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A B S T R A C T

A theoretical study on free vibration behavior of pre-stressed functionally graded material (FGM) beam
is carried out. Power law variation of volume fraction along the thickness direction is considered. Geo-
metric non-linearity is incorporated through von Kármán non-linear strain–displacement relationship.
The governing equation for the static problem is obtained using minimum potential energy principle.
The dynamic problem for the pre-stressed beam is formulated as an eigenvalue problem using Hamil-
ton’s principle. Three classical boundary conditions with immovable ends are considered for the present
work, namely clamped–clamped, simply supported–simply supported and clamped–simply supported.
Four different FGM beams, namely Stainless Steel–Silicon Nitride, Stainless Steel–Zirconia, Stainless Steel–
Alumina and Titanium alloy–Zirconia, are considered for generation of results. Numerical results for non-
dimensional frequency parameters of undeformed beam are presented. The results are presented in non-
dimensional pressure-displacement plane for the static problem and in non-dimensional frequency-
displacement plane for the dynamic problem. Comparative frequency-displacement plots are presented
for different FGMs and also for different volume fraction indices.

© 2016, Karabuk University. Publishing services by Elsevier B.V.

1. Introduction

Functionally graded materials (FGMs) are inhomogeneous com-
posites that have smooth and continuous variation of material
properties in space. In most of the existing and potential future ap-
plications, FGM is considered mainly as a mixture of ceramic and
metal in varying proportion. With the strength and toughness of
metals, and the thermal and wear resistance of ceramics, FGM com-
ponents possess good qualities of both themetals and ceramics. This
makes it suitable for the FGM structures or components to be used
in high temperature environment. FGM components are found in
various applications, such as in aerospace, nuclear, automotive, civil,
biomechanical, optical, electronic, mechanical, chemical and ship-
building industries [1]. FGM components have applications in
astronautic structures, such as rocket launch-pad, space vehicles [2],
etc., because rocket launch-pad is subjected to tremendous thermal
and mechanical loading, whereas, space vehicles are subjected to
extreme thermal conditions. FGMs having excellent thermal andme-
chanical properties are suitable for such various astronautic

structures. It is to be mentioned that the present work deals with
FGM beams, which are often found in various structures in the fields
of aerospace, mechanical, automotive, civil engineering, etc.

FGM beams are mainly designed for applications under thermal
environment. But its behavior under mechanical loadings at ambient
condition is also important in order to ascertain its performance
when thermal loadings are absent. Knowledge of free vibration be-
havior of pre-stressed FGM beams under mechanical loading is
important from design point of view. It is known that the ampli-
tude of forced vibration becomes excessively large when the
excitation frequency falls in the vicinity of the natural frequency
of vibration of a loaded beam. To avoid such undesirable vibration
levels, the natural frequency of vibration of the loaded beam must
be known to the designer. Hence the present work is meant to in-
vestigate such dynamic behavior of FGM beams. The literature review
of some related works by other notable researchers are given in the
next few paragraphs.

Ke et al. [3] investigated the nonlinear vibration behavior of FGM
beams based on Euler–Bernoulli beam theory and von Kármán ge-
ometric nonlinearity. Fallah and Aghdam [4,5] presented large
amplitude free vibration analysis of FGM Euler–Bernoulli beams
resting on nonlinear elastic foundation subjected to both mechan-
ical and thermal loadings. Fu et al. [6] carried out nonlinear free
vibration analysis of piezoelectric FGM beams under thermal
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environment employing Euler–Bernoulli beam theory. Lai et al. [7]
obtained the accurate analytical solutions for large amplitude vi-
bration of thin FGM beams using Euler–Bernoulli beam theory. Based
on Euler–Bernoulli beam theory, Yaghoobi and Torabi [8] studied
the nonlinear vibration behavior of geometrically imperfect FGM
beams resting on nonlinear elastic foundation subjected to axial force.
Hemmatnezhad et al. [9] studied the large-amplitude oscillations
of FGM Timoshenko beams using finite element formulation. Rahimi
et al. [10] performed free vibration analysis of FGM Timoshenko
beams in the vicinity of a buckled equilibrium configuration.

Kapuria et al. [11] presented a theoretical finite element model
for vibration analysis of layered FGM beams with experimental val-
idation. Aydogdu and Taskin [12] studied free vibration behavior
of simply supported FGM beams using different beam theories. Free
vibration characteristics of simply supported FGM beams were in-
vestigated by Şimşek and Kocatürk [13] using Lagrange’s equations
under the assumptions of the Euler–Bernoulli beam theory. Thermo-
mechanical vibration analysis of FGM beams resting on variable
elastic foundation was carried out by Pradhan andMurmu [14]. Free
vibration analysis of FGM beams based on a different first order shear
deformation theory was carried out by Sina et al. [15]. Fundamen-
tal frequency analysis of FGM beams was carried out by Şimşek [16]
using different higher-order beam theories. Giunta et al. [17] ad-
dressed free vibration behavior of functionally graded beams via
several axiomatic refined theories. Using finite element method,
Alshorbagy et al. [18] presented the free vibration characteristics
of FGM beams with material graduation axially or transversally
through the thickness based on the power law.

Free vibration characteristics of layered functionally graded beams
were studied by Wattanasakulpong et al. [19] using Ritz method.
Thai and Vo [20] investigated free vibration behavior of FGM beams
based on various higher-order beam theories. Free vibration anal-
ysis of FGM beams for different boundary conditions was carried
out by Pradhan and Chakraverty [21] using Euler–Bernoulli and
Timoshenko beam theories. Free vibration behavior of axially loaded
rectangular FGM beamswas investigated by Nguyen et al. [22] based
on the first-order shear deformation beam theory. The dynamic stiff-
ness method was used by Su et al. [23] to investigate the free
vibration behavior of FGM beams. Wattanasakulpong and Mao [24]
investigated the dynamic response of Timoshenko FGM beams sup-
ported by various classical and non-classical boundary conditions.

Esfahani et al. [25] studied free vibration behavior of a ther-
mally pre/post buckled FGMbeam resting over a nonlinear hardening
elastic foundation. Free vibration behavior of a thermo-electrically
post-buckled rectangular FGM piezoelectric beams was studied by
Komijani et al. [26]. Thermal buckling analysis of FGM beams with
temperature-dependent material properties was carried out by Kiani
and Eslami [27,28]. Esfahani et al. [29] carried out non-linear thermal
stability analysis of temperature-dependent FGM beams resting on
non-linear hardening elastic foundation. Thermo-electrical stabil-
ity analysis of piezoelectric FGM beams had been carried out by Kiani
et al. [30], Kargani et al. [31] and Komijani et al. [32], whereas thermal
stability analysis of piezoelectric FGM beamswas carried out by Kiani
et al. [33].

The present work is based on Timoshenko beam theory, which
considers uniform distribution of transverse shear stress across the
beam thickness. It is worthwhile to mention some of the research
works using higher shear deformation theories (HSDT) developed
in the recent years for analysis of plate and beam structures. Tounsi
et al. [34] carried out thermo-elastic bending analysis of function-
ally graded sandwich plates using a refined trigonometric shear
deformation theory (RTSDT). The thermo-mechanical bending be-
havior of FGM plates resting on Winkler–Pasternak elastic
foundations was studied by Bouderba et al. [35] using RTSDT. Buck-
ling and free vibration behaviors of exponentially graded sandwich
plates were investigated by Ait Amar et al. [36] using simple refined

shear deformation theory. Static and dynamic analyses of FGM and
sandwich plates had been carried out by Hebali et al. [37] and Mahi
et al. [38] using new hyperbolic shear deformation theory. Using
higher-order shear deformation theories, wave propagation anal-
ysis in porous FGM plates, and bending and vibration analysis of
FGM plates, were carried out by Ait Yahia et al. [39] and Belabed
et al. [40] respectively. Recently, Bourada et al. [41] developed a
refined trigonometric higher-order beam theory to investigate static
and dynamic behaviors of FGM beams. In that work, the authors
have included stretching deformation effect along the thickness di-
rection and eliminated the need of shear correction factor. Bousahla
et al. [42] presented a new trigonometric higher-order theory for
the static analysis of FGM plates employing the physical neutral
surface concept. Hamidi et al. [43] presented a sinusoidal plate theory
for the thermo-mechanical bending analysis of functionally graded
sandwich plates. Bessaim et al. [44] developed a new higher-
order shear and normal deformation theory for investigating the
bending and free vibration behavior of sandwich plates with func-
tionally graded isotropic face sheets. Thermo-elastic bending analysis
of functionally graded sandwich plates was carried out by Bouchafa
et al. [45] using a refined hyperbolic shear deformation theory.
Houari et al. [46], using a new higher-order shear and normal de-
formation theory, simulated the thermo-elastic bending of FGM
sandwich plates.

From the literature review presented, it is clear that an exhaus-
tive study on free vibration behavior of transversely loaded beam
for different FGM materials and different classical boundary con-
ditions is scarce. Most of the published works are involved with
either free vibration behavior of undeformed FGM beam or large
amplitude free vibration behavior of FGM beam. Hence, in the
present work, free vibration frequencies of FGM beam are com-
puted for different pre-stressed configurations under uniform
transverse pressure. Pre-stressed configurations are obtained through
a geometrically non-linear static analysis. The linear vibration
frequency of the pre-stressed beam, hereafter termed as loaded
natural frequency, is then computed through an eigenvalue problem
that includes the effect of pre-stressing using the displacement
fields of the static problem. The effect of geometric non-linearity
is included using von Kármán non-linear strain–displacement
relationship. Timoshenko beam theory is used to consider the
effects of shear deformation for the static problem and of rotary
inertia for the subsequent dynamic problem. Suitable energy-
based variational principles are used to derive the governing
equations for both parts of the problem. Four different functional-
ly gradedmaterials and three different immovable classical boundary
conditions are considered to show the pre-stressed dynamic be-
havior of beams.

2. Mathematical formulation

The present work aims at finding loaded natural frequency of
pre-stressed FGM Timoshenko beam. A uniform rectangular beam
with length L, height h and width b is considered. A beam with
symbolic dimensions is shown in Fig. 1, where, x, y and z denote
the coordinate axes along the length, width and thickness direc-
tions respectively. As mentioned earlier, two distinct but interrelated
problems are formulated and solved to obtain the desired solu-
tion. The purpose of the first one, the static problem, is to obtain
the pre-stressed configuration of the beam under the application
of uniform transverse pressure. And the second problem, named
as the dynamic problem, is utilized to obtain the loaded natural
frequency of the deformed beam. It must be mentioned that the
static configurations for different loadings are obtained through a
geometrically non-linear analysis to address the large deflection
effect.
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2.1. Modeling of FGM beam

The present work considers continuous variation of graded ma-
terial properties across the beam thickness. A continuous variation
of volume fraction of ceramic (Vc ) andmetal (Vm) constituents across
the thickness is assumed in accordance with the power-law given
by Vc

z
h

k= +( )12 and V Vm c= −1 respectively [47]. Here, k k0 ≤ ≤ ∞( ) is
the volume fraction index. Hence the effective material property
Pf of any FGM layer is determined using the Voigt model, which
is given by P P V P Vf c c m m= + , where Pc and Pm are the material
properties of the ceramic and metal constituents respectively.
So any effective material property at any layer z is given by
P z P P Pf m c m

z
h

k( ) = + −( ) +( )12 . For the present FGM beam model, the
top layer ( z h= + 2) is purely ceramic and the bottom layer ( z h= − 2)
is purely metal. It is to be mentioned that the subscripts m and c
refer to the metal and ceramic constituents respectively.

Anymaterial propertyof the individual constituent is temperature-
dependent and such temperature dependence is considered using
the relationship P P P P T P T P T P Tc mor, = + + + +[ ]−

−
0 1

1
1 2

2
3

31 , where T is
the temperature in K and P0, P−1, P1, P2 and P3 are the coefficients
of temperature. The relevant effective material properties for the
present problem are elastic modulus E f , shear modulus G f , Pois-
son’s ratio υ f and density ρ f . The temperature coefficients [47] of
the material properties for the ceramic or metal constituents con-
sidered are given in Table 1. For the present problem, the beam is
assumed to be at ambient temperature T0 300= K , which is also con-
sidered to be the temperature atwhich thermal stress is zero. Hence
all the required material properties are calculated at T0.

2.2. Static problem

The governing equation of the static problem is obtained using
the minimum potential energy principle [48] given by,

δ U V+( ) = 0 (1)

where U is the strain energy developed due to external loadings,
V is the potential energy of the external loadings, and δ is the varia-
tional operator. The strain energy U consists of two parts, i.e.,
U U Uax sh= + , where Uax and Ush are the strain energies due to
axial strain and shear strain respectively. Using the proportional-
ity of stress and strain (i.e., linear elastic material), and using suitable
strain–displacement relationships, the strain energies can be ex-
pressed in terms of the displacement fields. The three displacement
fields considered for the present problem are the following: u, the
in-plane displacement field, w , the transverse displacement field,
and ψ , the rotational field of beam cross section due to bending.
Here u, w and ψ are defined at the mid-plane of the beam and
are functions of the axial coordinate x.

The expressions of axial strain and shear strain are given by,

ε ψ
ax

w
x

u
x

z
x
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and

ε ψsh
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x

= −⎛
⎝⎜

⎞
⎠⎟

1
2

d
d

(3)

It is to be mentioned that the first term of Eq. (2) is von Kármán
type non-linear strain–displacement relationship. Hence the strain
energies Uax and Ush are given by,
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and
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The stiffness coefficients used in Eqs. (4) and (5) are given
below:

A B C b E z z zax ax ax f
h

h

, , , ,( ) = ( )
−

+

∫ 1 2

2

2

d and A b G zsh f
h

h

=
−

+

∫ d

2

2

. In Eq. (5), ksh

is the shear correction factor, which is taken to be 5/6 for rectan-
gular cross section. It is to be mentioned that the shear modulus

G f is given by, G f
E f

f
= +( )2 1 υ .

Fig. 1. Beam with dimensions and coordinate axes.

Table 1
Temperature coefficients of FGM constituents.

Constituent material Property P0 P−1 P1 P2 P3

SUS304 E (Pa) 201.04 × 109 0 3.079 × 10−4 −6.534 × 10−7 0
υ 0.3262 0 −2.002 × 10−4 3.797 × 10−7 0
ρ (kg m−3) 8166 0 0 0 0

Ti-6Al-4V E (Pa) 122.56 × 109 0 −4.586 × 10−4 0 0
υ 0.2884 0 1.121 × 10−4 0 0
ρ (kg m−3) 4429 0 0 0 0

Si3N4 E (Pa) 348.43 × 109 0 −3.070 × 10−4 2.160 × 10−7 −8.946 × 10−11
υ 0.2400 0 0 0 0
ρ (kg m−3) 2370 0 0 0 0

ZrO2 E (Pa) 244.27 × 109 0 −1.371 × 10−3 1.214 × 10−6 −3.681 × 10−10
υ 0.2882 0 1.133 × 10−4 0 0
ρ (kg m−3) 3000 0 0 0 0

Al2O3 E (Pa) 349.55 × 109 0 −3.853 × 10−4 4.027 × 10-7 −1.673 × 10−10
υ 0.2600 0 0 0 0
ρ (kg m−3) 3750 0 0 0 0
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The potential energy of the applied uniform transverse pres-
sure p is given by,

V pw x
L

= −∫ d
0

(6)

where p is defined as the force per unit length of the beam.
Following Ritz method, the displacement fields are approxi-

mated as finite linear combinations of admissible functions and
unknown coefficients given as,

w d u d di i
i

nw

nw i i
i

nu

nw nu i i
i

nsi

= = =
=

+
=

+ +
=

∑ ∑ ∑φ α ψ β
1 1 1

, , (7)

Here, φi, α i and βi are set of orthogonal admissible functions
for the displacement fieldsw , u and ψ respectively; and nw , nuand
nsi are the number of functions used to approximate w , u and ψ
respectively. It is to be noted that di is the set of unknown coeffi-
cients, which are to be determined from the governing equations.
The admissible functions satisfy the boundary conditions of the
beam. The lowest order functions for each of the displacement fields
are selected suitably and the corresponding higher-order func-
tions are developed numerically following Gram–Schmidt
orthogonalization scheme. Three boundary conditions with im-
movable ends are considered for the present work. And these are
clamped–clamped (CC), simply supported–simply supported (SS)
and clamped–simply supported (CS). The selected lowest order ad-
missible functions for each of the displacement fields are given in
Table 2 for all the three boundary conditions considered.

Using the expression of various potential energies, given by Eqs.
(4), (5) and (6) into Eq. (1) and using the approximate displace-
ment fields, given by Eq. (7), the governing algebraic equations are
obtained in the form given below:

K d fij j i[ ]{ } = { } (8)

where K ij[ ] and fi{ } are the stiffness matrix and load vector, re-
spectively, each of dimension nu nw nsi+ + . The elements of K ij[ ] and
fi{ } are given in the Appendix. It can be seen that the set of gov-
erning equations is non-linear in nature as the stiffness matrix is a
function of the unknown coefficients. To solve this set of non-
linear equations, a multi-dimensional secant method known as
Broyden’s method [49,50] is used. The solution of Eq. (8) gives the
statically deflected configuration of a pre-stressed beam. The next
stage of the problem is now to determine the loaded natural fre-
quency of the pre-stressed beam and its mathematical formulation
is discussed in the next section.

2.3. Dynamic problem

The governing equation of the dynamic problem is derived using
Hamilton’s principle [48] given by,

δ T U V tk

t

t

− −( )
⎛

⎝⎜
⎞

⎠⎟
=∫ d

1

2

0 (9)

where Tk is the kinetic energy of the vibrating beam and t is the
time. The present work is a free vibration problem of a pre-
stressed beam, in which the pre-stressed configuration is already
obtained in the previous step of static problem. Hence the poten-
tial energy V of the external loadings is zero in this case. Taking
ρ f as the effective density of any FGM layer, the expression of Tk

is as follows:

T D
w
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d
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d
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d
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d
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(10)

where the inertia coefficients D and F are given by

D F b z zf
h

h

, ,( ) = ( )
−

+

∫ ρ 1 2

2

2

d . The expression of U remains the same as

given for the static problem.
The approximate dynamic displacement fields, which are

assumed to be separable in space and time, are given by,

w x t d x e

u x t d x e

x t

i i
t

i
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( ) = ( )
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∑
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ω

ω

i
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1

)) = ( )+ +
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∑d x enw nu i i

t

i

nsi

β ωi

1

,

(11)

where i = −1 and di are a new set of unknown parameters for the
dynamic problem. The complete set of the space part of the dynamic
displacements, i.e., φi, α i and βi , is the same as taken for the static
problem. In Eq. (11), ω denotes the natural frequency of vibration
of the beam.

Using the expressions of strain energy (Eqs. (4) and (5)), kinetic
energy (Eq. (10)) and dynamic displacements (Eq. (11)), the gov-
erning equation is obtained as follows:

K d M dij j ij j[ ]{ }− [ ]{ } =ω2 0 (12)

where K ij[ ] and Mij[ ] are the stiffness matrix and mass matrix re-
spectively. The elements of K ij[ ] are the same as given in the
Appendix and the elements of Mij[ ] are given below:

M

M

ij

ij

dx[ ] =

[ ]

=
=

= + +
= + +

∫i nw
j nw

i j

L

i nw nw nu
j nw nw nu

D1
1

0

1
1

,
,

,
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,φ φ

==
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∫D i nw j nw

L

i nw nu nw nu nsi
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α α dx

ij

0

1
1

,

,
,

M
++

− − − −= ∫nsi
i nw nu j nw nu

L

F β β dx
0

.

(13)

The off-diagonal elements of Mij[ ] are zero. Eq. (12) is an
eigenvalue problem, in which the square root of the eigenvalues
gives the natural frequency of vibration of various vibration modes
and d j{ } is the corresponding eigen vectors used to obtain the
vibration mode shapes. It must be noted that the stiffness matrix
given in Eq. (12) is non-linear in nature. But as the dynamic
problem is to be formulated at the pre-stressed beam configura-
tion, the non-linear terms of the stiffness matrix are updated with
the pre-stressed beam displacement fields obtained from the
static problem [51]. Hence the solution of Eq. (12) gives the
linear loaded natural frequency of vibration of the pre-stressed
beam.

Table 2
List of lowest order admissible functions for the displacement fields.

Displacement field Boundary Conditions Function

w CC w wx x L= == =0 0 0, φ1 1= ( ) − ( ){ }x L x L

SS
CS

u CC u ux x L= == =0 0 0, α1 1= ( ) − ( ){ }x L x L

SS
CS

ψ CC ψ ψx x L= == =0 0 0, β π1 = ( )sin x L

SS ψ ψx x L= =≠ ≠0 0 0, β π1 = ( )cos x L

CS ψ ψx x L= == ≠0 0 0, β π1 2= ( )( )sin x L
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3. Results and discussion

The present work is carried out to determine the natural fre-
quency of the first mode of vibration of pre-stressed FGM beams.
It is to be mentioned that the frequency determined is of small am-
plitude vibration of pre-stressed beam. So the dynamic behavior is
presented graphically in non-dimensional λ −w * plane, where λ
is the non-dimensional loaded natural frequency of first vibration
mode and w * is the normalized maximum transverse deflection of
pre-stressed beam. Hence such plots present the dynamic behav-
ior in terms of loaded natural frequency of vibration as a function
of maximum beam deflection. On the other hand, the static equi-
librium path of the beam is presented graphically in p w− * plane,
where p is the non-dimensional uniform transverse pressure. The

non-dimensional parameters are defined as: p p
L
h

E bm= ⎛
⎝⎜

⎞
⎠⎟ ( )
4

,

w w h* = , and λ ω ρ= ( ) ( )L A E Im m
2 , where Em is the elastic

modulus of metal constituent, w is the maximum transverse de-
flection, ρm is the density of metal constituent, A bh=( ) is the cross
sectional area, and I bh=( )3 12 is the area moment of inertia of the
beam cross section about the centroidal axis. The results are gen-
erated for b = 0 02. m and h = 0 01. m.

Four different functionally graded materials are considered for
the present work, namely Stainless Steel (SUS304)–Silicon Nitride
(Si3N4), Stainless Steel–Zirconia (ZrO2), Stainless Steel–Alumina (Al2O3)
and Titanium alloy (Ti-6Al-4V)–Zirconia, and hereafter these are
termed as FGM 1, FGM 2, FGM 3 and FGM 4 respectively. Using the
temperature coefficients for the constituents of these FGM com-
positions given in Table 1, the various material properties are
calculated at T0 300= K . These are presented in Table 3. The static
and dynamic behaviors of these FGM beams are presented for three
boundary conditions, i.e., CC, SS and CS.

3.1. Validation study

The non-dimensional frequency parameter λ of undeformed
FGM beam is compared with the results of Ref. [9] for different
volume fraction indices and also for different boundary condi-
tions. The comparison is made for Steel–Alumina FGM beam for a
length-thickness ratio L/h = 20. Thematerial properties used for com-
parison purpose are as follows: Em = 210GPa , Ec = 390GPa ,
νm = 0 29. , νc = 0 22. , ρm = −7800 3kgm , and ρc = −3960 3kgm . The
comparison is presented in Table 4. The comparison shows good
agreement of the present results with Ref. [9]. This validates the free
vibration dynamic behavior of undeformed FGM beam analyzed by
the present method.

The validation plots of pre-stressed Stainless Steel–Zirconia (FGM
2) beam are presented in Fig. 2(a–b) for k = 2.0. Fig. 2(a) presents
the static equilibrium path in p w− * plane, whereas Fig. 2(b) pres-
ents the pre-stressed free vibration behavior in λ −w * plane. The
validation is carried out with finite element package ANSYS (version
10.0). The comparison plots are presented for CC, SS and CS

Table 3
Material properties of the FGM constituents at 300 K.

Material property SUS304 Ti-6Al-4V Si3N4 ZrO2 Al2O3

E (GPa) 207.79 105.70 322.27 168.06 320.24
υ 0.318 0.298 0.240 0.298 0.260
ρ (kg m−3) 8166 4429 2370 3000 3750

Table 4
Comparison of non-dimensional frequency parameters.

Boundary condition Non-dimensional frequency parameter, λ

k = 0 k = 0.1 k = 0.2 k = 0.5 k = 1 k = 2 k = 5

CC Present 6.4864 6.2664 6.0896 5.7504 5.4617 5.2340 5.0333
Ref. [9]. 6.4971 6.2737 6.1001 5.7575 5.4713 5.2413 5.0390

SS Present 4.3311 4.1980 4.0653 3.8402 3.6652 3.5203 3.3863
Ref. [9]. 4.3371 4.1889 4.0753 3.8554 3.6742 3.5244 3.3803

CS Present 5.4099 5.2240 5.0820 4.8056 4.5385 4.3759 4.2091
Ref. [9]. 5.4086 5.2228 5.0786 4.7951 4.5590 4.3688 4.1990

Fig. 2. Validation plots of pre-stressed beam: (a) static behavior and (b) free vibration behavior.
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boundary conditions. The comparative plots in Fig. 2 show very good
agreement of the present method with ANSYS for both the static
and dynamic behaviors. The finite element model in ANSYS is
created using BEAM 188 element, and the results are generated
with 30 elements. It must be noted that a layered variation of
material properties is used to create the finite element model in
ANSYS.

3.2. Natural frequency of vibration of undeformed FGM beam

The non-dimensional frequency parameter λ of undeformed CC
beam for all the four functionally graded materials considered is
presented in Table 5 for different volume fraction indices. The list
presented in Table 5 includes results for L/h = 10 and L/h = 25. Similar
lists for SS and CS FGM beams are presented in Tables 6 and 7 re-

Table 5
List of non-dimensional frequency parameters λ for CC beam.

k L/h = 10 L/h = 25

FGM 1 FGM 2 FGM 3 FGM 4 FGM 1 FGM 2 FGM 3 FGM 4

0.0 48.595 31.128 38.477 32.142 51.212 32.872 40.537 33.943
0.1 43.041 29.308 35.828 30.774 45.334 30.915 37.723 32.470
0.2 39.411 28.051 33.864 29.715 41.448 29.597 35.751 31.378
0.5 33.475 25.815 30.290 27.617 35.312 27.260 31.870 29.106
1.0 29.326 24.070 27.502 25.862 30.803 25.413 28.969 27.268
2.0 26.288 22.657 25.320 24.425 27.742 23.896 26.728 25.802
5.0 23.853 21.563 23.445 23.102 25.246 22.712 24.771 24.430
10.0 22.697 21.198 22.499 22.358 24.001 22.348 23.799 23.581
20.0 21.953 21.052 21.847 21.802 23.204 22.190 23.099 23.055
50.0 21.390 20.984 21.350 21.350 22.579 22.135 22.552 22.547

Fig. 3. Non-dimensional pressure-deflection behavior for different volume fraction indices of CC beams: (a) FGM 1, (b) FGM 2, (c) FGM 3 and (d) FGM 4.
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spectively. As seen from these tables, the non-dimensional frequency
parameter λ decreases with increase in values of k, and this is true
for all the four FGMs considered. Only exception to this occurs for
FGM 2 with L/h = 25, where λ increases from k = 20 to k = 50. It is

to be mentioned that higher k values indicate more metal content
in the beam. It is also seen that the non-dimensional frequency pa-
rameter increases with L/h ratio but the change is very little. The
effect of L/h ratio on non-dimensional frequency of vibration remains

Fig. 4. Non-dimensional frequency-deflection behavior of different CC FGM beams: (a) k = 0.0, (b) k = 0.2, (c) k = 0.5, (d) k = 5.0, (e) k = 20.0 and (f) k = 50.0.
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insignificant for pre-stressed beam also. Hence the results, as pre-
sented in the following section, for pre-stressed FGM beams are
generated for L/h = 25.

3.3. Effect of material and volume fraction index on static and
dynamic behavior

The static deflection behavior of CC beam in p w− * plane is pre-
sented in Fig. 3(a–d) for FGM 1, FGM 2, FGM 3 and FGM 4

respectively. In each of these figures, the static equilibrium path is
presented for a set of volume fraction indices, i.e., for k = 0.0, 0.1,
0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0. The plots are useful in finding
the non-dimensional pressure value corresponding to a static de-
flection level, at which the loaded natural frequency is found out.
As seen from Fig. 3, the beam exhibits non-linear hardening type
load-deflection behavior. This is due to stiffening effect induced in
the beam as a result of generation of tensile membrane forces due
to immovable ends. With increase in k, i.e., the increase in metal

Table 6
List of non-dimensional frequency parameters λ for SS beam.

k L/h = 10 L/h = 25

FGM 1 FGM 2 FGM 3 FGM 4 FGM 1 FGM 2 FGM 3 FGM 4

0.0 22.457 14.410 17.789 14.880 22.393 14.596 17.804 15.072
0.1 19.873 13.573 16.532 14.234 20.200 13.920 16.718 14.514
0.2 18.208 12.998 15.637 13.759 18.303 13.270 15.796 14.043
0.5 15.522 11.969 14.046 12.829 15.692 12.186 14.249 12.915
1.0 13.635 11.159 12.794 12.048 13.772 11.279 12.989 12.230
2.0 12.243 10.500 11.803 11.399 12.250 10.472 12.031 11.613
5.0 11.098 9.999 10.909 10.746 11.234 10.140 11.133 10.924
10.0 10.566 9.819 10.461 10.401 10.561 9.986 10.586 10.497
20.0 10.168 9.747 10.147 10.119 10.258 9.811 10.310 10.286
50.0 9.934 9.704 9.886 9.889 10.042 9.873 10.152 9.953

Fig. 5. Non-dimensional frequency-deflection behavior of CC beams for different volume fraction indices: (a) FGM 1, (b) FGM 2, (c) FGM 3 and (d) FGM 4.
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content, FGM 1, FGM 3 and FGM 4 beam shows decreased stiff-
ness levels as the elastic modulus of ceramic constituent is greater
than its metal counterpart, as can be seen from Table 3. The trend
is completely reverse for FGM 2 beam as the elastic modulus of its
ceramic constituent is lesser than that of its metal part.

The loaded natural frequency versus maximum transverse de-
flection plots in non-dimensional λ −w * plane is presented in
Fig. 4(a–f) for k = 0.0, 0.2, 0.5, 5.0, 20.0 and 50.0, respectively, for

CC FGM beam. In each of the figures, free vibration behavior is shown
for FGM 1, FGM 2, FGM 3 and FGM 4 beams. In accordance with
the static behavior, the loaded natural frequency is shown to be in-
creasing with increased deflection level as a result of enhanced
stiffening effect. With regard to the comparative behavior among
different FGMs considered, FGM 1 shows highest frequency of vi-
bration with FGM 3, FGM 4 and FGM 2 coming next in order of
exhibiting decreasing vibration frequency at any common

Table 7
List of non-dimensional frequency parameters λ for CS beam.

k L/h = 10 L/h = 25

FGM 1 FGM 2 FGM 3 FGM 4 FGM 1 FGM 2 FGM 3 FGM 4

0.0 34.326 22.013 27.203 22.730 35.330 22.785 28.021 23.527
0.1 30.411 20.740 25.306 21.783 31.326 21.558 25.969 22.512
0.2 27.831 19.853 23.940 21.017 29.007 20.403 24.488 21.737
0.5 23.681 18.276 21.416 19.527 24.481 18.867 22.181 19.990
1.0 20.728 17.036 19.472 18.310 21.457 17.507 20.152 18.861
2.0 18.622 16.034 17.934 17.298 19.166 16.534 18.662 18.033
5.0 16.889 15.252 16.615 19.373 17.299 15.773 17.022 17.098
10.0 16.094 14.998 15.934 15.845 16.395 15.463 16.504 16.321
20.0 15.553 14.899 15.482 15.444 19.120 15.330 16.050 16.026
50.0 15.146 14.842 15.113 15.112 15.649 15.321 15.572 15.662

Fig. 6. Non-dimensional pressure-deflection behavior for different volume fraction indices of SS beam: (a) FGM 1, (b) FGM 2, (c) FGM 3 and (d) FGM 4.
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deflection levels. This is true irrespective of the values of the volume
fraction index. It is also seen that the relative differences in frequency-
deflection behavior of various FGMs diminish with increase in k
values. At higher k values, the dynamic behavior becomes almost
identical for all the FGMs considered.

It is also important to study the dynamic behavior of pre-
stressed FGM beam for different volume fraction indices. Fig. 5(a–d)
shows such non-dimensional frequency-deflection plots for FGM 1.
FGM 2, FGM 3 and FGM 4, respectively, each showed comparative
behavior for k = 0.0, 0.1, 1.0, 10.0, 50.0. It can be seen that the loaded

Fig. 7. Non-dimensional frequency-deflection behavior of different SS FGM beams: (a) k = 0.0, (b) k = 0.2, (c) k = 0.5, (d) k = 5.0, (e) k = 20.0 and (f) k = 50.0.
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natural frequency decreases with increase in k values for any par-
ticular deflection level. This is true for all the FGMs considered. The
explanation for the variation of loaded natural frequency with k
cannot be given by seeing only the static deflection behavior as
shown in Fig. 3. Because in predicting the dynamic behavior, both
the relative density values and the relative elastic modulus values
of the constituents are to be considered.

The non-dimensional static deflection behavior for different
volume fraction indices is presented in Fig. 6(a–d) for SS beams each
for different functionally gradedmaterials. Also the non-dimensional
frequency-deflection plots of SS beams are shown in Fig. 7(a–f) for
different k values and in Fig. 8(a–d) for different FGMs. As for CS
beams, static deflection behavior is presented in Fig. 9(a–d), whereas
the dynamic behavior in terms of frequency-deflection plots is shown
in Fig. 10(a–f) for different k values and in Fig. 11(a–d) for differ-
ent FGMs. For both these boundary conditions, the nature of static
and dynamic behavior is similar in nature as described for CC beams.
The relative behavior for these three different boundary condi-
tions, although not shown in a single plot, differs obviously due to
the stiffness effects contributed from the support conditions. Because
it is known that CC beam exhibits the highest transverse stiffness,
with CS and SS beam being next in order of decreasing stiffness
levels.

4. Conclusions

An energy based mathematical model is presented to study the
free vibration behavior of pre-stressed FGM Timoshenko beams. The
entire work is carried out in solving two different but interrelated
problems, namely the static problem and the dynamic problem. The
static problem is used to determine the pre-stressed configura-
tion of FGM beam under uniform transverse pressure. And the
dynamic problem, formulated as an eigenvalue problem, is used to
determine the loaded natural frequency of the pre-stressed beam.
Four different FGMs, namely Stainless Steel–Silicon Nitride, Stain-
less Steel–Zirconia, Stainless Steel–Alumina and Titanium alloy–
Zirconia, are used to generate results for different volume fraction
indices. Numerical results for non-dimensional frequency param-
eters of undeformed beam are presented for different functionally
graded materials with CC, SS and CS boundary conditions. Effects
of material as well as the volume fraction index on non-dimensional
frequency-deflection behavior of pre-stressed beams are studied.
The results are presented for three boundary conditions, i.e., CC, SS
and CS. Static equilibrium paths in non-dimensional plane are also
presented in order to relate the applied pressure with loaded natural
frequency through the static deflection level. The results can serve
as benchmarks for further study in this field.

Fig. 8. Non-dimensional frequency-deflection behavior of SS beams for different volume fraction indices: (a) FGM 1, (b) FGM 2, (c) FGM 3 and (d) FGM 4.
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Fig. 9. Non-dimensional pressure-deflection behavior for different volume fraction indices of CS beam: (a) FGM 1, (b) FGM 2, (c) FGM 3 and (d) FGM 4.

1014 A. Paul, D. Das / Engineering Science and Technology, an International Journal 19 (2016) 1003–1017



kij
d

d
[ ] == + + + +

= + + + +

− −
i nw nu nw nu nsi
j nw nu nw nu nsi

ax
j nw nuC

x
1
1
,
,

β dd
d

d d
β β βi nw nu

L

sh sh j nw nu i nw nu

L

x
x k A x− −

− − − −∫ ∫+
0 0

.

f f fi i id{ } = { } = { }= = + + = + + +∫i nw i

L

i nw nw nu i nw nu nw nup x1
0

1 10, , ,, ,φ ++ =nsi 0.

Fig. 10. Non-dimensional frequency-deflection behavior of different CS FGM beams: (a) k = 0.0, (b) k = 0.2, (c) k = 0.5, (d) k = 5.0, (e) k = 20.0 and (f) k = 50.0.

1015A. Paul, D. Das / Engineering Science and Technology, an International Journal 19 (2016) 1003–1017



References

[1] M. Zidi, A. Tounsi, M.S.A. Houari, E.A. Adda Bedia, O. Anwar Bég, Bending
analysis of FGM plates under hygro-thermo-mechanical loading using a
four variable refined plate theory, Aerosp. Sci. Technol. 34 (2014) 24–
34.

[2] M. Bennoun, M.S.A. Houari, A. Tounsi, A novel five variable refined plate theory
for vibration analysis of functionally graded sandwich plates, Mech. Adv. Mater.
Str. 23 (2016) 423–431.

[3] L.L. Ke, J. Yang, S. Kitipornchai, An analytical study on the nonlinear vibration
of functionally graded beams, Meccanica 45 (2010) 743–752.

[4] A. Fallah, M.M. Aghdam, Nonlinear free vibration and post-buckling analysis
of functionally graded beams on nonlinear elastic foundation, Eur. J. Mech. A
Solid. 30 (2011) 571–583.

[5] A. Fallah, M.M. Aghdam, Thermo-mechanical buckling and nonlinear free
vibration analysis of functionally graded beams on nonlinear elastic foundation,
Compos. Part B 43 (2012) 1523–1530.

[6] Y. Fu, J. Wang, Y. Mao, Nonlinear analysis of buckling, free vibration and dynamic
stability for the piezoelectric functionally graded beams in thermal environment,
Appl. Math. Model. 36 (2012) 4324–4340.

[7] S.K. Lai, J. Harrington, Y. Xiang, K.W. Chow, Accurate analytical perturbation
approach for large amplitude vibration of functionally graded beams, Int. J.
Nonlinear Mech. 47 (2012) 473–480.

[8] H. Yaghoobi, M. Torabi, Post-buckling and nonlinear free vibration analysis of
geometrically imperfect functionally graded beams resting on nonlinear elastic
foundation, Appl. Math. Model. 37 (2013) 8324–8340.

[9] M. Hemmatnezhad, R. Ansari, G.H. Rahimi, Large-amplitude free vibrations of
functionally graded beams bymeans of a finite element formulation, Appl. Math.
Model. 37 (2013) 8495–8504.

[10] G.H. Rahimi, M.S. Gazor, M. Hemmatnezhad, H. Toorani, On the postbuckling
and free vibrations of FG Timoshenko beams, Compos. Struct. 95 (2013)
247–253.

[11] S. Kapuria, M. Bhattacharyya, A.N. Kumar, Bending and free vibration response
of layered functionally graded beams: a theoretical model and its experimental
validation, Compos. Struct. 82 (2008) 390–402.

[12] M. Aydogdu, V. Taskin, Free vibration analysis of functionally graded beams
with simply supported edges, Mater. Des. 28 (2007) 1651–1656.

[13] M. Şimşek, T. Kocatürk, Free and forced vibration of a functionally graded beam
subjected to a concentrated moving harmonic load, Compos. Struct. 90 (2009)
465–473.

[14] S.C. Pradhan, T. Murmu, Thermo-mechanical vibration of FGM sandwich beam
under variable elastic foundations using differential quadraturemethod, J. Sound
Vib. 321 (2009) 342–362.

[15] S.A. Sina, H.M. Navazi, H. Haddadpour, An analytical method for free vibration
analysis of functionally graded beams, Mater. Des. 30 (2009) 741–747.

[16] M. Şimşek, Fundamental frequency analysis of functionally graded beams by
using different higher-order beam theories, Nucl. Eng. Des. 240 (2010) 697–705.

[17] G. Giunta, D. Crisafulli, S. Belouettar, E. Carrera, Hierarchical theories for the
free vibration analysis of functionally graded beams, Compos. Struct. 94 (2011)
68–74.

[18] A.E. Alshorbagy, M.A. Eltaher, F.F. Mahmoud, Free vibration characteristics of
a functionally graded beam by finite element method, Appl. Math. Model. 35
(2011) 412–425.

[19] N.Wattanasakulpong, B.G. Prusty, D.W. Kelly, M. Hoffman, Free vibration analysis
of layered functionally graded beams with experimental validation, Mater. Des.
36 (2012) 182–190.

[20] H.T. Thai, T.P. Vo, Bending and free vibration of functionally graded beams using
various higher-order shear deformation beam theories, Int. J. Mech. Sci. 62
(2012) 57–66.

Fig. 11. Non-dimensional frequency-deflection behavior of CS beams for different volume fraction indices: (a) FGM 1, (b) FGM 2, (c) FGM 3 and (d) FGM 4.

1016 A. Paul, D. Das / Engineering Science and Technology, an International Journal 19 (2016) 1003–1017

http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0010
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0010
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0010
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0010
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0015
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0015
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0015
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0020
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0020
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0025
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0025
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0025
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0030
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0030
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0030
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0035
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0035
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0035
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0040
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0040
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0040
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0045
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0045
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0045
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0050
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0050
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0050
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0055
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0055
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0055
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0060
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0060
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0060
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0065
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0065
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0070
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0070
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0070
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0075
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0075
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0075
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0080
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0080
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0085
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0085
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0090
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0090
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0090
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0095
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0095
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0095
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0100
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0100
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0100
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0105
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0105
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0105


[21] K.K. Pradhan, S. Chakraverty, Free vibration of Euler and Timoshenko functionally
graded beams by Rayleigh-Ritz method, Compos Part B 51 (2013) 175–
184.

[22] T.K. Nguyen, T.P. Vo, H.T. Thai, Static and free vibration of axially loaded
functionally graded beams based on the first-order shear deformation theory,
Compos Part B 55 (2013) 147–157.

[23] H. Su, J.R. Banerjee, C.W. Cheung, Dynamic stiffness formulation and free
vibration analysis of functionally graded beams, Compos. Struct. 106 (2013)
854–862.

[24] N. Wattanasakulpong, Q. Mao, Dynamic response of Timoshenko functionally
graded beams with classical and non-classical boundary conditions using
Chebyshev collocation method, Compos. Struct. 119 (2015) 346–354.

[25] S.E. Esfahani, Y. Kiani, M. Komijani, M.R. Eslami, Vibration of a temperature-
dependent thermally pre/postbuckled FGM beam over a nonlinear hardening
elastic foundation, J. Appl Mech. 81 (2014) 011004-1.

[26] M. Komijani, Y. Kiani, S.E. Esfahani, M.R. Eslami, Vibration of thermo-electrically
post-buckled rectangular functionally graded piezoelectric beams, Compos.
Struct. 98 (2013) 143–152.

[27] Y. Kiani, M.R. Eslami, Thermal buckling analysis of functionally graded material
beams, Int. J. Mech. Mater. Des. 6 (2010) 229–238.

[28] Y. Kiani, M.R. Eslami, Thermomechanical buckling of temperature-dependent
FGM beams, Lat. Am. J. Solids Str. 10 (2013) 223–246.

[29] S.E. Esfahani, Y. Kiani, M.R. Eslami, Non-linear thermal stability analysis of
temperature dependent FGM beams supported on non-linear hardening elastic
foundations, Int. J. Mech. Sci. 69 (2013) 10–20.

[30] Y. Kiani, M. Rezaei, S. Taheri, M.R. Eslami, Thermo-electrical buckling of
piezoelectric functionally graded material Timoshenko beams, Int. J. Mech.
Mater. Des. 7 (2011) 185–197.

[31] A. Kargani, Y. Kiani, M.R. Eslami, Exact solution for nonlinear stability of
piezoelectric FGM Timoshenko beams under thermo-electrical loads, J. Therm.
Stresses 36 (2013) 1056–1076.

[32] M. Komijani, Y. Kiani, M.R. Eslami, Non-linear thermoelectrical stability analysis
of functionally graded piezoelectric material beams, J. Intel. Mater. Syst. Str.
24 (2013) 399–410.

[33] Y. Kiani, S. Taheri, M.R. Eslami, Thermal buckling of piezoelectric functionally
graded material beams, J. Therm. Stresses 34 (2011) 835–850.

[34] A. Tounsi, M.S.A. Houari, S. Benyoucef, E.A. Adda Bedia, A refined trigonometric
shear deformation theory for thermoelastic bending of functionally graded
sandwich plates, Aerosp. Sci. Technol. 24 (2013) 209–220.

[35] B. Bouderba, M.S.A. Houari, A. Tounsi, Thermomechanical bending response of
FGM thick plates resting on Winkler–Pasternak elastic foundations, Steel
Compos. Str. 14 (2013) 85–104.

[36] M.M. Ait Amar, H.H. Abdelaziz, A. Tounsi, An efficient and simple refined theory
for buckling and free vibration of exponentially graded sandwich plates under
various boundary conditions, J. Sand. Str. Mater. 16 (2014) 293–318.

[37] H. Hebali, A. Tounsi, M.S.A. Houari, A. Bessaim, E.A. Adda Bedia, A new quasi-3D
hyperbolic shear deformation theory for the static and free vibration analysis
of functionally graded plates, J. Eng. Mech. 140 (2014) 374–383.

[38] A. Mahi, E.A. Adda Bedia, A. Tounsi, A new hyperbolic shear deformation theory
for bending and free vibration analysis of isotropic, functionally graded,
sandwich and laminated composite plates, Appl. Math. Model. 39 (2015)
2489–2508.

[39] S. Ait Yahia, H. Ait Atmane, M.S.A. Houari, A. Tounsi, Wave propagation in
functionally graded plates with porosities using various higher-order shear
deformation plate theories, Str. Eng. Mech. 53 (2015) 1143–1165.

[40] Z. Belabed, M.S.A. Houari, A. Tounsi, S.R. Mahmoud, B.O. Anwar, An efficient
and simple higher order shear and normal deformation theory for functionally
graded material (FGM) plates, Compos. Part B 60 (2014) 274–283.

[41] M. Bourada, A. Kaci, M.S.A. Houari, A. Tounsi, A new simple shear and normal
deformations theory for functionally graded beams, Steel Compos. Str. 18 (2015)
409–423.

[42] A.A. Bousahla, M.S.A. Houari, A. Tounsi, E.A. Adda Bedia, A novel higher order
shear and normal deformation theory based on neutral surface position for
bending analysis of advanced composite plates, Int. J. Comput. Meth. 11 (2014)
1350082.

[43] A. Hamidi, M.S.A. Houari, S.R. Mahmoud, A. Tounsi, A sinusoidal plate theory
with 5-unknowns and stretching effect for thermomechanical bending of
functionally graded sandwich plates, Steel Compos. Str. 18 (2015) 235–253.

[44] A. Bessaim, M.S.A. Houari, A. Tounsi, S.R. Mahmoud, E.A. Adda Bedia, A new
higher-order shear and normal deformation theory for the static and free
vibration analysis of sandwich plates with functionally graded isotropic face
sheets, J. Sand. Str. Mater. 15 (2013) 671–703.

[45] A. Bouchafa, B.M. Bachir, M.S.A. Houari, A. Tounsi, Thermal stresses and
deflections of functionally graded sandwich plates using a new refined
hyperbolic shear deformation theory, Steel Compos. Str. 18 (2015) 1493–1515.

[46] M.S.A. Houari, A. Tounsi, O. Anwar Bég, Thermoelastic bending analysis of
functionally graded sandwich plates using a new higher order shear and normal
deformation theory, Int. J. Mech. Sci. 76 (2013) 467–479.

[47] H.S. Shen, Functionally GradedMaterials Nonlinear Analysis of Plates and Shells,
CRC Press, USA, 2009.

[48] I.H. Shames, C.L. Dym, Energy and Finite Element Methods in Structural
Mechanics, New Age International Publishers, Delhi, 2009.

[49] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in
Fortran 77: The Art of Scientific Computing, Cambridge University Press, New
York, NY, 1992.

[50] D. Das, P. Sahoo, K. Saha, A numerical analysis of large amplitude forced beam
vibration under different boundary conditions and excitation patterns, J. Vib.
Control 18 (2011) 1900–1915.

[51] D. Das, P. Sahoo, K. Saha, Large-amplitude dynamic analysis of simply supported
skew plates by a variational method, J. Sound Vib. 313 (2008) 246–267.

1017A. Paul, D. Das / Engineering Science and Technology, an International Journal 19 (2016) 1003–1017

http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0110
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0110
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0110
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0115
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0115
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0115
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0120
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0120
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0120
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0125
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0125
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0125
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0130
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0130
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0130
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0135
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0135
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0135
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0140
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0140
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0145
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0145
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0150
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0150
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0150
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0155
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0155
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0155
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0160
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0160
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0160
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0165
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0165
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0165
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0170
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0170
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0175
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0175
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0175
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0180
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0180
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0180
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0185
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0185
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0185
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0190
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0190
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0190
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0195
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0195
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0195
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0195
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0200
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0200
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0200
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0205
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0205
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0205
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0210
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0210
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0210
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0215
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0215
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0215
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0215
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0220
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0220
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0220
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0225
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0225
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0225
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0225
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0230
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0230
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0230
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0235
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0235
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0235
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0240
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0240
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0245
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0245
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0250
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0250
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0250
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0255
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0255
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0255
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0260
http://refhub.elsevier.com/S2215-0986(15)30290-1/sr0260

	 Free vibration analysis of pre-stressed FGM Timoshenko beams under large transverse deflection by a variational method
	 Introduction
	 Mathematical formulation
	 Modeling of FGM beam
	 Static problem
	 Dynamic problem

	 Results and discussion
	 Validation study
	 Natural frequency of vibration of undeformed FGM beam
	 Effect of material and volume fraction index on static and dynamic behavior

	 Conclusions
	 Appendix
	 Elements of stiffness matrix and load vector

	 References


