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Cardiovascular disease is an important cause of morbidity and

mortality in patients with chronic kidney disease (CKD) and

end-stage renal disease (ESRD). All epidemiological studies have

clearly shown that accelerated arterial and cardiac aging is

characteristic of these populations. Arterial premature aging is

heterogeneous. It principally involves the aorta and central

capacitive arteries, and is characterized by preferential aortic

stiffening and disappearance of stiffness/impedance gradients

between the central and peripheral arteries. These changes

have a double impact: on the heart, upstream, with left

ventricular hypertrophy and decreased coronary perfusion; and,

downstream, on renal and brain microcirculation (decrease in

glomerular filtration and cognitive functions). Multifactorial

at origin, the pathophysiology of aortic ‘progeria’ and

microvascular disorders in CKD/ESRD is not well understood

and should be the focus of interest in future studies.
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The heart and kidney are frequently affected by similar,
highly prevalent risk factors such as diabetes and hyperten-
sion, and both are profoundly affected by the aging process.

Atherosclerosis is a generalized arterial disease of the arterial
intima, characterized by the presence of plaques and occlusive
arterial lesions. Atherosclerosis extends from the coronaries and
the thoracic aorta to the renal circulation. Nephrosclerosis, that
is, the renal expression of intimal disease (either alone or
associated with occlusive renal artery disease), is the most
frequent renal disease underlying the high prevalence of chronic
kidney disease (CKD) in the general population. Even though
most patients with CKD die because of atherosclerotic
complications before they reach end-stage renal disease (ESRD),
the dialysis population is composed mainly of elderly patients
with a high burden of cardiovascular complications. Kidney
failure accelerates the progression of atherosclerosis and
modifies the morphology of atherosclerosis lesions by increasing
the propensity to calcification.1

Aging and age-associated arterial changes underlie fundamen-
tally different alterations from atherosclerosis, and alterations
attributable to the aging process may have a relevant effect on
cardiac and renal disease. Aging per se is associated with a parallel
decrease in renal function and is accompanied by relevant
changes in the properties of large- and medium-sized arteries.
The main structural changes attributable to aging include arterial
dilatation and tortuousness, wall hypertrophy, and increased
collagen-to-elastin ratio with fragmentation and calcification of
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elastic fibers. The functional consequence of these structural
alterations is hardening/sclerosis of vessel walls (arteriosclerosis)
and loss of distensibility, that is, increased stiffness.2 Arterial aging
mainly involves the aorta and major central arteries, whereas
peripheral muscular conduit arteries undergo only modest
changes.3 In young and middle-aged subjects the aorta is
more distensible than peripheral arteries. Physiologically, the
higher distensibility of the aorta coupled with a progressively
lower distensibility in peripheral vessels creates a ‘stiffness
gradient’ that works as a ‘hydraulic filter’ and acts to buffer
pressure pulsations and their transmission to microcirculation
and capillary network principally in the main parenchymal
organs such as the kidney and the brain.4 In brief, during
systole, the stroke volume interacts with aortic characteristics
to produce a pulsatile pressure wave (forward pressure) that
normally travels from the aorta toward peripheral arteries at a
pulse wave velocity (PWV) that accelerates centrifugally. PWV
is low in the distensible aorta and accelerates in progressively
stiffer peripheral arteries. During heart contraction, only a part
of the stroke volume is forwarded directly to the peripheral
tissues. The pressure generated by the left ventricular (LV)
systole distends the elastic elements of the arterial walls and is
transformed into an elastic force, while a part of the stroke
volume is accommodated in the distended aorta. During
diastole, this elastic force recoils the aorta and squeezes the
blood forward into the peripheral tissues, thereby ensuring a
continuous flow.5,6 For this function to be efficient, the energy
necessary for arterial distension and recoil should be as low as
possible; that is, for a given stroke volume, the pulse pressure
should be as low as possible. In other words, the more
distensible the arterial wall (that is, the lower the stiffness), the
smoother the provision of proper flow to peripheral tissues. As
the forward pressure wave travels toward the less distensible
and smaller peripheral arteries, impedance mismatches gen-
erate a reflected wave, that is, a wave that travels backward
toward the aorta (reflected wave). In physiological conditions,
the reflected wave returns normally to the aorta in late systole
and early diastole (distensible aorta with low PWV), produ-
cing a favorable increase in diastolic pressure and in coronary
perfusion and effectively limiting the transmission of high
pulsatile energy to microcirculation.5–7

Aortic stiffening manifests as high systolic and pulse
pressures with increased cardiac afterload and arterial circum-
ferential stress, all factors promoting LV hypertrophy (LVH),
which may evolve toward heart failure. Arterial rigidity increases
the PWV and determines an early return of the reflected wave.
This wave reaches the central circulation during early rather
than late systole and late diastole, thereby increasing systolic and
pulse pressure and decreasing diastolic pressure.5,7 Stiff aorta
cannot be stretched, and therefore the stroke volume flows
through the arterial system toward peripheral tissues principally
during systole, decreasing capillary transit time and metabolic
exchanges. This is an energy-demanding hemodynamic pattern
implying a high cardiac energy expenditure and a high oxygen
consumption in the myocardium, thereby favoring cardiac
ischemia. Importantly, in such a situation, the lack of proper

aortic buffering also determines a direct transmission of
pulsatile energy into the peripheral microvessels and micro-
circulatory network.4,8 Arterioles are the ‘last barrier’ protecting
the capillary microcirculation from high pulsatile energy.
In the presence of central stiffness and the associated loss of
the arterial system distensibility gradient, organs characterized
by high blood flow and low resistance, such as the kidney or the
brain, are particularly exposed to the damaging effect of high
pulsatile pressure.8 Strong associations have been described
between aortic stiffness (aortic PWV) and LVH and LV
dysfunction, as well as between the same parameters and
indicators of renal dysfunction (glomerular filtration rate and
microalbuminuria).9 In addition, aortic stiffness and pulse
pressure have been associated with cognitive impairment and
dementia.10 Age-associated aortic stiffening notoriously occurs
at a much accelerated rate in ESRD patients.11 In this
population, arterial rigidity is typically associated with calcifica-
tions, and PWV in ESRD reaches the highest level observed in
human diseases.12 PWV represents one of the strongest markers
for the risk of death and cardiovascular outcomes in dialysis
patients.11,12 Similar to the general population, arterial stiffening
in ESRD is mainly confined to the aorta.3,4,11,13

The rational schema laid down above provides a general
framework for interpretation of the role of age-associated
arterial changes in cardiovascular and renal diseases and for
framing urgent research questions in this area. Indeed, the
causes and consequences of age-dependent arterial abnorm-
alities are not well understood and should be the focus of
interest in future studies. In this regard, many critical
questions still remain to be properly addressed (Figure 1).

Aortic stiffening could be analyzed by several techniques,
including aortic PWV.14 Information on time-related changes
in aortic stiffness as related to hemodynamic changes (24-h
ambulatory blood pressure monitoring, extracellular volume,
and indicators of salt and volume excess) and renal function
is still scarce, which is why it is critical to probe the general

Figure 1 | Remaining questions to be addressed.

(i) Study time-related changes in aortic stiffness (pulse wave
velocity (PWV)) and their relationship with simultaneous
hemodynamic changes (24-h ambulatory blood pressure
monitoring, indicators of salt and volume excess).

(ii) Longitudinal assessment of the relationship between typical
biochemical alterations found in chronic kidney disease (CKD)
and end-stage renal disease (oxidative stress, inflammation,
endothelial dysfunction, and bone and mineral disorders) in
relationship to arterial changes (PWV) and clinical outcomes.

(iii) The role of dissipation of the distensibility gradient in
target organ damage (i.e., kidney, brain, and heart disease).

(iv) Establish whether measures of arterial stiffness such as PWV
are useful in clinical practice to monitor therapies that broadly
interfere with the cardiovascular system and arterial function.

(v) Establish whether arterial calcifications represent a valid
surrogate end point to be applied in intervention studies
in patients with CKD and/or cardiovascular diseases.

(vi) Define the role of arterial stiffening in left ventricular
hypertrophy and left ventricular failure dysfunction in patients
with CKD and/or cardiovascular diseases.
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relevance of the stiffening process in cardiovascular and renal
health.

Longitudinal analyses of the relationship between the typical
biochemical alterations of CKD and ESRD, such as high levels of
oxidative stress, inflammation, endothelial dysfunction (see
previous section), and markers of mineral disorders, PWV, and
clinical outcomes, are needed to identify causal risk factors for
arterial stiffening and cardiovascular risk excess in CKD and
ESRD. Equally important is investigating the relationship between
the biochemical alterations of CKD and PWV in peripheral
arteries (carotido-radial or femoro-tibial) in order to understand
the role of dissipation of the distensibility gradient in target organ
damage (that is, kidney, brain, and heart disease). Studies of the
microvascular structure and reactivity in the kidney, heart, and
brain are the ‘parent pauvre’ in CKD and ESRD. Techniques exist
to study the microvascular territory at the anatomic level
(cutaneous, nail, retinal capillary density) or at the functional
level (in terms of postischemic forearm vasodilation and flow),
but the best way to measure microvascular reactivity within the
kidney circulation is an open question (see previous section).

Even though progress has been made in this area, we still
ignore whether measures of arterial stiffness such as PWV are
useful in clinical practice to monitor therapies that broadly
interfere with the cardiovascular system and arterial function,
such as drugs antagonizing the effects of the renin–angio-
tensin–aldosterone system or calcium-channel blockers or
drugs impinging upon alterations in mineral metabolism.
Vascular calcifications are a prominent feature of arterial
disease in CKD and ESRD;15,16 however, it should be
emphasized that it is largely undefined whether calcifications
represent a valid surrogate end point that can be applied in
intervention studies in these patients. In other words, we
ignore to check whether interventions that reduce vascular
calcifications unequivocally translate into better clinical
outcomes, and this is true both for interventions based on
drugs impinging upon dyslipidemia and for interventions
aimed at correcting alterations in mineral metabolism in
CKD (phosphate binders, vitamin D, calcimimetics, vitamin
K). Finally, arterial changes are tightly associated with cardiac
morphological (LVH) and functional changes (LV dysfunc-
tion)17–19 in cross-sectional studies; however, the longitudinal
relationship between arterial and cardiac changes is not
well documented in CKD/ESRD and the role of arterial
stiffening on heart disease in these patients remains to be
defined, in parallel with the evaluation of senescence rates in
these CKD/ESRD populations.20
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