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Abstract

Since an old observation by Beenakker et al., the evaluation of QCD processes in dimensional reduction has repe
to terms that seem to violate the QCD factorization theorem. We reconsider the example of the processgg → t t̄ and show that
the factorization problem can be completely resolved. A natural interpretation of the seemingly non-factorizing terms i
and they are rewritten in a systematic and factorized form. The key to the solution is that theD- and(4− D)-dimensional parts
of the 4-dimensional gluon have to be regarded as independent partons.
 2005 Elsevier B.V.

1. Introduction

Nearly 20 years ago, Ref.[1] observed a problem concerning factorization in conjunction with regulariza
by dimensional reduction (DRED) [2]. The partonic processgg → t t̄ with non-vanishing quark massmt ≡ m was
evaluated using bothDRED and ordinary dimensional regularization (DREG) [3].1 Contrary to expectations[4],
the difference between the two regularization schemes could not be absorbed by a finite additional facto
corresponding to a change in the parton distribution functions.

As a consequence it seems impossible to write the hadronic cross sectionσhadas a convolution of parton distrib
ution functionsf and the partonic cross sectionσDRED

parton . Schematically, the factorization problem can be expres
as

(1)σhad= f ⊗ σDRED
parton + extra,non-factorizing terms.

The extra terms vanish in the limit of vanishing quark massm = 0. Moreover, in the case of only massless part
the transition between the two regularization schemes has been worked out for many examples[5,6] and could
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1 Sometimes, these regularization schemes are also abbreviated as “DR” and “CDR (conventional dimensional regularization)”.
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always be performed as expected. Even for one-loop amplitudes involving massive partons the transitio
be studied[7]. Nevertheless, the problem found in Ref.[1] for the massive case has remained unsolved. It
repeatedly shown up and has been stressed again, e.g., in Refs.[8,9].

There are two areas whereDRED is traditionally applied with great benefit. One is the evaluation of pu
massless amplitudes, especially within QCD. HereDRED and related methods allow the use of powerful helic
methods[10]. The most important application ofDRED and its original purpose is the regularization of supers
metric theories. It has been shown to preserve supersymmetry relations in many different cases at the
[8,11,12]and the two-loop level[13,14], and in[13] also further properties such as mathematical consistency
been established.

The factorization problem is particularly troublesome for the calculation of QCD corrections to supersym
processes involving hadrons. In spite of the advantages ofDRED, it renders the use ofDRED questionable (see
e.g., the discussion in[8]). Resorting toDREG in such calculations introduces several disadvantages. Mainly
persymmetry is broken and has to be restored by adding supersymmetry-restoring counterterms[8,12] that do not
correspond to multiplicative renormalization. In addition, theDR renormalization scheme, a very common defi
tion of supersymmetry parameters, is naturally based onDRED but only awkward to realize usingDREG. Clearly,
a resolution of the factorization problem would be welcome for both fundamental and practical reasons[15,16].

In this Letter we reconsider the problem found in Refs.[1,9]. We show that, despite first appearances, the re
of Ref. [1] in fact is perfectly consistent with factorization.

We begin in Section2 with a detailed explanation of the calculation of the LO processgg → t t̄ and the real NLO
correctiongg → t t̄g. We consider the collinear limit of two of the gluons and recover the seemingly parad
result of Ref.[1]. An important ingredient of this collinear limit is the necessity to average over the unobse
azimuthal angle of the final state gluon. It distinguishes the massive from the massless case, and in the
case it leads to the difference between theDREG- and theDRED-result.

In Section3 we first describe the general idea that will lead to a re-interpretation of the result, showing th
consistent with factorization. The crucial point to notice is that inDRED the 4-dimensional gluon is a compositio
of aD-dimensional part and a remaining(4−D)-dimensional part, and that these two parts behave astwo different
partons g andφ.

Finally it is demonstrated in detail how this idea leads to a resolution of the factorization problem. On t
hand, in the collinear limit the NLO cross section becomes equal to a linear combination oftwo different LO cross
sections, with eitherg or φ in the initial state. On the other hand, the appearing prefactors in this linear combi
have a natural interpretation as splitting functions for the splitting processesg → gg, φ → gφ, etc. We will also
explain why factorization works in them = 0 case already without distinguishing betweeng andφ.

In Section4 we give our conclusions.

2. Recovering the seemingly non-factorizing result

2.1. LO and NLO calculation

We consider hadroproduction of a quark pairt t̄ via gluon fusion, the process for which the factorization prob
has been reported in Refs.[1,9]. In this section we will briefly describe the required tree-level calculations
recover the result of these references. At leading order (LO) we only need the 2→ 2 processgg → t t̄ , whereas a
next-to-leading order (NLO) we also have to consider the 2→ 3 process with an additional gluon in the final sta

We carry out the calculation using eitherDREG or DRED. In both cases, space–time, momenta and momen
integrals are treated inD dimensions. InDREG, the gluon vector field is treated inD dimensions as well, while in
DRED the gluon field andγ -matrices remain 4-dimensional quantities.

At leading order the amplitudeARS(2 → 2) is given by the diagrams sketched inFig. 1(a). The subscript RS
denotes the regularization scheme,DREG or DRED. The incoming gluon momenta and colour indices are den
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Fig. 1. Generic structure of (a) LO diagrams, (b) NLO real correction diagrams, (c) NLO diagrams giving rise to a collinear diverg
k3 → (1− x)k2.

by k1,2 anda1,2, respectively; the outgoing momenta are calledp1,2. We will use the kinematical variables

(2)S = 2k1k2, T1 = (k1 − p1)
2 − m2, U1 = (k2 − p1)

2 − m2.

ARS(2→ 2) can be decomposed into two colour structures as

(3)ARS(2→ 2) = A(12)
RS (2 → 2)T a1T a2 +A(21)

RS (2 → 2)T a2T a1.

The squared LO amplitude, summed over initial and final state polarizations and colours, can be decompo

(4)MRS(2 → 2) =
∑

pols,col

∣∣ARS(2 → 2)
∣∣2 = (N2 − 1)2

4N
M(1)

RS(2→ 2) − N2 − 1

4N
M(2)

RS(2→ 2),

whereN = 3 is the number of colours. For the polarization sum corresponding to a gluon with polarization
εµ and momentumk, we use

(5)
∑
pols

εµεν∗ → −gµν + nµkν + kµnν

(nk)
− n2kµkν

(nk)2

with an arbitrary gauge vectornµ such thatnk �= 0.
We obtain the following results:

(6a)M(1,2)
RS (2→ 2) = 8g4

{
1− 2T1U1

S2
, +2T1U1

S2

}
BQED,

(6b)BQED = nRS
G

(
−1+ nRS

G S2

4T1U1

)
+ 4m2S

T 2
1 U2

1

(
T1U1 − m2S

)
,

in agreement with Ref.[1]. The difference between the calculation inDRED and DREG enters only through th
numbernRS

G of gluon degrees of freedom,

(7)nDREG
G = D − 2, nDRED

G = 2.

Technically,nRS
G appears in the formnRS

G = g
µ
µ − 2, where the metric tensor originates either from the numer

of a gluon propagator or the polarization sum(5).
At NLO, we restrict ourselves to the real corrections, corresponding to the processgg → t t̄g. This is sufficient

for the discussion of the collinear divergences and the factorization problem[1,9]. The diagrams contributing t
the amplitudeA(2 → 3) are generically depicted inFig. 1(b). The outgoing momentum and colour indices of
additional final state gluon are denoted byk3, a3; in accordance with Ref.[1] we use the kinematical variables

s = (k1 + k2)
2, s4 = (k3 + p1)

2 − m2, t ′ = (k2 − k3)
2,

(8)u′ = (k1 − k3)
2, u6 = (k2 − p1)

2 − m2, u7 = (k1 − p1)
2 − m2,
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which satisfys + s4 + t ′ + u′ + u6 + u7 = 0. It is useful to keep the distinction between these variables fo
2 → 3 process and the variablesS, T1, U1 for the 2→ 2 process althoughS ands are the same functions ofk1,2.
The explicit form of the full result forMRS(2→ 3) is lengthy and suppressed here.

In order to obtain the partonic cross sections, the squared amplitudes have to be averaged over the in
polarizations and colours and divided by a flux factor. We denote these averaged quantities by

(9a)
〈
MRS(2 → 2)

〉 = 1

2S

1

[nRS
G (N2 − 1)]2MRS(2 → 2),

(9b)
〈
MRS(2 → 3)

〉 = 1

2s

1

[nRS
G (N2 − 1)]2MRS(2→ 3).

The differential cross sections are then given by (P ≡ k1 + k2 − p1 − p2)

(10)dσRS
2→2 = 〈

MRS(2 → 2)
〉( ∏

pf =p1,2

dD−1pf

2p0
f (2π)3

)
(2π)Dδ(D)(P ),

(11)dσRS
2→3 = 〈

MRS(2 → 3)
〉( ∏

pf =p1,2,k3

dD−1pf

2p0
f (2π)3

)
(2π)Dδ(D)(P − k3).

They depend on the regularization scheme atO(4− D) and atO((4− D)0) due to soft and collinear divergence

2.2. Collinear limit and azimuthal average

Now we consider the limit of〈MRS(2 → 3)〉, where the unobserved final state gluon becomes collinear to
of the initial state gluons. To be specific we will concentrate on the collinear limit 2‖3 of gluon 2 and gluon 3 an
define the collinear limitk⊥ → 0 by parametrizing the momentakµ

2 andk
µ
3 as follows:

(12)k
µ
3 = (1− x)k

µ
2 + k

µ
⊥ − k2⊥

1− x

nµ

2k2n
,

where the auxiliary vectornµ satisfiesn2 = nk⊥ = 0.
The collinear divergence in the NLO cross section originates from diagrams of the form shown inFig. 1(c) where

the virtual gluon becomes on-shell. In the squared amplitude this gives rise to terms of the order 1/t ′ ∼ 1/k2⊥, and
such terms lead to singularities in the phase-space integral. As can be read off fromFig. 1(c), one would expect th
divergent NLO terms to become proportional to the LO terms with the identification

(13)S → xs, U1 → xu6, T1 → −x(s + u6).

However, this naive expectation does not take into account the following subtlety: not all poles 1/k2⊥ of the squared
amplitude are directly of the form 1/t ′. Some poles have a more involved structure. In particular, in our exam
there are poles of the form(ss4 − u′u6)

2/t ′2. Upon taking the collinear limit, these terms depend onk
µ
⊥. However,

the transverse directionkµ
⊥ is unobservable in the collinear limit and will be azimuthally averaged over in

phase-space integral[6]. This averaging procedure affects only terms containing 1/t ′2, and it yields

(14)
(ss4 − u′u6)

2

t ′2
〈2‖3〉−→ 1

D − 2

−(1− x)

x2

4S(T1U1 − m2S)

t ′
+ · · · ,

where the dots denote terms without a 1/t ′ singularity. The notation〈2‖3〉 implies that the average over the(D−2)-
dimensional transverse space is taken in the collinear limit. The factor(D − 2) enters the denominator as a res
of this averaging[6].
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Taking the averaged collinear limit of〈MRS(2→ 3)〉 we obtain

(15)

〈
MRS(2 → 3)

〉 〈2‖3〉−→ −4g2N

t ′

(
(1− x + x2)2

x(1− x)

〈
MRS(2→ 2)

〉 + (
nRS

G

D − 2
− 1

)
(1− x)

x

〈
MRS(2→ 2)

〉∣∣
m

)
,

whereMRS(2 → 2)|m ≡ MRS(2 → 2) −MRS(2 → 2)|m=0 denotes the mass terms ofMRS(2 → 2). This equa-
tion is equivalent to the result found in Refs.[1,9].

The factorization theorem seems to suggest that the terms that are divergent in this collinear limit are
tional to the LO result. Whereas the first term on the right-hand side of(15) is in accordance with this expectatio
the second term contains only the mass-dependent terms of the LO result and, therefore, seems to viola
torization theorem. Due to the prefactor, this second term is absent inDREG, and the problem is only present
DRED. What we would expect in going fromDREG, where factorization holds, toDRED is a change in the functio
multiplying the LO term, but not a change in the structure of the result.

As mentioned in Refs.[1,9] the problematic term vanishes in the massless limit. However, this is not gen
true but is peculiar to the process under consideration. The decisive feature is not the mass of the quark
presence of terms∼ 1/t ′2. In our case, the absence of 1/t ′2 terms in the massless case can be explained by he
conservation.

In the next section we will discuss the origin of the seemingly non-factorizing term and show that it c
rewritten in a way that is consistent with factorization.

3. Reconciling the NLO result with factorization

3.1. General idea

In the collinear limit, the NLO result inDRED(15)does not seem to factorize into a product of a splitting func
and the LO result. In contrast, the NLO result inDREG does factorize. There is a simple argument that allow
understand why the two regularization schemes behave in such a different way. In the regularized exp
the number of dimensionsD and of gluon degrees of freedomnRS

G can be set to integers. For example,DREG with
integerD andnDREG

G = D−2 simply corresponds to unregularized QCD inD dimensions. Of course, factorizatio
can be expected to hold in QCD with an arbitrary number of dimensions. This is the reason why Eq.(15) factorizes
in the case ofDREG.

In contrast,DRED with, e.g.,D = 3 does not lead to 3-dimensional QCD but rather to 4-dimensional Q
dimensionally reduced to 3 dimensions. It is well known that in the process of dimensional reduction from
dimensions, the 4-dimensional gluon is decomposed into the 3-dimensional gluonAµ (µ = 0,1,2) and an extra
scalar fieldφ ≡ A3. The resulting theory is 3-dimensional QCD, supplemented with a minimally coupled scφ

in the adjoint representation.
The crucial point to be learnt from this discussion is that the dimensionally reduced theory containstwo distinct

partons, the 3-dimensional gluong and the scalarφ. At LO there are therefore four distinct partonic processes
t t̄ production:

(16)gg → t t̄ , gφ → t t̄ , φg → t t̄ , φφ → t t̄ .

It is obvious that factorization can be expected to hold in this dimensionally reduced theory, but not in the sa
as inDREG. On the right-hand side of Eq.(15) we do not expect one single term but instead a linear combina
of all four partonic LO processes.

In DRED with arbitrary, non-integerD, the situation is similar. The regularized theory contains aD-dimensional
gluon g and 4− D additional scalar fieldsφ, so-calledε-scalars[11]. Again, g and φ have to be viewed a
independent partons, and the collinear limit is expected to contain all four LO processes.
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In order to express this new expectation more formally, we denote the 4-dimensional gluon that has alwa
assumed inDRED in the previous section (and also in Refs.[1,9]) by G. The 2→ 2 and 2→ 3 processes considere
in the previous section can then be written more explicitly as

(17)MDRED
(
2→ 2(3)

) ≡ MDRED
(
GG → t t̄ (G)

)
.

Since the 4-dimensional gluonG constitutes the combinationg+φ, the squared matrix elements satisfy the relat

MDRED(GG → t t̄ ) = MDRED(gg → t t̄ ) +MDRED(gφ → t t̄ ) +MDRED(φg → t t̄ )

(18)+MDRED(φφ → t t̄ )

and similarly forMDRED(GG → t t̄G). This leads us to expect that the collinear limit inDRED can be written as

(19)
〈
MDRED(ij → t t̄k)

〉 〈2‖3〉−→ −2g2

t ′

[ ∑
l=g,φ

Pj→lk

〈
MDRED(il → t t̄ )

〉]
.

Contrary to the corresponding formula forDREG the right-hand side of Eq.(19) is a linear combination involving
more than one LO process.

In the following we will show that the seemingly non-factorizing term in Eq.(15) can be rewritten as a linea
combination of the four partonic LO processes. Thus, factorization is valid inDRED in the form expected in Eq.(19)
and we will see that the functionsPj→lk can be interpreted as splitting functions.

3.2. Collinear limit and LO result with g or φ in the initial state

According to the idea discussed in the preceding subsection we evaluate all four partonic LO proces(16)
individually. The algebraic expressions for the partonic processes involvingg, φ, or G are distinguished by th
values of the polarization vectorεµ and the corresponding polarization sum. The polarization sum correspo
to an externalG is the one given in Eq.(5); the ones corresponding tog andφ read

(20a)g:
∑
pols

εµεν∗ → −ĝµν + nµkν + kµnν

(nk)
− n2kµkν

(nk)2
,

(20b)φ:
∑
pols

εµεν∗ → −g̃µν.

The objectŝgµν andg̃µν are the projectors on theD- and(4−D)-dimensional subspaces[2] (see also Ref.[13] for
further details) and satisfŷgµνĝµν = D, g̃µνg̃µν = 4− D and the projector relationsgµνĝ

ρ
ν = ĝµρ , gµνg̃

ρ
ν = g̃µρ .

They are related to the 4-dimensional metric tensor bygµν = ĝµν + g̃µν .
We obtain the following results:

(21a)M(1,2)
DRED(ij → t t̄ ) = 8g4

{
1− 2T1U1

S2
,+2T1U1

S2

}
Bij ,

(21b)Bgg = nDRED
g

(
−1+ nDRED

g S2

4T1U1

)
+ 4m2S

T 2
1 U2

1

(
T1U1 − m2S

)
,

(21c)Bφφ = nDRED
φ

(
−1+ nDRED

φ S2

4T1U1

)
,

(21d)Bgφ = nDRED
g nDRED

φ

S2

,

4T1U1
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(21e)Bφg = nDRED
g nDRED

φ

S2

4T1U1
.

Here the symbolsnDRED
g andnDRED

φ denote the numbers of degrees of freedom corresponding to the parg

andφ:

(22)nDRED
g = D − 2, nDRED

φ = 4− D.

The fact that the 4-dimensional gluonG is the combination ofg and φ is reflected in the equalitynDRED
G =

nDRED
g + nDRED

φ and by the observation that, as already stated in Eq.(18), the sum of the four partial results(21) is
equal to the result for theGG initial state.

Note that the result for thegg case is equal to the LO result inDREG because Eqs.(6) and (21b)have the same
form andnDREG

G = nDRED
g . This equality can be understood as a consequence of the fact that in the simple

gg → t t̄ at tree level noε-scalarsφ appear as virtual states in the Feynman diagrams.
In a next step we perform the calculation of all eight squared amplitudesMDRED(ij → t t̄k) with i, j, k = g,φ.

We do not present the full analytic results but concentrate on the collinear limitk3 → (1 − x)k2, since we are
interested in how the processes involving the individual partonsg, φ behave as compared to the seemingly n
factorizing result(15)for the process involving onlyG. The averaged amplitudes are defined as in Eq.(9), replacing
nDRED

G by nDRED
g , nDRED

φ where appropriate. We find the following results:

(23a)
〈
MDRED(ig → t t̄g)

〉 〈2‖3〉−→ −4g2N

t ′
〈
MDRED(ig → t t̄ )

〉 (1− x + x2)2

x(1− x)
,

(23b)
〈
MDRED(iφ → t t̄g)

〉 〈2‖3〉−→ −4g2N

t ′
〈
MDRED(iφ → t t̄ )

〉 x

1− x
,

(23c)
〈
MDRED(ig → t t̄φ)

〉 〈2‖3〉−→ −4g2N

t ′
〈
MDRED(iφ → t t̄ )

〉nDRED
φ

nDRED
g

x(1− x),

(23d)
〈
MDRED(iφ → t t̄φ)

〉 〈2‖3〉−→ −4g2N

t ′
〈
MDRED(ig → t t̄ )

〉 1− x

x
.

These results have precisely the form of Eq.(19)with

(24a)Pg→gg = 2N
(1− x − x2)2

x(1− x)
,

(24b)Pφ→φg = 2N
x

1− x
,

(24c)Pg→φφ = 2N
nDRED

φ

nDRED
g

x(1− x),

(24d)Pφ→gφ = 2N
1− x

x
,

(24e)Pj→lk = 0 otherwise.

They demonstrate clearly that all eight individual partonic processes factorize in the usual way into a prod
splitting function and a LO process, without any unusual terms. There are not even non-trivial linear comb
of LO processes on the right-hand sides. This fact and the origin of the splitting functions is discussed
following subsections.

The eight results can now be combined to reconcile the collinear limit in Eq.(15) for DRED with factorization.
Instead of Eq.(15)we now obtain
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〈
MDRED(GG → t t̄G)

〉 =
∑

i,j,k=g,φ

nDRED
i nDRED

j

(nDRED
G )2

〈
MDRED(ij → t t̄k)

〉

〈2‖3〉−→ −4g2N

t ′

[〈
MDRED(Gg → t t̄ )

〉(nDRED
g

nDRED
G

(1− x + x2)2

x(1− x)
+ nDRED

φ

nDRED
G

1− x

x

)

(25)+ 〈
MDRED(Gφ → t t̄ )

〉nDRED
φ

nDRED
G

(
x

1− x
+ x(1− x)

)]
,

where the relationsM(Gj → t t̄ ) = M(gj → t t̄ ) + M(φj → t t̄ ) have been used. In this equation the collin
limit finally acquires a factorized structure althoughDRED is used. As expected in Section3.1, a linear combination
of LO processes appears on the right-hand side.

It is instructive to directly verify the equality of Eqs.(25) and (15), the factorized and non-factorized version
the collinear limit, respectively. Since the mass dependence in Eq.(21) enters only through thegg result we can
write

(26a)
〈
MDRED(GG → t t̄ )

〉∣∣
m

= nDRED
g

nDRED
G

(〈
MDRED(Gg → t t̄ )

〉 − 〈
MDRED(Gφ → t t̄ )

〉)
,

(26b)
〈
MDRED(GG → t t̄ )

〉∣∣
m=0 = 〈

MDRED(Gg → t t̄ )
〉∣∣

m=0 = 〈
MDRED(Gφ → t t̄ )

〉
.

Thus we see that the disturbing mass term in Eq.(15) indeed can be resolved as a linear combination of comp
LO processes. Using Eqs.(26) in Eq.(15)directly leads to Eq.(25).

Finally we note that in the massless case(26b), several of the LO processes become equal, which is
the collinear limit then takes a simpler form and the problematic term in Eq.(15) disappears. This is however
peculiarity of the considered process and related to the absence of terms∼ 1/t ′2 discussed in Section2, but it is
not a generic feature of processes with massless partons.

3.3. Splitting functions involving g and φ

In this subsection we focus on the splitting functions appearing in Eq.(24), involving g andφ as partons. In
order to consolidate our understanding of factorization inDRED we will present an independent derivation of the
splitting functions. Instead of reading them off from the collinear limits of particular NLO processes we d
evaluate the amplitudes for the splitting processes

(27)g → g(x)g(1− x), g → φ(x)φ(1− x), φ → φ(x)g(1− x), φ → g(x)φ(1− x).

The corresponding diagrams are shown inFig. 2. Note that the amplitudes for splitting processes involving an
number ofφ partons vanish at tree level. In each splitting processi → jk the momenta are assigned aspi ≡ k2,
pk ≡ k3 as given in Eq.(12), andpj = k2 − k3. In order to obtain the splitting probabilities, the amplitudes
squared and summed over colours and polarizations according to Eq.(20). Only particlej is kept slightly off-shell,
p2

j ∼ k2⊥, and its Lorentz and colour indices are kept uncontracted. The result for each splitting process thus

formPρρ′,aa′
i→jk , whereρ, ρ′ anda, a′ are the open Lorentz and colour indices. Terms subleading ink⊥ are neglected

and the average over theD − 2 transverse directions is performed. Finally, terms proportional to(k2 − k3)
ρ or

Fig. 2. Tree level diagrams for the four splitting processes involvingg andφ.
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(k2 − k3)
ρ′

can be neglected, too. Due to the Ward identity they do not contribute if the splitting processes
of a larger physical process where all particles are on-shell.

After these manipulations, the resultsPρρ′,aa′
i→jk take the form

(28)Pρρ′,aa′
i→jk = Pi→jk(x)

2(k2 − k3)
2

x

nDRED
i

nDRED
j

δaa′gρρ′
(j) .

They are proportional tôgρρ′
if j = g and tog̃ρρ′

if j = φ (commonly abbreviated asgρρ′
(j) here), and they ar

proportional toδaa′ in colour space. As expected, the prefactors are given by the splitting functionsPi→jk(x) of
Eq. (24), multiplied by additional factors that compensate for the different prefactors in cross sections with
i or j in the initial state.

Hence the functions given in Eq.(24)have a natural interpretation as universal splitting functions. The fac
only one term appears on each right-hand side of Eq.(23)is due to the vanishing of the splitting functions involvi
an odd number ofφ’s.

For future reference we introduce splitting functions corresponding to 4-dimensional gluons

(29)nDRED
G PG→jG =

∑
k=g,φ

(
nDRED

g Pg→jk + nDRED
φ Pφ→jk

)
and note that the splitting functions satisfy the sum rule

(30)nDRED
G Pg→gg =

∑
j=g,φ

nDRED
G PG→jG =

∑
i,j,k=g,φ

nDRED
i Pi→jk.

As in Eq.(28), the factorsnDRED
G , nDRED

g andnDRED
φ appear because we are considering the splitting of an in

state parton and, therefore, have to correct for the factors due to the average over polarizations.
We close the subsection with several remarks. First, note thatPg→gg is identical to the well-known gluon split

ting function inDREG. Second, the splitting functions involvingφ coincide with the splitting functions involvin
massless squarks and gluons, given in Ref.[7], if the colour factors for squarksTR , CF are replaced byCA = N .
The particular splitting functionsPg→φφ has already been made use of in Ref.[6] in order to study the differenc
betweenDRED andDREG. And finally,Pφ→gφ is the prefactor of the puzzling term in Eq.(15), and it correspond
to the factorKg in Ref. [9]. The nature ofPφ→gφ as a splitting function explains the universal behaviour ofKg

described in this reference.

3.4. Final result

In the previous subsections we have seen that the real NLO processes with partonsg, φ indeed factorize in
the collinear limit. Thex-dependent prefactors can be interpreted as the splitting functionsPi→jk corresponding
to the parton splittingsg → gg, g → φφ, φ → gφ, φ → φg. Thus the results for the collinear limits take a ve
systematic form

(31)
〈
MDRED(ij → t t̄k)

〉 〈2‖3〉−→ −2g2

t ′

[ ∑
l=g,φ

Pj→lk

〈
MDRED(il → t t̄ )

〉]
,

wherei, j, k = g,φ. The sums on the right-hand side all collapse to one single term since only the four afor
tioned splitting functions can contribute, while splitting functions with an odd number ofφ’s vanish at tree level
Similarly, using the combinations(29) of splitting functions involvingG, the result for the process involving on
4-dimensional gluons can be expressed as

(32)
〈
MDRED(GG → t t̄G)

〉 〈2‖3〉−→ −2g2

t ′

[ ∑
PG→jG

〈
MDRED(Gj → t t̄ )

〉]
.

j=g,φ
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Although there is a non-trivial structure on the right-hand side, this result has the form that is expected f
factorization theorem.

For comparison, we repeat the corresponding result for the case ofDREG with adapted notation:

(33)
〈
MDREG(gg → t t̄g)

〉 〈2‖3〉−→ −2g2

t ′
[
Pg→gg

〈
MDREG(gg → t t̄ )

〉]
.

In the remainder of this section we briefly discuss the relation betweenDRED andDREG for the cross sections
The results for the collinear limits can be elevated to the level of cross sections by performing the suitable
space integration and taking into account the second collinear limit 1‖3. The singular terms in the collinear limi
yield the subtraction terms that render the cross section finite. InDREG, the subtracted hard scattering cross sec
dσ̂DREG at NLO is given by

∫
dσ̂DREG

gg→t t̄g
=

∫
dσDREG

gg→t t̄g
+

[ 1−δ∫
0

dx1

(
αs

2π

1

ε
Pg→gg(x1)

)
dσDREG

gg→t t̄
(x1k1, k2)

(34)+
1−δ∫
0

dx2

(
αs

2π

1

ε
Pg→gg(x2)

)
dσDREG

gg→t t̄
(k1, x2k2)

]

with αs = g2/(4π) andD = 4− 2ε. In DRED it can be defined analogously:

∫
dσ̂DRED

GG→t t̄G
=

∫
dσDRED

GG→t t̄G
+

∑
j=g,φ

[ 1−δ∫
0

dx1

(
αs

2π

1

ε
PG→jG(x1)

)
dσDRED

jG→t t̄
(x1k1, k2)

(35)+
1−δ∫
0

dx2

(
αs

2π

1

ε
PG→jG(x2)

)
dσDRED

Gj→t t̄
(k1, x2k2)

]
.

In these equations, all integration regions are assumed to contain the same collinear regions. The small p
δ > 0 excludes the region aroundxi = 1, which would lead to further infrared singularities that cancel only
adding the virtual NLO corrections.

These subtracted cross sections are free of collinear singularities and, by construction, the non-singula
ders in both regularization schemes are equal up to terms ofO(4− D) 2:

(36)
∫

dσ̂DREG
gg→t t̄g

=
∫

dσ̂DRED
GG→t t̄G

+O(4− D).

Eqs.(34)–(36)can also be derived directly from the puzzling result Eq. (6.28) in Ref.[1] by inserting our expressio
(26a)for the disturbing mass term.

This shows that the final hadronic cross section, which is obtained fromdσ̂ through convolution with parton
distribution functions, can be evaluated both usingDREGor usingDRED. In particular, Eq.(36)shows that the sam
factorization scheme can be realized using eitherDREG or DRED, and therefore the same parton distribution fu
tions (e.g., defined in theMS factorization scheme) have to be used in both cases. The structure of the calc
is the same. The only difference is the appearance of the two independent partonsg, φ in the subtraction terms fo
DRED that lead fromdσ to dσ̂ .

2 Note that the factorization scheme has been implicitly fixed in Eqs.(34), (35). Different factorization schemes can be realized by add
identical terms in the brackets multiplying thedσij→t t̄ in Eqs.(34), (35). The resulting subtracted cross sections inDREG andDRED are then
still equal.
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4. Conclusions

We have considered the factorization problem ofDRED that has repeatedly shown up in the literature[1,8,9].
Eq. (15) exhibits the seemingly non-factorizing terms in the collinear limit of the processgg → t t̄g. We have
shown that the problem can be completely solved.

The key to the solution is to consider the 4-dimensional gluonG in DRED as a combination of theD-dimensional
gluon g and 4− D ε-scalarsφ. If g andφ are treated as independent partons as in Eq.(25), the collinear limit
acquires a factorized form. The problematic terms on the right-hand side are replaced by a linear combin
several LO processes involvingg andφ. Furthermore we have shown that the coefficients in this linear combin
have a natural interpretation as splitting functions.

The final form of the collinear limit is displayed in Eqs.(31) and (32). We have shown that the result for t
collinear limit can be transferred to the level of cross sections and that the hadron cross section can be e
using bothDREG or DRED. All results have a very systematic and natural structure.

In summary, the factorization problem ofDRED, i.e., the presence of seemingly non-factorizing terms, is n
problem but a signal that the distinction betweeng andφ as independent partons cannot be ignored. The solu
does not affect the computation of the NLO diagrams itself. Only the expectation from the collinear limit a
structure of the subtraction terms needed to obtain the hard scattering cross section have to reflect this d
Although we have only considered the processgg → t t̄g as an example and ignored virtual NLO correctio
one can expect that factorization inDRED holds in general and even in higher orders. The details of the ge
construction of finite, regularization-independent hard scattering cross sections will be left for future work.

An interesting remaining question is for which processes the factorization problem and the decompos
the 4-dimensional gluon asG = g + φ is relevant in general. While a general answer to this question is beyon
scope of the present Letter, we can give two criteria, based on the analysis of the considered process, w
problem disappears form = 0.

From the point of view of Section2, for m = 0 the terms of the order 1/t ′2 vanish. In this case, no average ov
the transverse direction of the collinear gluon has to be performed. Therefore, the result inDRED is trivially the
D = 4 limit of the DREG-result, and in both regularizations factorization holds in the naive way.

From the point of view of Section3, in the massless case the LO processes withGG, Gg or Gφ in the initial
state all become equal, see Eq.(26b). As a result, in the collinear limit(32) no distinction between the differen
LO processes has to be made, and the prefactors combine to the sumPG→gG + PG→φG, which is simply equal to
Pg→gg according to the sum rule(30). Hence the collinear limit inDRED again reduces to the naive form involvin
only 4-dimensional gluons and one splitting functionPg→gg .

The situation is different for the process with one more leg,gg → t t̄g with a hard gluon in the final state
We have checked that for this example, e.g.,〈MDRED(Gg → t t̄G)〉 �= 〈MDRED(Gφ → t t̄G)〉 already form = 0
in contrast to Eq.(26b). Therefore, the factorization problem is not generally linked to the presence of m
partons but rather to sufficiently complicated kinematics.
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