is to verify whether this idea can be applied to spa-p-approx-promotion.
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