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Abstract

We prove that a locally cobipartite graph on n vertices contains a family of at most n cliques
that cover its edges. This is related to Opsut’s conjecture that states the competition number of
a locally cobipartite graph is at most two. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

A food web D is an digraph (V; A), where V is a collection of species and there
is an arc from species x to species y if x preys on y. We shall follow common
practice and assume that D is acyclic. The competition graph of D is an undirected
graph G = (V; E) de�ned on the vertices of D with an edge between species x and
species y if x and y share a common prey. Cohen [1] introduced competition graphs
during his study of the ecological phase spaces of food webs. Many researchers have
since studied competition graphs (see, for example, Kim’s thesis [2] or Lundgren’s
article [4]).
In this paper we consider a problem motivated by a conjecture of Opsut [5]. An

undirected graph is a competition graph if it is the competition graph of some acyclic
food web. Any graph G can be made into a competition graph by adding |E(G)|
isolated vertices because this expanded graph is the competition graph of the food web
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that contains a unique prey for each pair of adjacent vertices in the graph G. Roberts
[7] de�ned the competition number of a graph G, denoted k(G), as the least number
of isolated vertices that must be added to G to produce a competition graph. Roberts
observed that chordal graphs have competition number at most one, and Opsut proved
that line graphs have competition number at most two. A graph is locally cobipartite if
the vertices in the neighborhood of any vertex can be covered with at most two cliques.
Opsut [5] conjectured that the competition number of a locally cobipartite graph is at
most two. This conjecture remains open. Others have considered Opsut’s conjecture,
for example Kim and Roberts [3] and Wang [9]. Opsut proved that, for any graph
G = (V; E), the competition number satis�es k(G)¿�′(G)− |V (G)|+ 2, where �′(G)
is the edge clique covering number of G and is equal to the least number of cliques
of G that cover E. Thus, Opsut’s conjecture implies that a locally cobipartite graph on
n vertices contains a family of at most n cliques that cover its edges. We prove this
corollary of Opsut’s conjecture in Section 2. The result is sharp, as seen by considering
chordless cycles.
The edge clique covering number has been widely studied in the literature. It has

applications to many important problems including representing intersections of sets
using graphs and many assignment-type problems. In general it is hard to calculate
because, given a graph G and an integer k, deciding whether �′(G)6k, is NP-complete
(see [5]). For a view of the edge clique covering number from an extremal graph theory
perspective see the survey by Pyber [6]. For applications of the edge clique covering
number to assignment type problems such as the tra�c phasing problem, the reader is
referred to the survey by Roberts [8].

2. Edge clique covering

In this section we prove the main theorem. We �rst introduce some notation.
Let G be an undirected graph with vertex set V and edge set E. All of the graphs

in this paper have neither multiple edges nor loops. For X; Y ⊆V , set E(X; Y ) =
{xy ∈ E : x ∈ X; y ∈ Y}. We use E(X ) as an abbreviation for E(X; X ). The neighbor-
hood of a vertex v ∈ V is the set N (v) = {u ∈ V : uv ∈ E}. The closed neighborhood
of v is the set N [v]= {v}∪N (v). For S ⊆V , the graph induced by S is the graph with
vertex set S and edge set E(S). Let G[v] be the graph induced by N [v]: The distance
in G from the vertex u to the vertex v is the number of edges in the shortest path
connecting u with v; it is denoted d(u; v).
The clique cover number of G, denoted �(G), is the minimum nonnegative integer k

such that there is a family of k of G cliques covering the vertices of G. A graph G is
cobipartite if �(G) = 2: A graph G is locally cobipartite if �(G[v])62, for all v ∈ V .
The edge clique cover number of G, denoted �′(G), is the least k such that there is a
family of k cliques of G covering the edges of G: The complete bipartite graph K1;3
is referred to as the claw. We shall use the observation that locally cobipartite graphs
do not contain an induced claw; that is, they are claw-free.
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The notation G[X; Y ] represents a cobipartite graph G with clique partition X and Y .
A cobipartite graph G[X; Y ] with X = {x1; : : : ; xn} satisfying Y = N (x1) and

N (x1)⊇ · · ·⊇N (xn)
is called a nested graph. The number of distinct nonempty sets in the chain above is
the depth of the nested graph.

Lemma 1. If G[X; Y ] is a nested graph with depth r; then
(i) there is a family of r cliques covering all edges in E(X; Y ) ∪ E(Y ); and
(ii) there is a set {y1; : : : ; yr}⊆Y such that N (yi) 6= N (yj); for 16i¡ j6r.

Proof. De�ne equivalence classes [xi]= {x ∈ X : N (x)=N (xi)}; for 16i6n. Observe
[xi] ∪ (N (xi) ∩ Y ) induces a clique. Moreover, there are precisely r distinct cliques
Q1; : : : ; Qr de�ned in this way because the depth of G is r. These r cliques Q1; : : : ; Qr
cover the edges E(X; Y )∪ E(Y ). This proves (i). To prove (ii), consider the r distinct
cliques Q1; : : : ; Qr . These can be arranged so that (Q1∩Y )⊃ · · ·⊃(Qr∩Y ). Now de�ne
yi ∈ (Qi ∩ Y ) \ (Qi+1 ∩ Y ), for 16i¡ r, and yr ∈ (Qr ∩ Y ). Clearly y1; : : : ; yr have
distinct neighborhoods.

For disjoint vertex subsets S and T , let �′(S; T ) represent the least k such that there
are k cliques of G that cover E(S; T ). Observe that, if S and T induce cliques in G,
then �′(S; T )6min{|S|; |T |}.
Suppose v is a vertex in a locally cobipartite graph. De�ne

t(v) = min{�′(A; B) : A and B are cliques that partition N (v)}:
Set t(G) = min{t(v): v ∈ V}.
Finally, let A and B be two disjoint subsets of vertices inducing cliques. De�ne

s(A; B) to be the number of equivalence classes in the partition of A determined by the
equivalence relation in which two vertices of A are equivalent if they have exactly the
same neighbors in B. Observe carefully the asymmetry: s(A; B) and s(B; A) need not
be equal. For example, consider a traingle with a pendent edge with vertices a1; a2;
b1; b2. Suppose {a1; a2; b1} induces a triangle and b2 is a pendent vertex adjacent to
b1. If A= {a1; a2} and B= {b1; b2}; then s(A; B) = 1 whereas S(B; A) = 2.
De�ne

s(v) = min{s(A; B) : A; B cliques partitioning N (v) and �′(A; B) = t(v)}:
It is important to note that s(v)¿t(v).
We are now ready to prove the main result.

Theorem 2. A locally cobipartite graph on n vertices contains a family of at most n
cliques that cover its edges.

Proof. It su�ces to prove the theorem for connected graphs. Suppose G = (V; E) is a
connected locally cobipartite graph with |V | = n vertices. We may assume n¿3. For
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convenience, set t= t(G). Choose v0 from {u∈V : t(u)= t} so that s(v0) is minimum.
Set ‘=max{d(u; v0): u∈V}. De�ne the level sets Vi={u∈V : d(u; v0)=i}, for 06i6‘.
Because G is connected, V =

⋃‘
i=0 Vi. For 16i6‘ and u∈Vi, de�ne N−(u)=N (u)∩

Vi−1: For 06i¡‘; de�ne N+(u)=N (u) ∩Vi+1, and for convenience, set N+(u)=∅, for
u ∈ V‘. Extend this notation naturally to subsets S ⊂V by de�ning, N (S)=

⋃
u∈S N (u),

N−(S) =
⋃
u∈S N

−(u), and N+(S) =
⋃
u∈S N

+(s).
An edge xy ∈ E is free if d(x; v0) = d(y; v0) and N−(x) ∩ N−(y) = ∅. Note that if

xy is a free edge, then x and y are in the same level set. No edges in G[v0] are free
by de�nition. De�ne

C[x] = {x} ∪ N+(x) ∪ {u ∈ V : ux is a free edge}:
Two important facts to notice: if xy is a free edge, then {x; y}⊆C[x] ∩ C[y], and
C[u] = {u} ∪ N+(u), for u ∈ V1.
We now present several useful consequences of the claw-freeness of G.

Claim 1. (a) For all x 6= v0; N+(x) is a clique.
(b) If xy is free; then N+(x) = N+(y).
(c) If xy and yz are free; then xz ∈ E(G).
(d) For all x 6= v0; C[x] is clique.
(e) The n− 1 cliques {C[x]}x 6=v0 cover all edges of G not in G[v0].
(f ) If xy ∈ E(Vi); then N−(x)* N−(y) implies N+(x)⊆N+(y):

Proof. To see that N+(x) is a clique, for all x 6= v0, it is enough to observe that
N−(x) 6= ∅ and G is claw-free. This proves (a). Suppose that xy is free. To prove
(b), it su�ces to show that N+(x)⊆N+(y). If there were some z ∈ N+(x) \N+(y),
then for any w ∈ N−(x), the four vertices w; x; y; z would form a claw centered at
x. This proves (b). Suppose that xy and yz are free, and let w ∈ N−(y). Because
w 6∈ N−(x) ∪ N−(z), the edge xz must be present in G to avoid inducing a claw
on w; x; y; and z. So (c) is true. Part (d) follows immediately from the de�nition of
C[x] and (a)–(c). To prove (e) observe that there are only two types of edges in
G: edges between level sets, called vertical edges, and edges inside a level set, called
horizontal edges. Clearly all vertical edges not in G[v0] are covered by {C[x]}x 6=v0 . A
horizontal free edge xy is covered twice, once by C[x] and once by C[y]. A horizontal
edge xy that is not free is covered by C[z], where z ∈ N−(x) ∩ N−(y). So all edges
of G not in G[v0] are covered by {C[x]}x 6=v0 , and (e) is proven. Suppose N−(x) *
N−(y) for some x; y ∈ Vi and some 16i6‘. Reasoning as in part (b), if there were
some z ∈ N+(x) \N+(y), then for any w ∈ N−(x) \N−(y), the four vertices w; x; y; z
would form a claw centered at x. This establishes (f) and concludes the proof of the
claim.

Let A(v0) and B(v0) be two cliques that partition V1=N (v0) such that �′(A(v0); B(v0))
=t and, subject to this constraint, s(A(v0); B(v0)) is minimum. Because min{|A(v0)|;
|B(v0)|} ¿�′(A(v0); B(v0))= t, the number of vertices satis�es n¿2t+1. If ‘=1, then
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there is a cover of E(G) using t+2 cliques, namely {v0}∪A(v0); {v0}∪B(v0), and the
t cliques of G that cover the edges E(A(v0); B(v0)). Because t+26max{3; 2t+1}6n,
we may assume that ‘¿2.
Claim 1 suggests a cover of E using n+t+1 cliques, namely the cover F consisting

of the cliques {v0} ∪ A(v0), {v0} ∪ B(v0); C[x] for all x 6= v0, and the t cliques of
G that cover the edges E(A(v0); B(v0)). Our goal is to modify F by removing some
cliques and adding others so that eventually the new family is a cover using at most
n cliques. The reader should keep in mind that F is the base cover from which we
work. The remainder of the proof describes how to modify F. As an example, the
reader can verify that the graph 3K2 is a cobipartite graph with six vertices and F

contains eight cliques.
For any u ∈ V1, let A(u) and B(u) be two cliques that partition N (u) such that

�′(A(u); B(u)) = t(u) and v0 ∈ B(u). Also de�ne X (u) = A(u)∩ V1. A vertex u ∈ V1 is
maximal if there is no vertex v ∈ V1 such that N+(u) ( N+(v). Because v0 ∈ B(u), it
follows that B(u)⊆{v0} ∪ V1 and A(u) is the disjoint union of X (u) and N+(u).
A set of vertices W ⊂Vk is diverse (from level k¿2) if N−(x) 6= N−(y), for all

x; y ∈ W . For u ∈ V , de�ne m(u) to be the maximum cardinality of a diverse subset
of N+(u). Suppose u ∈ V1 is a maximal vertex. Let W (u) = {w1; : : : ; wm(u)} denote
a maximum diverse subset of N+(u). Part (a) of Claim 1 implies that W (u) induces
a clique. It then follows from part (f) of Claim 1 that W (u) can be ordered so that
N+(w1)⊇ · · ·⊇N+(wm). We shall use this property during the proof of Claim 3.
First we establish an important sequence of inequalities in the following claim.

Claim 2. For any maximal u ∈ V1;
m(u) + |X (u)|¿s(u)¿t(u)¿t:

Proof. To prove Claim 2, it su�ces to prove m(u)+|X (u)|¿s(u) because the other two
inequalities follow directly from the de�nitions of s(u); t(u), and t. Recall that v0 ∈
B(u) and A(u) is the disjoint union of X (u) and N+(u). Partition N+(u) into m=m(u)
sets Hi = {v ∈ N+(u) : N−(v) = N−(wi)}, for 16i6m. Let X (u) = {x1; : : : ; x|X (u)|},
and de�ne Hm+j = {xj}, for 16j6|X (u)|. Clearly H1; : : : ; Hm; Hm+1; : : : ; Hm+|X (u)| is a
partition of A(u) into m(u) + |X (u)| cliques such that x; y ∈ Hi implies N (x)∩ B(u) =
N (y) ∩ B(u): Hence m(u) + |X (u)|¿s(u). This concludes the proof of the claim.

The next claim presents a procedure, based on Lemma 1, to reduce the number of
cliques in F.

Claim 3. For any maximal u ∈ V1; there is a family
F′(u) of n+ t + 1− (m(u) + |X (u)|) cliques covering E(G):

Proof. To prove Claim 3, we �rst describe a sequence of pairs (F1; W1); : : : ; (Fp;Wp),
where Fi is a family of cliques of G covering E(G); Wi is a diverse set from level
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i+1 that induces a clique, |Fi|= n+ t +1− (m(u) + |X (u)|) + |Wi|, and Wp satis�es
N+(Wp) = ∅:
We de�ne F1 by modifying F. Recall that F contains, among others, the cliques

{C[x]}x 6=v0 . Remove from F the cliques C[x]; for all x ∈ {u} ∪ X (u). Now, to cover
the edges of the cliques we have just removed, consider the set Q={u}∪N+(u)∪X (u).
If x ∈ X (u), then N+(u)⊆N+(x) which, by the maximality of u, implies that N+(u)=
N+(x). Therefore Q is a clique containing N+(x), for all x ∈ {u} ∪ X (u). Add Q to
create the familyF1. This family contains n+t+1−|X (u)| cliques and still covers E(G)
because there are no free edges between vertices of V1 so C[x]⊆{u} ∪ X (u)∪N+(u);
for all x ∈ {u} ∪ X (u). Recall that W (u) is a maximum diverse subset of N+(u)
satisfying |W (u)|=m(u). Set W1 =W (u). If N+(W1)=∅, then the sequence terminates
with (F1; W1): Because |W1|=m(u), the family F1 has size |F1|=n+ t+1−|X (u)|=
n+ t + 1− (m(u) + |X (u)|) + |W1|, as desired.
Assume that (Fi ; Wi) is de�ned at some stage i¿1 and assume N+(Wi) 6= ∅: We

now explain how to de�ne (Fi+1; Wi+1). Let Yi = N+(Wi). Because Wi is a diverse
set, part (f) of Claim 1 implies that the graph G[Wi; Yi] induced by Wi ∪Yi is a nested
graph with depth r, say. Apply Lemma 1 to G[Wi; Yi]. Part (i) of the lemma guarantees
r cliques that cover E(Wi; Yi)∪E(Yi). To produce the family Fi+1 from Fi, add these
r cliques and remove the |Wi| cliques C[x] for all x ∈ Wi: Let Wi+1 be the set of r
vertices of Yi guaranteed by part (ii) of the lemma. Because |Fi|=n+ t+1− (m(u)+
|X (u)|)+|Wi|, it is clear that |Fi+1|=n+t+1−(m(u)+|X (u)|)+|Wi+1|. It is also clear
that Wi+1 is a diverse set from level i+2. Part (a) of Claim 1 guarantees that Wi+1 is
a clique. We must verify that Fi+1 is a cover of E(G). The only edges covered by the
cliques C[x] (x ∈ Wi) that do not appear in E(Wi; Yi) ∪ E(Yi) are free edges incident
to precisely one vertex from Wi. Such a free edge e = xw; x ∈ Vi+1 \Wi; w ∈ Wi is
still covered by Fi+1 because the clique C[x] remains in Fi+1 and covers e. Hence
Fi+1 is a cover of E(G). This completes the proof of the existence of the sequence
(F1; W1); : : : ; (Fp;Wp) described above.
The family F′(u) is obtained from Fp by removing the cliques C[x] for all x ∈ Wp.

Thus, the number of cliques in F′(u) is n + t + 1 − (m(u) + |X (u)|). Furthermore,
F′(u) is a cover of E(G) because the edges not in E(Wp) that were covered by the
cliques C[x] (x ∈ Wp) are free edges with exactly one endpoint in Wp: This concludes
the proof of Claim 3.

If m(u) + |X (u)|¿t for some maximal u ∈ V1, then |F′(u)|6n by Claim 3, so
in this case F′(u) is the desired cover. So we may assume that m(u) + |X (u)|6t,
for all maximal u ∈ V1. This, together with Claim 2, implies m(u) + |X (u)| = s(u) =
t(u) = t, for all maximal u ∈ V1. The last two equalities and the choice of v0 imply
s(v0) = t(v0) = t. Because A(v0) and B(v0) were chosen so that �′(A(v0); B(v0)) = t
and, subject to this constraint, s(A(v0); B(v0)) is minimum, it follows that A(v0) has a
partition A1; : : : ; At such that, for 16i6t and all x; y ∈ Ai, the neighborhoods of x and
y satisfy N (x) ∩ B(v0) = N (y) ∩ B(v0). Observe that this means we may assume that
the t cliques that cover the edges E(A(v0); B(v0)) have the form Ai ∪ (N (Ai) ∩ B(v0)).
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Since m(u)+|X (u)|=t for any maximal u ∈ V1, Claim 3 also implies |F′(u)|=n+1.
So to conclude the proof of the theorem, it su�ces to reduce the number of cliques
in some F′(u) by just one. The remainder of the proof is devoted to this. If V2 = ∅,
then V (G) = A(v0) ∪ B(v0) ∪ {v0} (say |A(v0)|6|B(v0)|), so it follows that all of the
edges of G can be covered with at most t+26|A(v0)|+26n cliques. Hence we may
assume V2 6= ∅. So there is a maximal u ∈ V1 such that m(u)¿1. This implies that
t¿1.
Choose a maximal v1 ∈ V1 with the following properties:
(�) |X (v1)| is minimum, and
(�) subject to (�); |N+(v1) ∩ N+(A(v0))| is minimum.

For convenience, set m=m(v1); X =X (v1), and F′=F′(v1). Let Q={v1}∪N+(v1)∪
X (v1) denote the clique we have added to F to produce F1 in Claim 3. In particular,
Q is a clique in F′. Let W =W (v1) = {w1; : : : ; wm} be a maximum diverse subset of
N+(v1) and let

Hi = {w ∈ N+(v1): N−(w) = N−(wi)} for 16i6m

be the corresponding partition of N+(v1).
If V1⊆N (Ai) for some i, then we can reduce the number of cliques in F′ by

replacing the two cliques {v0} ∪ B(v0) and Ai ∪ (N (Ai) ∩ B(v0)) with their union.
Therefore, we may assume that

No vertex u ∈ A(v0) is adjacent to all vertices of V1: (1)

Similarly if, for some i, all vertices in N (Ai) ∩ B(v0) are adjacent to all vertices of
V1, then we can reduce the number of cliques in F′ by replacing the two cliques
{v0}∪A(v0) and Ai ∪ (N (Ai)∩B(v0)) with their union. Therefore, we may assume that

For each Ai; there exists b ∈ N (Ai) ∩ B(v0) such that V1 * N (b): (2)

If t=1 then t=s(v0) implies N (x)∩B(v0)=N (y)∩B(v0) for all x; y∈A(v0). Furthermore,
N (A(v0))∩B(v0) 6= ∅ so V1⊂N (b) for some b ∈ B(v0), contradicting (2). Thus t ¿ 1.
Now by de�nition of t; N (Ai) ∩ B(v0) 6= ∅, for all 16i6t. Our proof now splits into
two cases.
Case 1: N+(v1) 6= V2. In this case there must be a maximal vertex u ∈ V1 \ {v1}

such that N+(u) 6= N+(v1). In particular, X (u) ∩ X = ∅ which means that the cliques
C[z] (z ∈X (u)) are in F′. Recall that, because u is maximal, N+(u) = N+(z), for
all z ∈X (u). Hence, if there is at least one vertex z ∈ X (u), then we can reduce
the number of cliques in F′ by replacing the two cliques C[u] and C[z] with their
union. So we may assume that X (u) = ∅. This and property (�) in the choice of v1
implies |X |=0. Consequently, for any maximal vertex y ∈ V1, we have X (y)= ∅ and
A(y) =N+(y). We conclude that, for any maximal y ∈ V1, the set N (y)∩ V1 induces
a clique because it is a subset of B(y).
Observe that |X |=0 means that the cliques C[x] (x∈V1) are all in F′. So we may

assume N+(x) 6= N+(y), for all distinct x and y in V1 such that xy∈E because if
N+(x)=N+(y), then we can reduce the number of cliques in F′ by replacing the two
cliques C[x] and C[y] with their union.
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Suppose there exists a maximal vertex y ∈ A(v0). Without loss of generality, y∈A1.
Because N (y) ∩ V1 is a clique, every vertex in N (A1) ∩ B(v0) is adjacent to every
vertex in V1, contradicting (2). Therefore, there are no maximal vertices in A(v0).
Suppose there exists a maximal vertex y ∈ N (A(v0)) ∩ B(v0). Because N (y) ∩ V1 is a
clique, vertices in N (y)∩A(v0) are adjacent to all vertices in V1, contradicting (1). So
we may assume that B(v0) \N (A(v0)) contains all maximal vertices. In particular,
v1 ∈B(v0) \N (A(v0)).
We now claim that N+(x)⊆N+(v1), for all x ∈ A(v0). It su�ces to prove this

for x ∈ A(v0) with the property that there is no z ∈ A(v0) such that N+(x)⊂N+(z).
Consider such an x. Now (2) guarantees that there is a vertex y ∈ N (x) ∩ B(v0)
and a vertex w ∈ A(v0) \ N (y). If N+(x) * N+(y), then y 6∈ A(x) so w ∈ A(x).
This implies N+(w) = N+(x) by the choice of x. Therefore we may assume that
N+(x)⊂N+(y). Now x and v1 are both neighbors of y. However N+(x)⊂N+(y)
implies x ∈ B(y). Because xv1 6∈ E, we conclude that v1 ∈ A(y) and N+(y)⊆N+(v1).
Hence N+(x)⊂N+(y)⊆N+(v1), as desired.
The previous paragraph implies N+(A(v0))⊆N+(v1). A maximal vertex u 6= v1 sat-

is�es |X (u)|=0, as observed in the �rst paragraph of this case. If N+(A(v0))=N+(v1),
then because N+(v1) 6= V2, maximality implies |N+(u) ∩ N+(A(v0))|¡ |N+(v1) ∩
N+(A(v0))|, contradicting (�) in the choice of v1. Therefore, N+(A(v0))⊂N+(v1). Re-
call that W={w1; : : : ; wm} is a maximum diverse subset of N+(v1) and Hi for 16i6m,
is the corresponding partition of N+(v1). Without loss of generality, wm 6∈ N+(A(v0)).
Note that, since wm 6∈ N+(A(v0)), we have N−(Hm) ∩ A(v0) = ∅. Replace the |A(v0)|
cliques C[x] (x ∈ A(v0)) with the m−1 cliques Hi∪(N−(Hi)∩A(v0)), for 16i6m−1.
Because |X |=0 and m+ |X |= t, it follows that m− 1= t − 1¡ |A(v0)|. In particular,
this replacement reduces the number of cliques in F′. The added cliques cover all of
the edges in E(A(v0); N+(A(v0))). The edges between all of the vertices of N+(A(v0))
are still covered by C[v1], whereas the edges in E(A(v0); A(v0)) are still covered by
{v0} ∪ A(v0), so the resulting family of cliques is a cover of E(G) and contains at
most n cliques.
Case 2: N+(v1) = V2. Recall that F′ contains, among others, the clique Q= {v1} ∪

N+(v1) ∪ X (v1) and all cliques C[x] such that x ∈ V1 \ ({v1} ∪ X ): Also recall that
W = {w1; : : : ; wm} is a maximum diverse subset of N+(v1) and Hi for 16i6m, is the
corresponding partition of N+(v1).
Suppose there is a set U ⊆V1 \ ({v1} ∪ X ) such that |U |¿m and either U ⊆A(v0)

or U ⊆B(v0). Without loss of generality U ⊆A(v0). We can replace the |U | cliques
C[x] (x ∈ U ) with the m cliques Hi∪(N−(Hi)∩A(v0)), for 16i6m. Because |U |¿m,
this replacement reduces the number of cliques in F′. Moreover, N+(v1)=V2 implies
that the added cliques cover all of the edges in E(U;N+(U )). The edges between
vertices of N+(A(v0)) are still covered by Q whereas the edges in E(U; A(v0)) are still
covered by {v0} ∪ A(v0). Thus the resulting family of cliques is a cover of E(G) and
contains at most n cliques. So we may assume that there is no such set U .
If |V1| − |X | − 1¿ 2m, then there is a set U ⊆V1 \ ({v1} ∪ X ) such that |U |¿m

and either U ⊆A(v0) or U ⊆B(v0). Therefore we may assume that |V1|− |X |−162m.
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Because 2t6|V1| and m+ |X |= t, we �nd that 2t6|V1|62m+ |X |+162t − |X |+1.
In particular, |X |61.
Suppose that ∅ 6= X ={x}. From the previous paragraph we �nd that |X |=1 implies

m = t − 1 and |A(v0)| = |B(v0)| = t. If {x; v1}⊂A(v0), then U = B(v0) is a subset of
V1 \({v1}∪X ) such that |U |¿m. A similar argument applies if {x; v1}⊂B(v0). So we
may assume that one of these two vertices is an element of A(v0) and the other is an
element of B(v0). Now the vertices x and v1 are symmetric in the sense that when we
chose v1 we could have chosen x, since x and v1 are both maximal, |X (x)|= |X |= 1,
and N+(v1)=N+(x)=V2. Hence we may assume x ∈ A(v0) and v1 ∈ B(v0). If there is
a vertex w ∈ N (v1) ∩ A(v0) such that w 6= x, then w 6∈ X so w 6∈ A(v1) = X ∪ N+(v1).
This implies that w ∈ B(v1). Since wv1 ∈ E and B(v0) \ {v1}⊂B(v1), it follows that
B(v0)⊂N (w), contradicting (1). Hence N (v1) ∩ A(v0) = {x}. In this case, the clique
Q already covers the one edge of E(A(v0); B(v0)) with endpoint v1. Therefore, we can
reduce the number of cliques in F′ by removing the t cliques Ai∪ (N (Ai)∩B(v0)) and
replacing them with the t − 1 cliques {b} ∪ (N (b)∩ A(v0)) such that b ∈ B(v0) \ {v1}.
So we may assume |X |= 0. An argument similar to the one given at the beginning

of case 1 shows that v1 ∈ B(v0) \ N (A(v0)). This means |V1| = 2t + 1; |A(v0)| = t,
and |B(v0)| = t + 1. Let B = B(v0) \ {v1} = {b1; b2; : : : ; bt}, ordered so that |N (bi) ∩
A(v0)|¿|N (bj) ∩ A(v0)|, for 16i¡ j6t. Recall that, by de�nition, v0 ∈ B(bi), for
all i. If v1 ∈ B(bi) for some i, then (N (bi) ∩ A(v0)) ∪ N+(bi) is a clique (because
it is a subset of A(bi)) so, in this case we can reduce the number of cliques in F′

by replacing C[bi] and the t cliques covering E(A(v0); B(v0)) with {bi} ∪ (N (bi) ∩
A(v0)) ∪ N+(bi) and the t − 1 cliques {bj} ∪ (N (bj) ∩ A(v0)), for j 6= i. Therefore
we may assume v1 ∈ A(bi), for all 16i6t. Since v1 ∈ B(v0) \ N (A(v0)), it follows
that N (bi) ∩ A(v0)⊂B(bi), for all i. If N (bi) ∩ A(v0)⊆N (bj) ∩ A(v0) for i¡ j, then
|N (bi) ∩ A(v0)|¿|N (bj) ∩ A(v0)| implies N (bi) ∩ A(v0) = N (bj) ∩ A(v0), contradicting
�′(A(v0); B(v0))=t. Therefore, N (bi)∩A(v0)* N (bj)∩A(v0), for all i¡ j. From this we
may deduce bj 6∈ B(bi). Thus, bj ∈ A(bi) and consequently, N+(bi)⊆N+(bj), for i¡ j.
In particular, N+(B)⊆N+(bt). Because |X |=0, we may assume that N+(bt) 6= N+(v1)
since otherwise N+(bt) = N+(v1) and the number of cliques in F′ can be reduce by
replacing C[bt] and Q with their union. Hence N+(B)⊂N+(v1). We can now replace
the t cliques C[bi] (16i6t) in F′ with the at most m−1 cliques Hi∪(N−(Hi)∩B(v0)),
for values of i satisfying N−(Hi) ∩ B 6= ∅.

3. Conclusion

Opsut’s conjecture seems to result from an attempt to extend the family of line graphs
while maintaining competition number at most two. A natural family to consider in
this case is the family of claw-free graphs. However, Opsut proved that for any graph
G = (V; E), the competition number satis�es k(G)¿minv∈V (G) �(N (v)). This implies
that the icosahedron — a claw-free graph — has competition number at least three.
Therefore, claw-free graphs do not necessarily have competition number at most two.
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The locally cobipartite graphs then seem to be the next natural family to consider,
which may explain the motivation for Opsut’s conjecture.
Although the family of claw-free graphs does not seem to be signi�cant in the

study of the competition number, it may still be important for the edge clique covering
number. We do not know an example of a claw-free graph whose edge clique covering
number exceeds the number of vertices. Perhaps then Theorem 2 can be extended to
claw-free graphs.
It may also be possible to extend Theorem 2 in another direction. A graph is locally

co-k-partite if the neighborhood of every vertex can be partitioned into at most k
cliques. We conjecture that a locally co-k-partite graph on n vertices as edge clique
cover number at most dkn=2e.
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