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Abstract

Since an old observation by Beenakker et al., the evaluation of QCD processes in dimensional reduction has repeatedly led
to terms that seem to violate the QCD factorization theorem. We reconsider the example of the gyeeessand show that
the factorization problem can be completely resolved. A natural interpretation of the seemingly non-factorizing terms is found,
and they are rewritten in a systematic and factorized form. The key to the solution is tiiatanel (4 — D)-dimensional parts
of the 4-dimensional gluon have to be regarded as independent partons.
0 2005 Elsevier B.MOpen access under CC BY license.

1. Introduction

Nearly 20 years ago, Refl] observed a problem concerning factorization in conjunction with regularization
by dimensional reductiorpRED) [2]. The partonic processg — ¢ with non-vanishing quark mass, = m was
evaluated using botbrReD and ordinary dimensional regularizationREG) [3].} Contrary to expectationjg],
the difference between the two regularization schemes could not be absorbed by a finite additional factorization,
corresponding to a change in the parton distribution functions.

As a consequence it seems impossible to write the hadronic cross sagti@s a convolution of parton distrib-
ution functionsf and the partonic cross sectioﬁaﬁ%ﬁ. Schematically, the factorization problem can be expressed
as

Ohad= f ® Opanon + €Xtra non-factorizing terms (1)

The extra terms vanish in the limit of vanishing quark mass 0. Moreover, in the case of only massless partons
the transition between the two regularization schemes has been worked out for many exarépkasd could

E-mail addresses: adrian.signer@durham.ac.(¥. Signer),dominik.stockinger@durham.ac.(R. Stéckinger).
1 Sometimes, these regularization schemes are also abbreviated as “DR” and “CDR (conventional dimensional regularization)”.
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always be performed as expected. Even for one-loop amplitudes involving massive partons the transition could
be studied7]. Nevertheless, the problem found in REf] for the massive case has remained unsolved. It has
repeatedly shown up and has been stressed again, e.g., ifgefs.

There are two areas whepRED is traditionally applied with great benefit. One is the evaluation of purely
massless amplitudes, especially within QCD. HereD and related methods allow the use of powerful helicity
methodq10]. The most important application 6fRED and its original purpose is the regularization of supersym-
metric theories. It has been shown to preserve supersymmetry relations in many different cases at the one-looy
[8,11,12]and the two-loop levdll3,14], and in[13] also further properties such as mathematical consistency have
been established.

The factorization problem is particularly troublesome for the calculation of QCD corrections to supersymmetric
processes involving hadrons. In spite of the advantageseb, it renders the use ddRED questionable (see,

e.g., the discussion if8]). Resorting tabREG in such calculations introduces several disadvantages. Mainly, su-
persymmetry is broken and has to be restored by adding supersymmetry-restoring counfgriitisat do not
correspond to multiplicative renormalization. In addition, BR renormalization scheme, a very common defini-
tion of supersymmetry parameters, is naturally basedr@d but only awkward to realize usingrReG. Clearly,

a resolution of the factorization problem would be welcome for both fundamental and practical Hd&sb6k

In this Letter we reconsider the problem found in R§Es9]. We show that, despite first appearances, the result
of Ref.[1] in fact is perfectly consistent with factorization.

We begin in Sectiof with a detailed explanation of the calculation of the LO progass> ¢f and the real NLO
correctiongg — ttg. We consider the collinear limit of two of the gluons and recover the seemingly paradoxical
result of Ref[1]. An important ingredient of this collinear limit is the necessity to average over the unobservable
azimuthal angle of the final state gluon. It distinguishes the massive from the massless case, and in the massiv
case it leads to the difference betweenrEG- and theDRED-result.

In Section3 we first describe the general idea that will lead to a re-interpretation of the result, showing that it is
consistent with factorization. The crucial point to notice is thadReD the 4-dimensional gluon is a composition
of a D-dimensional part and a remainiig— D)-dimensional part, and that these two parts behawe@different
partons g andg.

Finally it is demonstrated in detail how this idea leads to a resolution of the factorization problem. On the one
hand, in the collinear limit the NLO cross section becomes equal to a linear combinatiemdfferent LO cross
sections, with eitheg or ¢ in the initial state. On the other hand, the appearing prefactors in this linear combination
have a natural interpretation as splitting functions for the splitting processegg, ¢ — g¢, etc. We will also
explain why factorization works in the = 0 case already without distinguishing betweeandq.

In Section4 we give our conclusions.

2. Recovering the seemingly non-factorizing result
2.1. LOand NLO calculation

We consider hadroproduction of a quark paivia gluon fusion, the process for which the factorization problem
has been reported in Refd.,9]. In this section we will briefly describe the required tree-level calculations and
recover the result of these references. At leading order (LO) we only need-th2 grocesgg — t7, whereas at
next-to-leading order (NLO) we also have to consider the 3 process with an additional gluon in the final state.

We carry out the calculation using eitheREG or DRED. In both cases, space-time, momenta and momentum
integrals are treated i dimensions. IIDREG, the gluon vector field is treated i dimensions as well, while in
DRED the gluon field and -matrices remain 4-dimensional quantities.

At leading order the amplituddrs(2 — 2) is given by the diagrams sketchedFig. 1(a). The subscript RS
denotes the regularization schem®&EgG or DRED. The incoming gluon momenta and colour indices are denoted
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Fig. 1. Generic structure of (a) LO diagrams, (b) NLO real correction diagrams, (c) NLO diagrams giving rise to a collinear divergence for
k3 — (1 —x)ko.

by k1.2 anday 2, respectively; the outgoing momenta are calped. We will use the kinematical variables
S=2kiks,  Ti=(ki—pD)®—m?  Ur=(ka—p1)*—m> @)
ARrs(2 — 2) can be decomposed into two colour structures as
Ars(2— 2) = AS2 2 - TT% + ACY (2 - 2) 72T, ©)
The squared LO amplitude, summed over initial and final state polarizations and colours, can be decomposed as

N2 _-1)2 N2 —

MRrs(2— 2) = Z | Ars(2 — 2)|2=(

polscol

1
M2 —2) - ME2—2), 4)

whereN = 3 is the number of colours. For the polarization sum corresponding to a gluon with polarization vector
€ and momentunt, we use

ntk” + kMn¥  n2khkY

Ze“e”* — —g" + — (5)

2

o (nk) (nk)

with an arbitrary gauge vectar* such thatk # 0.

We obtain the following results:

12 2nU1  2T1U1

Ml(?S)(Z—) 2)=8g4{1—T, —{—T BgED, (6a)
RS2 2
n~>S 4dm=S

B =nRS(—1+ g )+—TU —m?25), 6b
QED=1ng A0, T12U12( 1U1 ) (6b)

in agreement with Refl]. The difference between the calculationoRED and DREG enters only through the
numberRS of gluon degrees of freedom,

hWDRES_p_p  nDRED_p @)

Technically,ngS appears in the formgsz g/ — 2, where the metric tensor originates either from the numerator
of a gluon propagator or the polarization sy

At NLO, we restrict ourselves to the real corrections, corresponding to the pragesszg. This is sufficient
for the discussion of the collinear divergences and the factorization prdtil®in The diagrams contributing to
the amplitude4(2 — 3) are generically depicted iRig. 1(b). The outgoing momentum and colour indices of the
additional final state gluon are denotediay as; in accordance with Refl] we use the kinematical variables

s = (k1 + k2)?, sq= (ks + p1)% —m?, t' = (ko — k3)?,
u' = (kg — k3)?, ug = (ko — p1)% —m?, u7 = (k1 — p1)% —m2, (8
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which satisfys + s4 + 1t + u’ + ug + u7 = 0. It is useful to keep the distinction between these variables for the
2 — 3 process and the variabl§s Ty, U, for the 2— 2 process althoughi ands are the same functions &f ».
The explicit form of the full result forMgs(2 — 3) is lengthy and suppressed here.
In order to obtain the partonic cross sections, the squared amplitudes have to be averaged over the initial state
polarizations and colours and divided by a flux factor. We denote these averaged quantities by

1 1
(MRS(Z - 2)) = 5 mMRS(Z — 2), (9a)
(Mrs(2— 3))= ! ! MRs(2— 3). (9b)

25 [n>(N2 — D)P?

The differential cross sections are then given Byt k1 + k2 — p1 — p2)

delpf
dofS, =(Mrs(2— 2))(p l:_[ W) 2m)PsD (p), (10)
r=pr12 bEf
dofS;=(Mrs2—3)( T[] A" py @m)P8P (P — ka). (11)
. Pr=p1,2:k3 ZP?(ZT)S

They depend on the regularization schem&®et — D) and at®((4 — D)°) due to soft and collinear divergences.
2.2. Collinear limit and azimuthal average

Now we consider the limit of Mrs(2 — 3)), where the unobserved final state gluon becomes collinear to one
of the initial state gluons. To be specific we will concentrate on the collinear lifgita2 gluon 2 and gluon 3 and
define the collinear limit, — O by parametrizing the momemtg andk as follows:

kJZ_ nt
1—x 2kon’

where the auxiliary vector* satisfiesi? = nk; = 0.

The collinear divergence in the NLO cross section originates from diagrams of the form shéignlift) where
the virtual gluon becomes on-shell. In the squared amplitude this gives rise to terms of the/o’rdeit/lki, and
such terms lead to singularities in the phase-space integral. As can be read dfidgrdfc), one would expect the
divergent NLO terms to become proportional to the LO terms with the identification

Ky = (1— )k + k" — (12)

S — xs, Ui — xusg, Ty — —x(s +ug). (13)

However, this naive expectation does not take into account the following subtlety: not all pbﬁesﬂthe squared
amplitude are directly of the form/1’. Some poles have a more involved structure. In particular, in our example,
there are poles of the foriass — u'ug)?/1'?. Upon taking the collinear limit, these terms dependnHowever,

the transverse directiokl| is unobservable in the collinear limit and will be azimuthally averaged over in the
phase-space integrl]. This averaging procedure affects only terms containjf¢?l and it yields

(ssa—u'ug)® 213 1 —(1—x)4S(T1U1 — m2S)
—
12 D—-2 x2 %
where the dots denote terms without/a’ssingularity. The notatior2||3) implies that the average over the — 2)-

dimensional transverse space is taken in the collinear limit. The fabter 2) enters the denominator as a result
of this averaging6].

T (14)
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Taking the averaged collinear limit ¢Mrs(2 — 3)) we obtain

@13 —4g%N [ (1 —x +x2)2
(Mrs(2— 3)) — - < Ao

RS 1-
(Mrs(2— 2))+ ( e 1) ( . x)(MRs(2—> 2))|m>,

D-2
(15)
where Mrs(2 — 2)|,, = MRrs(2 — 2) — MRrs(2 — 2)|,—0 denotes the mass terms.bfrs(2 — 2). This equa-
tion is equivalent to the result found in Ref$,9].

The factorization theorem seems to suggest that the terms that are divergent in this collinear limit are propor-
tional to the LO result. Whereas the first term on the right-hand si&)is in accordance with this expectation,
the second term contains only the mass-dependent terms of the LO result and, therefore, seems to violate the fac-
torization theorem. Due to the prefactor, this second term is abs&mde, and the problem is only present in
DRED. What we would expect in going fromrREG, where factorization holds, tbRED is a change in the function
multiplying the LO term, but not a change in the structure of the result.

As mentioned in Refd1,9] the problematic term vanishes in the massless limit. However, this is not generally
true but is peculiar to the process under consideration. The decisive feature is not the mass of the quarks but the
presence of terms 1/¢'2. In our case, the absence oft1? terms in the massless case can be explained by helicity
conservation.

In the next section we will discuss the origin of the seemingly non-factorizing term and show that it can be
rewritten in a way that is consistent with factorization.

3. Reconciling the NL O result with factorization
3.1. General idea

Inthe collinear limit, the NLO result iDRED (15)does not seem to factorize into a product of a splitting function
and the LO result. In contrast, the NLO resultirEG does factorize. There is a simple argument that allows to
understand why the two regularization schemes behave in such a different way. In the regularized expressions,
the number of dimension® and of gluon degrees of freedo'r@S can be set to integers. For examme&EG with
integerD andn2REC = D — 2 simply corresponds to unregularized QCIrdimensions. Of course, factorization
can be expected to hold in QCD with an arbitrary number of dimensions. This is the reason wWhy)Eagtorizes
in the case obREG.

In contrast,DRED with, e.g., D = 3 does not lead to 3-dimensional QCD but rather to 4-dimensional QCD,
dimensionally reduced to 3 dimensions. It is well known that in the process of dimensional reduction from 4 to 3
dimensions, the 4-dimensional gluon is decomposed into the 3-dimensional gtugm = 0, 1, 2) and an extra
scalar fieldp = A3. The resulting theory is 3-dimensional QCD, supplemented with a minimally coupled gcalar
in the adjoint representation.

The crucial point to be learnt from this discussion is that the dimensionally reduced theory comtedisinct
partons, the 3-dimensional gluog and the scalap. At LO there are therefore four distinct partonic processes for
tt production:

gg — 1, gp — tf, pg — tt, op — tr. (16)

It is obvious that factorization can be expected to hold in this dimensionally reduced theory, but not in the same way
as inDREG. On the right-hand side of E{15) we do not expect one single term but instead a linear combination
of all four partonic LO processes.

In DRED with arbitrary, non-integeD, the situation is similar. The regularized theory contaiis-dimensional
gluon g and 4— D additional scalar fieldg, so-callede-scalars[11]. Again, g and ¢ have to be viewed as
independent partons, and the collinear limit is expected to contain all four LO processes.
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In order to express this new expectation more formally, we denote the 4-dimensional gluon that has always been
assumed iIMRED in the previous section (and also in Rdfs9]) by G. The 2— 2 and 2— 3 processes considered
in the previous section can then be written more explicitly as

MDRED(Z — 2(3)) = MDRED(GG — tt_(G)). a7

Since the 4-dimensional gludh constitutes the combinatignt ¢, the squared matrix elements satisfy the relation

MpRrep(GG — tt) = MpRrep(gg — 1) + Mprep(g¢ — 1) + Mprep(pg — t1)
+ MpRrep(¢¢ — t1) (18)

and similarly forMprep(GG — t1G). This leads us to expect that the collinear limiGiRED can be written as

(@3 —2¢2 L
(Mprep(ij — tik)) = - Z Pj_i(Mprep(il — t1)) |. (19)
l=¢g.¢

Contrary to the corresponding formula foREG the right-hand side of Eq19) is a linear combination involving
more than one LO process.

In the following we will show that the seemingly non-factorizing term in BEdq) can be rewritten as a linear
combination of the four partonic LO processes. Thus, factorization is vatig#p in the form expected in E¢§19)
and we will see that the function;_, ;. can be interpreted as splitting functions.

3.2. Callinear limit and LO result with g or ¢ intheinitial state

According to the idea discussed in the preceding subsection we evaluate all four partonic LO prdsses
individually. The algebraic expressions for the partonic processes invodvigg or G are distinguished by the
values of the polarization vecter and the corresponding polarization sum. The polarization sum corresponding
to an externa(s is the one given in E(5); the ones corresponding toand¢ read

ntk’ + kY nlktkY

: HeV* — —ghv — , 20a
: %4;6 c T (nk) (nk)? (202)
o: Ze“e”* — —ghv. (20Db)

pols

The objectg#” andg”? are the projectors on the- and(4 — D)-dimensional subspacg (see also Ref13] for
further details) and satisf§*’3,, = D, g""g,», = 4 — D and the projector relationg*’ g = g"*, ghV gl = g,
They are related to the 4-dimensional metric tensog®y= gV + gH".

We obtain the following results:

12) ... _ 2TU, 21U,

M(DRED(IJ—>H)=8g4{1— sz otz (B (21a)
DRED ¢2 2
n S 4m-S

B,, =nPRED( 14 & ThU1 — m?S), 21b

g8 =g + 471U, +T12U12( o ) (216)
DRED ¢2
n S

By =nPRED( —1 ¢ , 21c

b =g + ATLU; (21c)

DRED, DRED 52
ng) = ng i’l¢ m, (Zld)
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52
DRED DRED

Here the symbolaPREP and n2REP denote the numbers of degrees of freedom corresponding to the partons
ande:
nDREP_p_2  nDRED_4_p, (22)

The fact that the 4-dimensional gluaf is the combination of and ¢ is reflected in the equality2REP =

n2RED 4 nDRED and by the observation that, as already stated ir(E), the sum of the four partial resul@l) is
equal to the result for th€ G initial state.
Note that the result for thgg case is equal to the LO result bREG because Eq¢6) and (21bhave the same
form andnREC = nD2RED. This equality can be understood as a consequence of the fact that in the simple process
gg — tr at tree level na&-scalarsp appear as virtual states in the Feynman diagrams.
In a next step we perform the calculation of all eight squared amplithdggep(ij — tzk) with i, j, k=g, ¢.
We do not present the full analytic results but concentrate on the collinearkiimit (1 — x)kp, since we are
interested in how the processes involving the individual partors behave as compared to the seemingly non-
factorizing resul{15)for the process involving onlg . The averaged amplitudes are defined as iN&greplacing
ngREP by nPRED, nDRED where appropriate. We find the following results:

, _ (@13 —4¢2N 1—x+x?)7?
(Mprep(ig — tig)) 2 g (Mprep(ig — 11 ))% (23a)
_ (@13 —4g%N
(Mbrep(i¢ — tig)) e g (Mprep(i¢ — 17 )) — (23b)
DRED
213 —4g?N
(Moren(ig — 1)) 23 ZB N Mogep(ip — 1)~ DREDx(l x), (23c)
213 —4g°N _ . 1—x
(Mprep(i¢p — tt¢)) e f/ (Mprep(ig — U))T' (23d)
These results have precisely the form of E) with
_ A1—x- x2)2
Pyge =2N W’ (242)
Pprgg =2N T, (24b)
DRED
Pg_>¢¢ = 2N DRED x(1-1x), (240)
Posp = 2N 1o x (24d)
Pi_ix =0 otherwise (24e)

They demonstrate clearly that all eight individual partonic processes factorize in the usual way into a product of a
splitting function and a LO process, without any unusual terms. There are not even non-trivial linear combinations
of LO processes on the right-hand sides. This fact and the origin of the splitting functions is discussed in the
following subsections.

The eight results can now be combined to reconcile the collinear limit iffI=) for DRED with factorization.
Instead of Eq(15) we now obtain
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DREDnDRED
(MpRrep(GG — 1iG)) = Z Z(DR—ED)Z(MDRED(U — 1ik))
i,j.k=g.¢
2”3 4gZN DRED (1 X+ x2)2 DRED 1—x
' [(MDRED(Gg —u )>( BRED x(1—x) DRED X
DRED x
(MDRED(G¢_) tt)) DRED<1 +x(l_x)):| (25)

where the relationsV1(Gj — 1) = M(gj — tr) + M(¢j — t1) have been used. In this equation the collinear
limit finally acquires a factorized structure althougReD is used. As expected in Secti8r1, a linear combination
of LO processes appears on the right-hand side.

It is instructive to directly verify the equality of Eq&5) and (15)the factorized and non-factorized version of
the collinear limit, respectively. Since the mass dependence i2Eyienters only through thgg result we can
write

DRED

(MbRED(GG — 11))| = ﬁ((MDRED(Gg — 11)) — (Mprep(G¢ — 11))). (26a)
G

(MbReD(GG — 1)), _y=(MpRrep(Gg — 11))|, _y = (MpRep(Gp — 11)). (26b)

Thus we see that the disturbing mass term in(@§) indeed can be resolved as a linear combination of complete
LO processes. Using Eg6) in Eq. (15) directly leads to Eq(25).

Finally we note that in the massless c426b), several of the LO processes become equal, which is why
the collinear limit then takes a simpler form and the problematic term in(Es).disappears. This is however a
peculiarity of the considered process and related to the absence of+tety$’ discussed in Sectiod, but it is
not a generic feature of processes with massless partons.

3.3. Splitting functionsinvolving g and ¢

In this subsection we focus on the splitting functions appearing in(Z, involving g and¢ as partons. In
order to consolidate our understanding of factorizationmED we will present an independent derivation of these
splitting functions. Instead of reading them off from the collinear limits of particular NLO processes we directly
evaluate the amplitudes for the splitting processes

g~ 8(x)g(l—x), g§—=> ¢()p(l—x), ¢ — p(x)g(l—x), ¢ — g(x)p(1—x). (27)

The corresponding diagrams are showirig. 2 Note that the amplitudes for splitting processes involving an odd
number of¢ partons vanish at tree level. In each splitting progess jk the momenta are assigned gs= ko,

pr = k3 as given in Eq(12), andp; = k2 — k3. In order to obtain the splitting probabilities, the amplitudes are
squared and summed over colours and polarizations according (@@®.cOnly particle; is kept slightly off-shell,

pJZ. ~ k2 and its Lorentz and colour indices are kept uncontracted. The result for each splitting process thus has the

form PP wherep, o’ anda, a’ are the open Lorentz and colour indices. Terms subleadikg are neglected

i—jk ?

and the average over the — 2 transverse directions is performed. Finally, terms proportionétie- k3)” or

g p P g
gﬂm{\ 9 0~ R }35\ - 1666
9 RN g N

Fig. 2. Tree level diagrams for the four splitting processes involygiagdg.
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(k2 — k3)? can be neglected, too. Due to the Ward identity they do not contribute if the splitting processes are part
of a larger physical process where all particles are on-shell.

After these manipulations, the resuﬁ’ﬁ”/’.““/ take the form

2(k2 k )2 DRED

’Pl[z;;(u = i—>jk(x) X DRED(Saa g(j) (28)
J
They are proportional t@/’/’/ if j =g and togW’/ if j =¢ (commonly abbreviated ag’p here), and they are

proportional tos,, in colour space. As expected, the prefactors are given by the splitting fun@tions(x) of
Eqg. (24), multiplied by additional factors that compensate for the different prefactors in cross sections with either
i or j in the initial state.

Hence the functions given in E€R4) have a natural interpretation as universal splitting functions. The fact that
only one term appears on each right-hand side of E).is due to the vanishing of the splitting functions involving
an odd number op’s.

For future reference we introduce splitting functions corresponding to 4-dimensional gluons

g CPGjG = ) (ngN CPes i+ ngREO Py i) (29)
k=g.¢
and note that the splitting functions satisfy the sum rule
DREDPg%gg _ Z ngREDPG%jG _ Z DREDPij (30)
j=g.¢ i,j.k=g.¢

As in Eq.(28), the factors:2REP, nPRED andnDRED appear because we are considering the splitting of an initial
state parton and, therefore, have to correct for the factors due to the average over polarizations.

We close the subsection with several remarks. First, notefthat, is identical to the well-known gluon split-
ting function inDREG. Second, the splitting functions involvirg coincide with the splitting functions involving
massless squarks and gluons, given in R&{.if the colour factors for squarksg, Cr are replaced by = N
The particular splitting function®,_, 4¢ has already been made use of in R6f.in order to study the difference
betweerpRED andDREG. And finally, Ps_, .4 is the prefactor of the puzzling term in E{.5), and it corresponds
to the factorK, in Ref.[9]. The nature ofP;_, ¢z, as a splitting function explains the universal behavioukgf
described in this reference.

3.4. Final result

In the previous subsections we have seen that the real NLO processes with garfoimgleed factorize in
the collinear limit. Thex-dependent prefactors can be interpreted as the splitting fundfions. corresponding
to the parton splittingg — gg, ¢ > ¢, ¢ — g, ¢ — ¢g. Thus the results for the collinear limits take a very
systematic form

(Mprep(ij — ttk)) o o [ > Pii{Moren(il — tt))i| (31)
I=g.¢

wherei, j, k = g, ¢. The sums on the right-hand side all collapse to one single term since only the four aforemen-

tioned splitting functions can contribute, while splitting functions with an odd numbeisofanish at tree level.

Similarly, using the combination®9) of splitting functions involvingG, the result for the process involving only

4-dimensional gluons can be expressed as

-2
(MpRED(GG — llG)) 2 g [ >~ Poo j{Moren(Gj — ff))] (32)
j=8¢
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Although there is a non-trivial structure on the right-hand side, this result has the form that is expected from the

factorization theorem.
For comparison, we repeat the corresponding result for the casess with adapted notation:

—2g2 _
(MDREG(gg—>ttg)> @R t/g [ Pg— go(MbREG(8E — 11))]. (33)

In the remainder of this section we briefly discuss the relation betweem andDREG for the cross sections.
The results for the collinear limits can be elevated to the level of cross sections by performing the suitable phase-
space integration and taking into account the second collinear ljf8itThe singular terms in the collinear limits
yield the subtraction terms that render the cross section finiterR 6, the subtracted hard scattering cross section
d&PREG at NLO is given by

8

1-
DREG DREG DREG
/d g—>ttg_/ Ogg—stig |:/dx1<—— g*gg(xl)> g—)tt(xlkl’kz)
0
a,
+ f dxz(ﬁgpg%gguz)) dogi'iES(kLmkz)} (34)
0

with oy = g2/(4) and D = 4 — 2¢. In DRED it can be defined analogously:

1
[ 4625505 = [ doREE0+ 3 [ / dxl(——Pce,Gw) daB8%0 Gk, ko
j=8.¢

1-§

oy 1
/d 2(2——PG—>]G(X2)) do-g]R—Ett(kl’XZkZ):| (35)
0

In these equations, all integration regions are assumed to contain the same collinear regions. The small paramete
8 > 0 excludes the region aroung = 1, which would lead to further infrared singularities that cancel only by
adding the virtual NLO corrections.

These subtracted cross sections are free of collinear singularities and, by construction, the non-singular remain:
ders in both regularization schemes are equal up to ter§4f- D) 2:

/ dsDRER = f déopER . + 04— D). (36)
Eqgs.(34)—(36)can also be derived directly from the puzzling result Eq. (6.28) in[REby inserting our expression
(26a)for the disturbing mass term.

This shows that the final hadronic cross section, which is obtained di@rthrough convolution with parton
distribution functions, can be evaluated both usimgEG or usingDRED. In particular, Eq(36) shows that the same
factorization scheme can be realized using eitiEeG or DRED, and therefore the same parton distribution func-
tions (e.g., defined in th1S factorization scheme) have to be used in both cases. The structure of the calculation
is the same. The only difference is the appearance of the two independent gartanghe subtraction terms for
DRED that lead frondo to dé .

2 Note that the factorization scheme has been implicitly fixed in B2y, (35) Different factorization schemes can be realized by adding
identical terms in the brackets multiplying theiiﬁ,; in Egs.(34), (35) The resulting subtracted cross section® REG andDRED are then
still equal. !
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4. Conclusions

We have considered the factorization problenpaiED that has repeatedly shown up in the literat{ire,9].
Eqg. (15) exhibits the seemingly non-factorizing terms in the collinear limit of the proggss> ttg. We have
shown that the problem can be completely solved.

The key to the solution is to consider the 4-dimensional giion DRED as a combination of thB-dimensional
gluong and 4— D e-scalarsg. If g and¢ are treated as independent partons as in(Eg), the collinear limit
acquires a factorized form. The problematic terms on the right-hand side are replaced by a linear combination of
several LO processes involviggande. Furthermore we have shown that the coefficients in this linear combination
have a natural interpretation as splitting functions.

The final form of the collinear limit is displayed in Eg&1) and (32) We have shown that the result for the
collinear limit can be transferred to the level of cross sections and that the hadron cross section can be evaluated
using bothoREG or DRED. All results have a very systematic and natural structure.

In summary, the factorization problem bRED, i.e., the presence of seemingly non-factorizing terms, is not a
problem but a signal that the distinction betweeand¢ as independent partons cannot be ignored. The solution
does not affect the computation of the NLO diagrams itself. Only the expectation from the collinear limit and the
structure of the subtraction terms needed to obtain the hard scattering cross section have to reflect this distinction.
Although we have only considered the procggs— rig as an example and ignored virtual NLO corrections,
one can expect that factorization irRED holds in general and even in higher orders. The details of the general
construction of finite, regularization-independent hard scattering cross sections will be left for future work.

An interesting remaining question is for which processes the factorization problem and the decomposition of
the 4-dimensional gluon as = g + ¢ is relevant in general. While a general answer to this question is beyond the
scope of the present Letter, we can give two criteria, based on the analysis of the considered process, where the
problem disappears fat = 0.

From the point of view of Sectio®, for m = 0 the terms of the order/1’2 vanish. In this case, no average over
the transverse direction of the collinear gluon has to be performed. Therefore, the resiftons trivially the
D = 4 limit of the DREG-result, and in both regularizations factorization holds in the naive way.

From the point of view of SectioB, in the massless case the LO processes @ith Gg or G¢ in the initial
state all become equal, see EBB6b). As a result, in the collinear limit32) no distinction between the different
LO processes has to be made, and the prefactors combine to thBssupg + P ¢, Which is simply equal to
P,_, ¢¢ according to the sum rul@0). Hence the collinear limit imRED again reduces to the naive form involving
only 4-dimensional gluons and one splitting functiBg., 4.

The situation is different for the process with one more lgg— r7g with a hard gluon in the final state.

We have checked that for this example, e(d4prep(Gg — 11G)) # (Mprep(G¢ — t1G)) already form =0
in contrast to Eq(26b). Therefore, the factorization problem is not generally linked to the presence of massive
partons but rather to sufficiently complicated kinematics.
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