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Abstract

Let G be a finite solvable group ande Irr(G) be a faithful character. We show that the derived
length of G is bounded by a linear function of the number of distinct irreducible constituentg of
We also discuss other properties of the decompositignyointo its irreducible constituents.
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1. Introduction

Let G be a finite group. Denote by [i&) the set of irreducible complex characters
of G. Let 1 be the principal character @. Denote by[®, @] the inner product of the
character® and® of G. Through this work, we will use the notation of [1].

Let x € Irr(G). Definex(g) to be the complex conjugaie(g) of x(g) forall g € G.
Then is also an irreducible complex character®f Since the product of characters is a
charactery x is a character of;. So it can be expressed as an integral linear combination
of irreducible characters. Now observe that

[xx.1c]=Ix. x1=1,

where the last equality holds singee Irr(G). Assume now tha (1) > 1. Then the
decomposition of the charactery into its distinct irreducible constituentsgl o1,
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az, ..., o, has the form

n

XX =16+ Y _aiai, (1.1)
i=1

wheren > 0 anda; > 0 is the multiplicity ofe; .

Set n(x) = n, so thatn(x) is the number of distinct non-principal irreducible
constituents of x. The numbew (x) carries information about the structure of the group.
For example, ifp(x) is an odd number, then the order of the group has to be an even
number. To see this, notice thaj is a real character. Whej(yx) is odd, at least one of
the irreducible characterg has to be real. Thew has a non-principal irreducible real
character. So the order 6f has to be even.

The purpose of this work is to give some answers to the following questions:

Question 1. Assume that we know/(x) for somey € Irr(G). What can we say about the
structure of the grouw and about the charactgr?

Question 2. Knowing the sefa; |i =1, ..., n(x)}, what can we say about the groG{?

Denote by diG) the derived length of the grou@. The main results of this work
regarding the first question are the following

Theorem A. There exist constants and D such that for any finite solvable group and
any irreducible charactey

di(G/Ker(x)) < Cn(x) + D.

Theorem B. Let G be a finite solvable group ang € Irr (G). Theny (1) has at most)(x)
distinct prime divisors.

If, in addition, G is supersolvable ang (1) > 1, then x (1) is a product of at most
n(x) — 1 primes.

The main result of this work regarding the second question is
Theorem C. Assume thatG is a finite solvable group ang € Irr(G) with x (1) > 1. Let
{a; €Irr(G)? | i =1,...,n} be the set of non-principal irreducible constituentsxgf. If
Ker(«;) is maximal under inclusion among the subgrotes(«;) fori =1,...,n, of G,
then[xx,a;1=1Thusle{[xx,1li=1,...,n}.

Notation. SetV# =V \ {0} and Ir(G)* = Irr(G) \ {15}

2. Preliminaries

Definition 2.1. Let V be a finiteFG-module for some finite fiel&. Thenm (G, V) is the
number of distinct sizes of orbits @f on V.
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Lemma 2.2 (Keller). There exist universal constan€g and C» such that for any finite
solvable groupG acting faithfully and irreducibly on a finite vector spatewe have

di(G) < C1log(m (G, V)) + Ca.
Proof. See [2]. O
Definition 2.3. We define the function
h(n) = C1log(n) + Co,

whereCy andC> are as in Lemma 2.2.

3. Thefunction 5(x)

Given a finite groupG and a charactey < Irr(G), we definen(yx) as the number of
non-principal irreducible constituents of the produgt. We give examples showing that
there is no relation between induction of charactersiand

Example 3.1. If x =60¢ is induced from somé € Irr(H), whereH < G, then we need
not haven(x) = n(9).

Proof. Let E be an extra-special group of exponerand orderp? for some odd prime.
Leta € Aut(E) be an element of prime orderthat dividesp — 1. Assume that acts fixed
point free onE.

SetG = (a)E. Let 6 € Irr(E) be a non-linear character. Singeacts fixed point free,
we have thab® = x e Irr(G).

Observe thatG hasgq linear characters, namely the irreducible character& pf .
Also G has(p? — 1)/q irreducible characters of degrgethe characters that are induced
from linear non-principal characters @. And finally there are(p — 1)/q irreducible
characters of degrepg. We conclude that hasg + (p? —1)/q + (p — 1)/q distinct
irreducible characters. Thugx) <g — 1+ (p° =1 /g + (p —1)/q.

We can check that

Observe tha#f = (17(g))~. Thusn(@) = p? — 1> n(x). O

Example 3.2. If x =6¢ is induced from somé € Irr(H), whereH < G, then we need
not haven(x) < n(0).

Proof. Let G be an extra-special group. Lgte Irr(G) be a non-linear character. Leébe
alinear character of some subgrabiof G such thaty =0¢. Theny(x) > n(0)=0. O
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4, Proof of Theorem C

Let G be a finite group angt € Irr(G). Consider the expression (1.1) fpi. We will
see in this section that & is solvable, then & {a;}. That may not be true in general. For
example, considefs, the alternating group on 6 letters, apgle Irr(Ag) with x5(1) = 10.
Using the notation of p. 289 of [1], we can check that

X5X5 = X1+ 2x2+ 2x3+ 3xa+ 2x5 + 2x6 + 2x7-
Thus{a;} = {2, 3}.

Lemma 4.1. Let L and N be normal subgroups af such thatZ/N is an abelian chief
factor of G. Let6 € Irr(L) be aG-invariant character. Then the restrictiaty is reducible
if and only if

0(g)=0 forallge L\ N. (4.2)
Also if0y is reducible, then
06 = Iyt + @, (4.3)
whered is either the zero function or a character bf and[®y, 1y] =0.

Proof. Let ¢ € Irr(N) be a character such thgg, 6y] # 0. If 6y is reducible, by Theo-
rem 6.18 of [1] we have that eithéf = ep, wheree? = |L : N|, or 6 = L. If Oy = eg,
wheree? = |L : N|, by Exercise 6.3 of [1] we have thétvanishes or. \ N. If § = oL,
since N is a normal subgroup af we have that(g) =0 forall g € L \ N. Thus (4.2)
holds.

Now assume that (4.2) holds. Then

1 _
[On.0n] = — > 0(2)0(g)

INl =

1 _
= — ) 0(g)0(g) by(4.2)

INI =7

1 IL|
= IL|[6,0]=
N IN|

where the last equality holds sinée= Irr(L). BecauseL|/|N| > 1, it follows thatdy is a

reducible character.
For anyy e Irr(L/N) we have that

[66,y] = 10,0y]
1 -
= =Y 00y ()

|L]
geL
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1 YRR —_—
LIl Z 0(2)0()y () + Ze(g)e(g)y(g)}
g€ L\N oy
1 [ RYZRN —_—
=1 > 9(g)9(g)+29(g)9(g)7/(g)} by (4.2)
-geL\N geN
1 [ 9(o) YRS .
Ll Y 0(9)0(g) + ZH(g)é’(g)} since Kety) > N andy (1) = 1
geL\N ey

Thus (4.3) follows. O

Lemma 4.4. Let G be a finite solvable group angd € Irr(G). Let{o; |i =1,...,1n(})}
be the set of non-principal irreducible constituents of the proguct Let N be a normal
subgroup ofG. Thenyy € Irr(N) if and only if N L Ker(e;) fori =1, ..., n(x).

Proof. Observe that

[xnv. xv] = [xnxw. In]

= |:(1G+Zai0li) ,1Nj| by (1.1)
i=1 N
= [1N+Zai(ai)1v,11v:|

i=1

[1n,In]+ Zai[(ai)N, 1]

i=1

1+ Zai[(ai)Na 1v].

i=1

Thus[xn, xy1=1ifand only if >_"_; a;[(«i)n, Iy]1 = 0. Sinceq; >0 fori =1,...,n,
we have xn, xy] =1 ifand only if[(¢;) 5, 1x] = O for alli. Since[(«;)n, 1x] =0 if and
only if N € Ker(w;), the result follows. O

Proof of Theorem C. SetN = Ker(x;). Let L be a normal subgroup @ such that. /N
is a chief factor ofG. SinceN = Ker(a;) £ Ker(o;) fori =1,...,n, we havel £ Ker(a;)
fori=1,...,n. By Lemma 4.4 we have that € Irr(L). Setd = x.. SinceN = Ker(x;),
we have thaf(«;)y, In] =« (1). Thus

Dev. vl =[(x%) - In] = 1+ ajoj(1) > 1.
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Thereforeyy is reducible. By Lemma 4.1 we have that
(xx), =00 =15 + &, (4.5)

where@ is either the zero function or a characterlobind[®y, 15] = 0. Also, by (1.1)
we have that

(xx), =1L+ Zai(ai)L-
i=1
Lety e Irr(L/Ker(a;)) be such thak(a;)z, y1#0. Then
0<aj[(epr.v]=[@jepL. y] <[(xX),.7]=1.

where the last equality follows from (4.5). Therefare= 1.
Since there is somge {1, ..., n} such that Kef ) is maximal among the Keéw;) for
all i, the last part of Theorem C follows from thatO

5. Proof of Theorem B

Lemma 5.1. AssumeG is a finite group andy € Irr(G) is a faithful character. Let
{a; € Irr(G)* | i =1,...,n} be the set of non-principal irreducible constituentsyo .
Then

Z(G) = ﬂ Ker(o;).

i=1
Proof. By Lemma 2.21 of [1],
Ker(x x) = Ker(1g) [ | Ker(e) = [ | Ker(e).
i=1 i=1

Since(xx)(g) = x2(1) if and only if g € Z(x), it follows that KeXx ) = Z(G), and the
result follows. O

Definition 5.2. Let G be a group and. be a subgroup of;. We say that
(N,0) < (L,9)

if NS L,pelr(L), 0 elrr(N)and[¢y, 0] #0. We say that
(N,0) <(L,9)

if N<L,pelrr(L), 6 elrr(N) and[¢y, 6] #O.
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Let X be a family of normal subgroups ¢f with G € X. We say that a chain
(No, o) > (N1, 61) > (N2,02) > --- > (N, k),

whereNg = G andy = 6o, is an(X, x)-reducing chairf N; € X and(6;),,, is reducible
fori =0,...,k.
We say that the above chain isreaximal(X, x)-reducing chairif it is a (X, x)-reduc-

ing chain with the following two properties:

(i) Foranyi with 0 <i <k, the groupV; is a maximal subgroup in the set
{M e X | M < N;_1and(6;—1)u is reducibld.

(i) ForanyM e X such thatM < Ny, the restriction6), is irreducible.

Remark. Given a familyX of normal subgroups off with G € X and giveny € Irr(G),
there is always aniX, x)-reducing chain, and a maxim@X, x)-reducing chain. In fact
(G, x) is already an(X, x)-reducing chain. We find a maximal reducit¥, x) chain by
induction. We start with No, 60) = (G, x). If (6p)s is irreducible for anyM € X, then
(Np, 6p) is our maximal(X, x)-reducing chain. Assume we have foufid;_1, 6;,_1) for
some integer > 1. If the set

{M e X | M < N;_1and(6;—1) u is reduciblé
is non-empty, we choos#; to be any maximal element in this set, afj)dto be any
character in Ir¢N;) such that{(6;—1)n;, 6;]1 > 0. Otherwise we stop our chain with=
i —1.
Hypotheses5.3. AssumeS is a finite solvable group angd € Irr(G) is a faithful character.

Setn = n(x). Let {o; € Irr(G)* | i = 1,...,n} be the set of non-principal irreducible
constituents of x . Set

!2:{ﬂKer(ai)|S§{1,2,...,n}}, (5.4)

ieS

where(); .5 Ker(e;) is taken to be&G whens is empty.
Let

(G, x) = (No, to) > (N1,61) > -+ > (N, 6k)
be a maximal £2, x)-reducing chain.

Lemma 5.5. Assume Hypothesés3. Then the maximals2, x)-reducing chain has the
following properties
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(a) Foranyintegeri =1, 2, ..., k and any normal subgroup/ of G such thatV; < M <
N;_1 we have that

Oi—1)p € lrr(M). (5.6)

(b) Ny is abelian.
(c) k<n.
(d) If, in addition, G is supersolvable, theh<n — 1.

Proof. (a) If M € £2, then(6;,—1) ;s has to be irreducible. Otherwigé is not a maximal
elementin®2 such tha(9,_1) 5, reduces, a contradiction with property (i) in Definition 5.2.

So we may assume thaf is not an element of2. Let L be minimal among all elements
K € £ such thatM < K < N;_1. By property (i) in Definition 5.2 we have that

¢=0i—1) €lrr(L).

Observe that

1=1[¢.¢1 =00, 1L] <[(¢0) ;> 1nr] = [bm. du], (5.7)

where equality holds if and only i, € Irr(M).

Recall that xn,_;, 0i—1]1 # 0. Thus[x., ¢] # 0. Let T be the stabilizer of in G and
Y be a set of coset representativesioin G. Thus ifg,h € Y andg # h, we have that
¢¢ # ¢" and therefor¢e$, ¢"] = 0. By Clifford Theory we have that, = e,y ¢ for
some integee > 0. Thus

[((xX),- 1] =[xe. x2]l= [ez¢g, ez¢gi| =e22[¢g,¢g]. (5.8)

geY geY geY

Sincexy = (x1)m, we have that

[08) L] = Lt 21 =2 3 (8%) s S(09) | 5.9)

geY geY

If ppr ¢ Irr(M), then (5.7), (5.8) and (5.9) imply that

[(xX) 1] < [(xX) 5 Im]- (5.10)

By (1.1) and (5.10) there exists somag such that Kef;) > M but Keno;) % L.
ThereforeL NKer(« ) is a proper subset df, containsM and lies ins2. This contradicts
our choice ofL. Thus(6;,—1)y = ¢p € Irr(M).

(b) By Lemma 5.1 we have thdt(G) € M for anyM € 2. Thus(6x)z(c) is irreducible
by property (ii) in Definition 5.2. That implies thét € Irr(Ny) is a linear character. Since
Ny is normal inG and[xy,, 6x] # O, all the irreducible components gfy, are linear. By
hypothesisy € Irr(G) is a faithful character. Thereforé, must be abelian.
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(c) This follows from the definition of2 and the fact that the s¢er(«;)} has at most
n elements.

(d) Suppose thaW;, = Z(G). Let L/ N, be a chief factor oG with L < N¢_1. SinceG
is supersolvablel./ Ny is cyclic of prime order. Observe thétis abelian because it has
a central subgroup/;, with a cyclic factor groupl./N;. So 6, extends toL. By (a) we
have that(6x—1)r, € Irr(L). Thus(6x—1)n, = 6k. That can not be by Definition 5.2(i). We
conclude thaiV, # Z(G).

Since Ni # Z(G) = (i1 Ker(e;) and {Ker(e;) | i = 1,2,...,n} has at most
elements, we must have thakn — 1. O

Theorem B is an application of Lemma 5.5.

Proof of Theorem B. Working with the groups/ Ker(x), by induction on the order af
we can assume that Kgr) = 1. Let

(G, x) = (No, 0o) > (N1,61) > -+ > (N, 0k)
be a maximals2, x)-reducing chain. Foreadh=1, 2, ..., k, let L; be a normal subgroup
of G such thatZ; /N; is a chief factor ofG andL; < N;_1.

By Lemma 5.5 we have tha&b; 1)z, € Irr(L;). SinceL;/N; is an elementary abelian
pi-group for some primey;, we have

6i—1(1) = 6;(1) p}"
for some integerm; > 1. Here m; = 1 in the case thatG is supersolvable. By
Lemma 5.5(b), we have thét(1) = 1. By Lemma 5.5(c)k < n. We conclude thaj (1)
has at most < » distinct prime divisors.

If G is supersolvable, by Lemma 5.5(d) we have n — 1. Thusy (1) has at most — 1
prime divisors. O

6. Proof of Theorem A

Hypotheses 6.1. Assume Hypothesés3. For eachi, let L;/N; be a chief factor ofG
whereL; < N;_1.

Lemma 6.2. Assume Hypothesésl. There exists a subgroug of L; and a character
¢ € lrr(U), such that

(Ni,0) < (U, ) < (Li, ¥). (6.3)

Proof. Suppose that the lemma is false. Then for &hyand¢ < Irr(U) such that (6.3)
holds, we have thatZ;), = L;. Choose a chain

(Ni, 6i) = (Us, ¢s) < - -+ < (U1, ¢1) < (Uo, do) = (Li, ¥)



314 E. Adan-Bante / Journal of Algebra 266 (2003) 305-319

such that|U;_y : U;| is a prime number for alj = 1,2,...,s. We can do that since
L;/N; is an elementary abelian group. Sinde)y, = L; forall j =1,2,...,s, we have
(Uj-1)¢; = Uj-1. Since|U;_1: U;| is a prime number, it follows that;—1)v; = ¢, for
j=1,....s.Butthen(6;,—1)n; € Irr(N;), a contradiction with Definition 5.2(i). Therefore
there exist/ < L; and a charactep < Irr(U) such that (6.3) holds and.; )¢ # L;.

SinceN; < (Lj)¢ < L;, andL;/N; is an elementary abelian subgroup, the subgroup
(Li)g is normal in L;. By Clifford Theory ¢ is induced from some character, <
Irr((Li)g). Since(L;)y is normal inL;, and (1/f¢,)Lf =, we havey (g) = 0 for any
geLi\(Li)g. O

Lemma 6.4. Assume Hypothesésl. Letr; = [{«; | N; < Ker(a;) andN;_1 & Ker(a;)}|.
Then we have

di(Ni—1/Cn,_y (Li/Ni)) < h(ri),
wherer is as in Definition2.3.
Proof. By Lemma 5.5(a), we have that
¥ =(6i-1)r, € lrr(Li). (6.5)

Let V(y) be the “vanishing-off subgroup of” (see p. 200 of [1]), the smallest
subgroupV (y) of L; such thatys vanishes onL; \ V(¥). Sincey = (6;-1)r, and
0;—1 € Irr(N;—1), the subgroup/ (/) is N;_1-invariant. ThereforeV; V () is a normal
subgroup ofV;_;. LetU and¢ € Irr(U) be as in Lemma 6.2. Observe thaty) < (L;)g
since for allg € L; \ (L;)¢ we have thaty(g) = 0. Also observe tha; < (L;)g. Thus
N; V() < (L;)g. ThereforeN; V() is a proper subgroup df;.

Let M be a subgroup such that V(y) < M < L; andL;/M is a chief factor ofv;_;.
So we have the following relations:

Ni <N V() <M <Li<Nj-1.

SinceL; is a normal subgroup af, the quotient_; /M? is also a chief factor oN;_1, for
anyg € G. Hence forany € G

MM8=M or MM$=1L;. (6.6)
Lemma 4.1 gives us that
— L

where¢ is either O or a character @f;. Since[(x)z,, ¥]# 0, this implies that
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where® is either 0 or a character @f;. This and (1.1) imply that
n
1Li + Zaj(olj)Li = 1?,} + 6.
j=1

Thus

Irr(Li /My = J{y e rr(Li/M)* | [(@))r,. ] #0}.

j=1

Let X = {o;|[(«;)r;, y]1+# 0 for somey e Irr(L; /M)#}. Observe thaX is a subset of the
set

{aj | Ni < Ker(arj) andN;_1 £ Ker(a;)}.
Thus
IX| <ri. (6.7)

Lety, s e lrr(L;/M)¥. Suppose that ands lie below the same; € X, i.e.,[(aj),, y]1#
0 and[(«;)r,,8] # 0 for somej =1,...,n. SinceL; is a normal subgroup of; and
«; € lrr(G), by Clifford Theory there existg € G such that ¢ = §. By definition we have
that M < Ker(§). Observe that

M8 < (Ker(y))® = Ker(y#).
Sincey$ = §, we haveM M8 < Ker(3). By (6.6) we have that18 = M, i.e.,g € Ng(M).
We conclude thag ands lie below the same; if and only if y ¢ = § for someg € Ng (M),
i.e., the set{y e Irr(L;/M)* | [(«;)r,y] # O} is an Ng(M)-orbit in Irr(L;/M)*. Set
H = Ng(M). EachH-orbit in Irr(L; /M)¥ lies under at least one characterin X, and
any eachy; lies over a single -orbit Irr(L; /M). HenceH acts on Ir¢L; /M)* with at
most|X| orbits. By (6.7) we conclude thdi acts on Ir¢L;/M)# with at mostr; orbits.
By Lemma 2.2 we have that

di(H/Cr(Li/M)) < h(ri).
SinceN;_1 < H=Ng(M) andCy (L;/M) N N;—1 =Cy,_,(L;/M), we have

di(Ni—1/Cn,_ (Li/M)) < h(r).

For anyg € G, we can check that

(G, x) = (No, (00)%) > (N1, (6D)%) > -+ > (Ni, (6x)*)
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is a maximal(G, §2)-reducing chain. Thus, as before we can conclude that
di(Ni—1/Cn,_; (Li/M?)) < h(ry). (6.8)
SinceL;/N; is a chief factor ofG andN; < M < L;, we have that

core; (M) = ﬂ MS$ = N;.
geG

Therefore

() Cw.y(Li/M#) = Cn,_y (Li/Ny). (6.9)
geG

Observe that the lemma follows from (6.8) and (6.91
Lemma 6.10. Assume Hypothesés3.
di(N;—1/N;) <dI(N;—1/Cn,_,(Li/Np)) + 1.

Proof. SetC =Cy,_,(L;/N;).Observe thaL; < C and thatC is a normal subgroup a¥.
We want to prove thaf/N; is abelian. We may assume that- L;. Observe that itV
is a group andV; < U < L;, thenU is normal inC. By Lemma 6.2, there exidf and
¢ € lrr(U), where

(Ni, 0) < (U, ¢) < (Li, ¥) (6.11)

and (L;)¢ < L;. In particular we have thafy # C. Since(0;—1)1, = ¥ € Irr(L;) and
U < L; <C < N;_1, we have thatd;—_1)¢ € Irr(C) and(;—1)¢ lies abovep. By Clifford

Theory, there exists € Irr(Cy) such thatt € = (6;_1)c. Since(gc)L, elrr(L;), we have
thatC = Cy4L; (see Exercise 5.7 of [1]). Observe th@j is normal inC sinceL;/N; is

central inC =Cy, ,(L;/N;). SinceL;/N; is abelian, so i€/ Cy. SinceC is normal inG,

for any g € G we have thaC/C}; is abelian.

Since(6;-1)c € Irr(C), while [(0;-1)v, ¢]1 # 0 and(L;)y < L;, we have thatt;—1)c,
is areducible character. SBt= (), Ci. Observe thaP is a normal subgroup of; with
N; < P < N;_1. Observe also tha®;_1) p is reducible since®? < Cy. By Lemma 5.5(a),
we have that? = N;. ThereforeC/N; is abelian and the lemma follows.o

Lemma 6.12. Assume Hypothesésl. Then
dI(Ni—1/Ni) < h(ri) + 1.

Proof. It follows from Lemmas 6.4 and 6.100
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Lemma 6.13. Letn > 1 be an integer. Sétl = {1, 2, .. .}. Define

pm)=maxXny-nz- --- -ng|ny,n2,....,ngeNandny+nz+---+ny=n}. (6.14)
Then

p(n+1) <2pn).
Therefore
pmy<2" L. (6.15)

Proof. Observe that: < p(n) since we can take = 1 andny = n in (6.14). Thus
if pm+21) =mq1-mp---- - my, Wherems, mo, ..., m; are non-zero positive integers
andmi1 +mo2+ ---+m; =n + 1, thenm; > 1 for somei € {1, ...,t}. Assume that

m1 > 2. Thenmy —1>1, (m1 — 1) + mp + --- + m; = n. By definition we have that
(m1—21)-ma---- -my < p(n). Thus

pn+1) =mi-ma- - -my
=mi—1) -mo--m+Llmo - -my
< pm)+1-mo- - -my
< pm)+(mi—1) -mz- - -my

< p(n) + p(n) =2p(n).
Sincep(2) = 2, inequality (6.15) follows. O

Proof of Theorem A. Working with the group5/ Ker(x), by induction on the order af
we can assume that Kgr) = 1. So we may assume Hypotheses 5.3. Let

(G, x) = (No, 6p) > (N1,61) > --- > (N, bk)

be a maximal£2, x)-reducing chain. Set = n(x). By Lemma 5.5(b) and (c), we have
that Ny is abelian andt < n. By Lemma 6.12, we have that, foe=1, ...k,

di(N;—1/N) < h(rp) + 1,

wherer; = |{a; | N; < Ker(a;) and N;_1 £ Ker(a;)}|. The definition of a maximal
reducing chain and the definition gfimplies that

ri+ro+---+rg<n. (6.16)
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By Lemma 6.13 we have that

k
l_[ri <2t
i=1
Thus
k k
di(G) < dINi—1/Ni) +dItNy) <D (h(ri) +1) +
i=1 i=1

Sinceh(r;) = C1log(r;) + C2 by Definition 2.3, we have that
k

k
di(G) < Z Cilog(ri) +C2+1)+1= Cl|:zlog(”z } +(C2+Dk+1
i=1 i=1

k
< Cllog(]_[r,-> +(Co+ Dk +1.

i=1
Lets = Y*_, r;. By (6.16) we have < n. By Lemma 6.15 we have that
k
[[ri<2 <2t
i=1
Thus
di(G) < C1log(2" 1) + (C2+ Dk + 1< (n — 1)C1log(2) + (C2+ Dn + 1,

where the last inequality follows frorh < n (see Lemma 5.5(c)). S&t = C1log(2) +
Co+1andD =1+ C1log(2). Then

di(G) < Cn+D. m]

Theorem 6.17. Let G be a supersolvable group. Lgt € Irr(G) be such thaty (1) > 1.
Then

di(G/Ker(x)) < 2n(x) — 1.
Proof. Working with the groupG/ Ker(x), by induction on the order af we can assume
that Key) =1
Let

(G, x) = (No, ) > (N1,61) > --- > (Ni, bk)
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be a maximal 2, x)-reducing chain. LeL;/N; be a chief factor oz, whereL; < N;_1.
Since G is a supersolvable groufd,;/N; is a cyclic group of prime order. Sef =
N;-1/Cn,_,(L;/N;). Observe tha{ acts faithfully onL;/N; as automorphisms. Since
L;/N; is cyclic, H is abelian, i.e.,
dl(Ni—1/Cn,_, (Li/N)) < L.
By Lemma 6.10 we conclude that

di(N;—1/N;i) < 2.

By Lemma 5.5(d) we have that< n(x) — 1. Also Ny is abelian by Lemma 5.5(b).
Thus

di(G) <2(n(x) — 1)+ 1. ]
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