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Abstract

The measured particle ratios in central heavy-ion collisions at RHIC-BNL are investigated within a chemical and thermal
equilibrium chiral SU(3) σ–ω approach. The commonly adopted noninteracting gas calculations yield temperatures close to
or above the critical temperature for the chiral phase transition, but without taking into account any interactions. Contrary, the
chiral SU(3) model predicts temperature and density dependent effective hadron masses and effective chemical potentials
in the medium and a transition to a chirally restored phase at high temperatures or chemical potentials. Three different
parametrizations of the model, which show different types of phase transition behaviour, are investigated. We show that if
a chiral phase transition occured in those collisions, “freezing” of the relative hadron abundances in the symmetric phase is
excluded by the data. Therefore, either very rapid chemical equilibration must occur in the broken phase, or the measured
hadron ratios are the outcome of the dynamical symmetry breaking. Furthermore, the extracted chemical freeze-out parameters
differ considerably from those obtained in simple noninteracting gas calculations. In particular, the three models yield up to
35 MeV lower temperatures than the free gas approximation. The in-medium masses turn out to differ up to 150 MeV from
their vacuum values.

 2002 Elsevier Science B.V.

1. Introduction

Thermodynamical equilibrium calculations of par-
ticle production in high energy particle- and nuclear
collisions have been carried out for a long time [1–11].
Recently hadron abundances and particle ratios have
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been measured in heavy-ion collisions from SIS, AGS,
SPS to RHIC energies. These data have revived the in-
terest in the extraction of temperatures and chemical
potentials from thermal equilibrium “chemical” model
analyses. The experimentally determined hadron ra-
tios can be fitted well with straightforward noninter-
acting gas model calculations [4,6,9–13], if a sudden
breakup of a thermalized source is assumed and once
the subsequent feeding of the various channels by the
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strongly decaying resonances is taken into account.
From the χ2 freeze-out fits one has constructed a quite
narrow band of freeze-out values in the T –µB plane
(see, e.g., [12,13]). The extracted freeze-out parame-
ters are fairly close to the phase transition curve for
SPS and RHIC energies. However, when we are in-
deed so close to the phase transition or to a crossover
as suggested by the data for T and µB , we cannot
afford to neglect the very in-medium effects we are
after—and which, after all, do produce the phase tran-
sition. Thus, since noninteracting gas models neglect
any kind of possible in-medium modifications they
cannot yield information about the phase transition.

Therefore, we will employ below a relativistic
selfconsistent chiral model of hadrons and hadron
matter developed in [14–16]. This model can be used
as a thermodynamically consistent effective theory
or as a toy model, which embodies the restoration
of chiral symmetry at high temperatures or densities.
Therefore, the model predicts temperature and density
dependent hadronic masses and effective chemical
potentials, which have already been proposed and
considered in [5,14,17–20]. Thus, using the chiral
SU(3) model we can investigate, whether the freeze-
out in fact takes place close to the phase transition
boundary (if it exists) and if the extracted T ,µB
parameters are strongly model dependent. Depending
on the chosen parameters and degrees of freedom
different scenarios for the chiral phase change are
predicted by the model: strong or weak first order
phase transition or a crossover. The transitions take
place around Tc = 155 MeV [14,21], which is in
qualitative agreement with lattice predictions [22] for
the critical temperature for the onset of a deconfined
phase which coincides with that of a chirally restored
phase [23].

2. Model description

The chiral SU(3) model is presented in detail in
[14,16]. We will briefly introduce the model here:
we consider a relativistic field theoretical model of
baryons an“d mesons built on chiral symmetry and
broken scale invariance. The general form of the
Lagrangian looks as follows:

L=Lkin +
∑

W=X,Y,V ,A,u
LBW +LVP +Lvec

(1)+L0 +LSB.

Lkin is the kinetic energy term, LBW includes the inter-
action terms of the different baryons with the various
spin-0 and spin-1 mesons (see [16] for details). The
baryon masses are generated by both, the nonstrange
σ (〈qq̄〉) and the strange ζ (〈ss̄〉) scalar condensate.
LVP contains the interaction terms of vector mesons
with pseudoscalar mesons. Lvec generates the masses
of the spin-1 mesons through interactions with spin-0
fields, and L0 gives the meson–meson interaction
terms which induce the spontaneous breaking of chiral
symmetry. It also includes a scale-invariance breaking
logarithmic potential. Finally, LSB introduces an ex-
plicit symmetry breaking of the U(1)A, the SU(3)V ,
and the chiral symmetry. All these terms have been
discussed in detail in [14,16].

The hadronic matter properties at finite density and
temperature are studied in the mean-field approxima-
tion [24]. Then the Lagrangian (1) becomes

LBX +LBV

(2)= −
∑
i

ψ̄i
[
giωγ0ω

0 + giφγ0φ
0 +m∗

i

]
ψi,
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(
χ
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)2[
m2
πfπσ

+
(√

2m2
KfK − 1√

2
m2
πfπ

)
ζ

]
,

wheremi is the effective mass of the hadron species i .
σ and ζ correspond to the scalar condensates, ω and
φ represent the nonstrange and the strange vector field
respectively, and χ is the scalar–isoscalar dilaton field,
which mimics the effects of the gluon condensate [25].
Only the scalar (LBX) and the vector meson terms
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(LBV) contribute to the baryon–meson interaction,
since for all other mesons the expectation value
vanishes in the mean-field approximation. The grand
canonical potential Ω per volume V as a function of
chemical potentialµ and temperature T can be written
as:

Ω

V
= −Lvec −L0 −LSB − Vvac

(5)

∓ T
∑
i

γi

(2π)3

∫
d3k

[
ln

(
1 ± e− 1

T
[E∗
i (k)−µ∗

i ])],

with the baryons (top sign) and mesons (bottom sign).
The vacuum energy Vvac (the potential at ρB = 0, T =
0) has been subtracted in order to get a vanishing
vacuum energy. γi denote the hadronic spin–isospin
degeneracy factors. The single particle energies are
E∗
i (k)=

√
k2
i +m∗

i
2 and the effective chemical poten-

tials read µ∗
i = µi − giωω− gφiφ.

The mesonic fields are determined by extremizing
Ω
V
(µ,T = 0). The density of particle i can be calcu-

lated by differentiating Ω with respect to the corre-
sponding chemical potential µi . This yields:

(6)ρi = γi
∫

d3k

(2π)3

[
1

exp[(E∗
i −µ∗

i )/T ] ± 1

]
.

All other thermodynamic quantities can also be ob-
tained from the grand canonical potential. In the
present calculation the lowest lying baryonic octet and
decuplet and the lowest lying mesonic nonets are cou-
pled to the relativistic mean fields. Depending on the
coupling of the baryon resonances (the decuplet) to the
field equations, the model shows a first order phase
transition or a crossover (for details see [21]). We will
use three different parameter sets: parameter set CI
treats the members of the baryon decuplet as free par-
ticles, which yields a crossover behaviour. Parameter
sets CII and CIII include also the (anti)-baryon decu-
plet as sources for the meson field equations. They dif-
fer by an additional explicit symmetry breaking for
the baryon resonances along the hypercharge direc-
tion, as described in [16] for the baryon octet. This
is included in CII and not used in CIII. This leads to a
weak first order phase transition at µ= 0 for CII and
two first order phase transitions for CIII, which can
be viewed as one strong first order phase transition.
Heavier resonances up to m = 2 GeV are always in-
cluded as free particles. The resulting baryon masses
for CI and CIII are shown in Fig. 1. We observe a con-
tinuous decrease of the baryon masses for CI starting
at T ≈ 150 MeV. In contrast, CIII shows two jumps
around T = 155 MeV. The critical energy densities,
the entropy densities and the transition temperatures

Fig. 1. Baryon octet masses as function of temperature for vanishing chemical potential. Left CI, right CIII. Note the continuous change of the
masses starting around T = 150 MeV. In contrast for CIII two phase-transitions occur around Tc ≈ 155 MeV. These result from the separate
jumps in the nonstrange (σ ) and the strange (ζ ) condensate.
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Table 1
Energy density, entropy density and phase transition temperatures for CII, CIII, µq = µs = 0. The (−), (+) signs refer to an approach to the
phase transition from below and above, respectively. Tc denotes the phase transition temperature. ε0 = 138.45 MeV/fm3 denotes the energy
density of nuclear matter in the ground state

ε−/ε0 ε+/ε0 s− (fm−3) s+ (fm−3) Tc (MeV)

CII 2.8 7.2 2.8 6.7 156.3
CIII—1st PT 2.3 8.3 2.4 7.9 153.4
CIII—2nd PT 10.5 17.1 9.8 15.7 155.5

for µq = µs = 0 (µq = µB/3, µs = µB/3 − µS) are
specified in Table 1.

3. Particle ratios in the chiral SU(3) × SU(3)

model

Since the chiral SU(3) model predicts density and
temperature dependent hadronic masses and effec-
tive potentials, in contrast to noninteracting models,
the resulting particle ratios and therefore the deduced
freeze-out temperatures and baryon chemical poten-
tials are expected to change [26]. Hence in the fol-
lowing, we identify combinations of temperatures and
chemical potentials that fit the observed particle ratios
in the chiral model. In all calculations the value of the
strange chemical potential µS is chosen such that the
net strangeness fs = 0. We are looking for minima of
χ2 with

(7)χ2 =
∑
i

(r
exp
i − rmodel

i )2

σ 2
i

.

Here rexp
i is the experimental ratio, rmodel

i is the ratio
calculated in the model and σi represents the error in
the experimental data points. We use the same ratios as
in [6]: p̄/p, Λ̄/Λ, �Ξ/Ξ , π−/π+, K−/K+, K−/π−,
K∗

0 /h
−, �K∗

0 /h
−.

Even though the only parameters in a thermal
and chemical equilibrium approach on first sight are
the temperature and the baryon chemical potential,
there exist further unknowns: on the one hand, some
decays of high mass resonances are not well known
and on the other hand the effect of weak decays
in the experiments strongly depends on the detector
geometry and on the reconstruction efficiency of
the experiments. The feeding correction from the
strong and electromagnetic decays of the hadronic
resonances used here employs the procedure used

in the UrQMD model [27,28]. Weak decays are not
considered here. We rather focus on the principal
question whether an interacting chiral SU(3) approach
with m∗ �=mvac can at all describe the particle yields
at RHIC. Fine tuning of the χ2 by adjustment of the
weak decay scheme is not our intention. Even though
it has been shown [29] that χ2 values may be improved
by including weak decays.

To compare the quality of the fits obtained in the
chiral model with those obtained from the noninter-
acting gas approach, we set all masses and chemical
potentials contained in the chiral model to their vac-
uum values and again use the same UrQMD feeding
procedure as for the interacting model. This yields the
ideal gas denoted igFFM . We find that the resulting
ideal gas ratios are not identical but comparable to
those obtained in the literature [6,26,29,30]. The dif-
ferences should only result from a different treatment
of weak interactions and from the uncertainty in the
decay scheme of high mass resonances.

4. Results for Au + Au collisions at RHIC

First, we find that a reasonable fit of the measured
particle ratios at RHIC is possible in all three phase
transition scenarios of the chiral model and the ideal
gas case with comparable quality.

Second, the resulting freeze-out values depend on
the model employed, i.e., crossover, weak first order,
strong first order or free thermal gas.

Third, a reasonable description of the data is
impossible above Tc in the models showing a first
order phase transition. This shows that no direct
freeze-out from the restored phase is observed.

Fig. 2 shows the value of χ2 in the T –µB plane
for the crossover case and for the strong first order
phase transition. We see that the best fit T –µB values



D. Zschiesche et al. / Physics Letters B 547 (2002) 7–14 11

Fig. 2. χ2 contours in the T –µB plane for CI (left) and CIII (right). Data are taken from [6]. The adiabatic path (constant entropy per net baryon
S/A), corresponding to expanisve cooling of an ideal fluid, is also shown in the two cases. The dash-dotted lines in the right picture correspond
to the path of the system along the phase transition boundary, i.e., the expansion in the mixed phases. The crosses depict the fitted freeze-out
points. µS is chosen such that the net strangeness fs = 0.

Fig. 3. Particle ratios calculated with CI (left) and CIII (right) compared to RHIC data as compiled in [6].

differ in both models. Furthermore, in the crossover
case χ2 is well behaved as a function of T and
µB . In contrast, the model with a strong first order
phase transition shows a very steep increase of χ2 at
the phase transition boundary: the quality of the fit
decreases drastically due to the jump of the effective
masses at the phase transition boundary. Above Tc the
χ2 values are unacceptable, χ2 > 500.

The resulting best-fit particle ratios, χ2-values and
thermodynamic quantities are shown in Table 2 and
Fig. 3.

The χ2 values for the chiral model are: χ2
CI = 5.50,

χ2
CII = 5.73 and χ2

CIII = 5.40. Thus, all three parame-
ter sets describe the data equally well. Furthermore,
the agreement is as good as in the noninteracting gas
calculation (χ2

ig = 5.72 [6], χ2
FFM = 5.66). The best
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Table 2
Chiral fit of the particle ratios measured at RHIC at

√
s = 130 GeV. Data and BMRS-fit taken from [6]

Au + Au Experiment CI CII CIII igFFM BMRS

Tchem (MeV) 170.8 155.0 153.3 187.6 174.0

µBchem (MeV) 48.3 54.6 51.0 44.1 46.0

µSchem (MeV) 11.1 9.8 9.4 13.5 13.6

χ2 5.5 5.7 5.4 5.7 5.7

ρhad (fm−3) 0.66 0.38 0.35 1.12
ρB + ρ�B (fm−3) 0.15 0.08 0.07 0.28
p (MeV/fm3) 108 55 51 207
ε (MeV/fm3) 695 356 326 1324
E/A (MeV) 1053 937 931 1182 ≈ 1100
S/A 157 164 177 142

p/p 0.65(7) [STAR], 0.64(8)[PHENIX] 0.640 0.648 0.652 0.629 0.629
0.60(7) [PHOBOS], 0.61(6) [BRAHMS]

Λ̄/Λ 0.77(7) [STAR] 0.714 0.695 0.702 0.721 0.753
�Ξ/Ξ 0.82(8) [STAR] 0.787 0.731 0.743 0.834 0.894
π−/π+ 1.00(2) [PHOBOS], 0.95(6) [BRAHMS] 1.000 1.000 1.000 1.000 1.007
K−/K+ 0.88(5) [STAR], 0.78(13) [PHENIX] 0.919 0.914 0.915 0.916 0.894

0.91(9) [PHOBOS], 0.89(7) [BRAHMS]
K−/π− 0.15(2) [STAR] 0.183 0.168 0.168 0.179 0.145
p/π− 0.08(1) [STAR] 0.082 0.084 0.078 0.083 0.078
�K∗

0 /h
− 0.058(17) [STAR] 0.055 0.049 0.049 0.046 0.032

K∗
0 /h

− 0.060(17) [STAR] 0.049 0.044 0.044 0.041 0.037

fit T –µB parameters vary quite considerably between
the different models. The noninteracting gas calcu-
lation yields T = 187.6 MeV and µB = 44.1 MeV.
These freeze-out values can be compared to those ob-
tained in other ideal gas calculations: T = 174 MeV,
µB = 46 MeV in [6], T = 165 MeV, µB = 41 MeV
in [30] and T = 190 MeV, µB = 45 MeV in [31].
The crossover case in the interacting chiral model (CI)
yields T = 170.8 MeV, µB = 48.3 MeV. Very strong
deviations are found for the models with a first or-
der phase transition (CII, CIII): the freeze-out temper-
atures are T = 155 MeV (CII) and T = 153.3 MeV
(CIII), more than 30 MeV lower than for igFFM . The
fitted baryon chemical potentialsµB increase by about
7–10 MeV. These T –µB pairs are very close to the
phase boundary (CII) or even right on it (CIII) and
are about 10 MeV higher than the values obtained at
SPS-energies [32]. Mainly due to the different freeze-
out temperatures the values of the corresponding ther-
modynamic quantities vary between the different ap-
proaches. However, the energy per particle E/A is
approximately 1 GeV in all cases. This ‘unified freeze-
out condition’ has already been proposed in [33].

The fact that the freeze-out appears right at the
phase boundary or at crossover implies that there are
large in-medium corrections, in particular, for the ef-
fective masses, a phenomenon observed already in
[17]. The effective masses shown in Fig. 4 are shifted
up to 15% from their vacuum values. However, all the
interacting models show similar values for the effec-
tive mass of a given hadron. The strongest in-medium
modifications are observed for the nonstrange baryons
(1m∗

i /mi ≈ 15%). Mesons and strange baryons show
smaller changes of the effective masses, e.g., about
10% forΛ,π,K∗, about 5% for the Kaons and nearly
no change for the Ξ ’s.

These results, together with the steep χ2 contours
from Fig. 2, suggest that the relative particle abun-
dances “freeze” shortly after the spontaneous break-
ing of chiral symmetry. The success of our fit sug-
gests extremely rapid chemical equilibration (through
abundance-changing reactions) in the state with bro-
ken symmetry. Fig. 2 shows that the chemical compo-
sition of the hadronic system has to change substan-
tially within a small temperature interval, just before
freeze-out, even for the crossover transition (i.e., para-
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Fig. 4. Effective masses for the different interacting chiral models
and the ideal gas (vacuum values) case. The differences among the
interacting approaches are less than 2%.

meter set CI); for reference, we have indicated the dy-
namical path in the T –µB plane corresponding to the
expansion of a perfect fluid (i.e., with constant entropy
per net baryon [34]). While 2 → n reactions are per-
haps too slow to explain such rapid chemical equilibra-
tion [35,36],m→ n processes with several particles in
the initial state may be important as well [37–40].

Alternatively, the appearance of chemical equilib-
rium right after the phase transition (or the crossover)
to the state of broken chiral symmetry might just be the
outcome of the dynamical symmetry breaking process
itself [41], with statistical occupation of the various
hadronic channels according to phase space [42–45].
If so, number-changing reactions in the broken phase
need not proceed at a high rate. To test this picture ex-
perimentally, it might be useful to consider central col-
lisions of small ions like protons or deuterons, at simi-
lar energy and particle densities in the central region as
for central Au + Au. For systems of transverse extent
comparable to the correlation lengths of the chiral con-
densates, the dynamical symmetry breaking process
should be different from that in large systems (for ex-
ample, the mean field approximation should not ap-
ply). The correlation lengths ξσ,ζ are given by

(8)ξ−2
σ = ∂2(Ω/V )

∂σ 2 ,

and accordingly for ξζ . We evaluate the curvature of
the thermodynamical potential at the global minimum
and for T , µB , µS at the freeze-out point. For
parameter sets CI, CII, CIII we obtain ξσ = 0.37 fm,
0.41 fm, 0.40 fm, respectively. For the correlation

length of the strange condensate we obtain ξζ =
0.20 fm in all three cases. The correlation lengths
are not very much smaller than, say, the radius of a
proton. Thus, even if the freeze-out point for high-
energy pp collisions happens to be close to that for
Au + Au collisions at RHIC energies, the transition
from the symmetry restored to the broken phase might
be different. Finally, we also note that the correlation
lengths obtained from our effective potential are not
larger than the thermal correlation length 1/T at
freeze-out, and so corrections beyond the mean-field
approximation employed here should be analyzed in
the future.

5. Conclusion

Particle ratios as calculated in a chiral SU(3) σ–ω
model are compared with RHIC data for Au + Au
at

√
130 AGeV and with noninteracting gas calcu-

lations. Since different versions of the chiral model
show qualitatively different phase transition scenar-
ios, we investigate whether the particle production,
i.e., the chemistry of the system, is sensitive to the
phase transition behaviour. Since we have shown that
the current data are described by all three different
phase transition scenarios and the ideal gas model, we
can so far not favour or rule out any one scenario. In
all interacting models the effective masses at freeze-
out are shifted up to 15% from their vacuum values.
The fitted chemical freeze-out temperatures and chem-
ical potentials depend on the order of the phase tran-
sition. The crossover case yields 15 MeV shifted T
values as compared to the noninteracting gas model
while the models with a first order phase transition
yield more than 30 MeV lower temperatures. Further-
more, the fitted freeze-out points are located practi-
cally right on the phase transition boundary, in the first
order phase transition scenarios, but T is always � Tc.
This suggests that at RHIC the system emerges af-
ter the chiral phase transition. This of course is only
true if a first order phase transition does actually oc-
cur in QCD at small chemical potentials and high
T . “Freezing” of the relative abundances of various
hadrons in the symmetric phase (at T > Tc) is ex-
cluded.
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