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1. Introduction

Leslie [1] introduced the famous Leslie predator–prey system

ẋ(t) = x(t)
[
a − bx(t)

] − p(x)y(t), ẏ(t) = y(t)

[
e − f

y(t)

x(t)

]
, (1.1)

where x(t), y(t) stand for the population (the density) of the prey and the predator at time t , respectively, and p(x) is the
so-called predator functional response to prey. In biomathematics, we define p(x): When p(x) = cx, the functional response
p(x) is called type 1; When p(x) = cx

d+x , the functional response p(x) is called type 2; When p(x) = cx2

d+x2 , the functional
response p(x) is called type 3.

In (1.1), it has been assumed that the prey grows logistically with growth rate a and carries capacity a
b in the absence

of predation. The predator consumes the prey according to the functional response p(x) and grows logistically with growth
rate e and carrying capacity x

f proportional to the population size of the prey (or prey abundance). The parameter f is
a measure of the food quality that the prey provides and converted to predator birth. Leslie introduced a predator–prey
model where the carrying capacity of the predator’s environment is proportional to the number of prey, and still stressed
the fact that there are upper limits to the rates of increasing of both prey x and predator y, which are not recognized in
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the Lotka–Volterra model. These upper limits can be approached under favorable conditions: for the predators, when the
number of prey per predator is large; for the prey, when the number of predators (and perhaps the number of prey also) is
small [2].

However, recently more and more obvious evidences of biology and physiology show that in many conditions, especially
when the predators have to search for food (consequently, have to share or compete for food), a more realistic and general
predator–prey system should rely on the theory of ratio-dependence, this theory is confirmed by lots of experimental
results [3]. A ratio-dependent Leslie system with the functional response of Holling–Tanner type is as follows:

ẋ(t) = x(t)
[
a − bx(t)

] − p

(
x(t)

y(t)

)
y(t), ẏ(t) = y(t)

[
e − f

y(t)

x(t)

]
, (1.2)

where p(x) has the same means as before.
In recent research on species dynamics of the Leslie system has important significance, see [4–34] for details. Motivated

by [13], we consider a ratio-dependent Leslie predator–prey model with impulses

ẋ1(t) = x1(t)

[
b(t) − a(t)x1(t) − c(t)x1(t)x2(t)

h2x2
2(t) + x2

1(t)

]
,

ẋ2(t) = x2(t)

[
e(t) − f (t)

x2(t)

x1(t)

]
, t �= tk,

xi
(
t+
k

) = (
1 + hi

k

)
xi(tk), xi(0) > 0, i = 1,2, (1.3)

where xi(t), i = 1,2, denote the density of prey and predator at time t , respectively. b,a, c,d, e, f , p,αi, βi, γi ∈ C(R, R+),
i = 1,2, are all ω-periodic functions of t; h2 is a positive constant, denoting the constant of capturing half-saturation.
Assume that hi

k , i = 1,2, k ∈ Z+ = {1,2, . . .} are constants and there is an integer q > 0 such that hi
k+q = hi

k , tk+q = tk + ω.
With model (1.3) we can take into account the possible exterior effects under which the population densities change very
rapidly. For instance, impulsive reduction of the population density of a given species is possible after its partial destruction
by catching, a natural constraint in this case is 1 + hi

k > 0 for all k ∈ Z+ . An impulsive increase of the density is possible by
artificial breeding of the species or release some species (hi

k > 0). Our main objective of this paper is to give sufficient and
necessary conditions for the existence and global attractivity of periodic solution for the above model (1.3). More knowledge
about impulsive differential equations see [35,36] for details.

For convenience, throughout this paper, we shall use the following notations:
R denotes the real numbers. Z+ denotes the positive integers. For a continuous ω-function g(t), gu = maxt∈[0,ω] g(t),

gl = mint∈[0,ω] g(t), g = 1
ω

∫ ω
0 g(t)dt .

Throughout this paper, we suppose that the following conditions are satisfied:

(H1) b, e ∈ C(R, R) are all ω-periodic functions with b > 0, e > 0.
(H2) a, c, f ∈ C(R, R) are all nonnegative ω-periodic functions of t .
(H3) b − c

2|h| + 1
ω

∑q
k=1 ln(1 + h1

k ) > 0, e + 1
ω

∑q
k=1 ln(1 + h2

k ) > 0.

This paper is organized as follows: In Section 2, some basic results are obtained. In Section 3, we shall give sufficient and
necessary conditions for the existence of ω-periodic solution of system (1.3). In Section 4, we shall give sufficient conditions
for the attractivity of ω-periodic solution of system (1.3). In Section 5, we give an example to verify that our result is correct.

2. Preliminaries

First we shall make some preparations. Let J ⊂ R . Denote by P C( J , RN ) the space of functions φ : J → RN which are
continuous for t ∈ J , t �= tk , are continuous from the left for t ∈ J and have discontinuities of the first kind at the points
t = tk ∈ J . Let

P C ′( J , RN) =
{
φ(t)

∣∣ φ : J → RN ,
dφ

dt
: J → RN

}
,

P Cω = {
φ(t) ∈ P C

([0,ω], RN) ∣∣ φ(t + ω) = φ(t)
}
,

P C ′
ω = {

φ(t) ∈ P C ′([0,ω], RN) ∣∣ φ(t + ω) = φ(t)
}
,

‖φ‖ = max
{‖φ‖P Cω ,‖φ‖P C ′

ω

}
,

where ‖φ‖P Cω = max0∈[0,ω]{|φ|},‖φ‖P C ′
ω

= max0∈[0,ω]{|φ′|}.

Definition 2.1. The set F is said to be quasi-equicontinuous in [0,ω] if for any ε > 0 there exists δ > 0 such that if
x ∈ F ,k ∈ N, t1, t2 ∈ (tk−1, tk) ∩ [0,ω], |t1 − t2| < δ, then |x(t1) − x(t2)| < ε.
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Lemma 2.1. (See [35].) The set F ⊂ P Cω is relatively compact if and only if

(1) F is bounded, that is, ‖φ‖P Cω = sup{|φ(t)|: t ∈ J } � M for each x ∈ F and some M > 0;
(2) F is quasi-equicontinuous in J .

Lemma 2.2. (See [37].) Suppose ψ ∈ P C ′
ω . Then

∣∣∣ sup
s∈[0,ω]

ψ(s) − inf
s∈[0,ω]ψ(s)

∣∣∣ � 1

2

[ ω∫
0

∣∣ψ̇(s)
∣∣ds +

p∑
k=1

∣∣
ψ(tk)
∣∣].

From Lemma 2.2, we have:

Lemma 2.3. Suppose ψ ∈ P C ′
ω . Then

∣∣ψ(t) − ψ(s)
∣∣ � 1

2

[ ω∫
0

∣∣ψ̇(s)
∣∣ds +

p∑
k=1

∣∣
ψ(tk)
∣∣], for all t, s ∈ [0,ω].

3. Existence of positive periodic solutions

For the readers convenience, we first summarize a few concepts from the book by Gaines and Mawhin [38]. Let X
and Y be normed vector spaces. Let L : Dom L ⊂ X → Y be a linear mapping and N : X → Y be a continuous mapping.
The mapping L will be called a Fredholm mapping of index zero if dim Ker L = codim Im L < ∞ and Im L is closed in Y .
If L is a Fredholm mapping of index zero, then there exist continuous projectors P : X → X and Q : Y → Y such that
Im P = Ker L and Im L = Ker Q = Im(I − Q ). It follows that L|Dom L ∩ Ker P : (I − P )X → Im L is invertible and its inverse
is denoted by K P . If Ω is a bounded open subset of X , the mapping N is called L-compact on Ω if (Q N)(Ω) is bounded
and K P (I − Q )N : Ω → X is compact. Because Im Q is isomorphic to Ker L, there exists an isomorphism J : Im Q → Ker L.
In the proof of our existence result, we need the following continuation theorem.

Lemma 3.1. (See [38].) Let L : Dom L ⊂ X → Y be the Fredholm injection with index of 0, N : Ω → Y on Ω L-compact. Suppose

(1) λ ∈ (0,1), x ∈ Dom L ∩ ∂Ω holds, then Lx �= λNx;
(2) suppose x ∈ Ker L ∩ ∂Ω , Q Nx �= 0 holds, and

deg( J Q N|Ker L∩∂Ω) �= 0,

where deg( J Q N|Ker L∩∂Ω), represents the Brouwer degree. Then Lx = Nx has at least one solution on Dom L ∩ Ω .

Now, we state our main theorem.

Theorem 3.1. Under assumptions (H1), (H2), system (1.3) has at least one positive ω-periodic solution if and only if (H3).

Proof. Let xi(t) = exp(yi(t)), i = 1,2, then the system (1.3) becomes

ẏ1(t) = b(t) − a(t)e y1(t) − c(t)e y1(t)+y2(t)

h2e2y1(t)+e2y2(t) ≡ f1,

ẏ2(t) = e(t) − f (t)e y2(t)−y1(t) ≡ f2, t �= tk;
yi

(
t+
k

) = ln
(
1 + hi

k

) + yi(tk), i = 1,2, t = tk, k ∈ Z+. (3.1)

Only if part. If (y1(t), y2(t))T is a positive ω-periodic solution of system (3.1), then for t �= tk (k = 1,2, . . . ,q) integrating
(3.1) over the interval [0,ω] and using yi(0) = yi(ω), we have

ω∫
0

{
b(t) − a(t)e y1(t) − c(t)e y1(t)+y2(t)

h2e2y1(t)+e2y2(t)

}
dt = −

q∑
k=1

ln
(
1 + h1

k

)
,

ω∫ {
e(t) − f (t)e y2(t)−y1(t)}dt = −

q∑
k=1

ln
(
1 + h2

k

)
.

0
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Thus

0 <
c

2|h|ω <

{
a(t)e y1(t) + c(t)e y1(t)+y2(t)

h2e2y1(t) + e2y2(t)

}
dt =

q∑
k=1

ln
(
1 + h1

k

) + bω,

eω +
q∑

k=1

ln
(
1 + h2

k

) =
ω∫

0

f (t)e y2(t)−y1(t) dt > 0,

which give (H3).
If part. In order to use Lemma 3.1 to system (3.1), we set

X = {
x(t) = (

x1(t), x2(t)
)T ∣∣ xi(t) ∈ P Cω, i = 1,2

}
,

with norm

‖x‖ = ∥∥(
x1(t), x2(t)

)T ∥∥ =
2∑

i=1

∥∥xi(t)
∥∥ =

2∑
i=1

max
0�t�ω

∣∣xi(t)
∣∣.

Then (X,‖ · ‖) is a Banach space. Moreover, let

Y = {
ỹ = [ ẏ, ξ1, ξ2, . . . , ξq]

} = X × R2q,

where y(t) = (y1(t), y2(t))T ∈ P C ′
ω, ξk = (m1

k ,m2
k )T = (
y1(tk),
y2(tk))

T are constant vectors, k = 1,2, . . . ,q. Let ‖ ỹ‖ =
‖ ẏ(t)‖ + ∑q

i=1 ‖ξi‖. Then (Y ,‖ · ‖) is a Banach space.
Set L : Dom L ⊂ X → Y , as

L

(
y1
y2

)
=

((
y′

1(t)

y′
2(t)

)
,

(

y1(t1)


y2(t1)

)
, . . . ,

(

y1(tq)


y2(tq)

))

where

Dom L = {
y(t) = (y1, y2)

T ∈ X
∣∣ y′(t) ∈ P Cω

} = {
y(t) = (y1, y2)

T ∈ X
∣∣ y(t) ∈ P C ′

ω

}
.

At the same time, we denote

N
(

y(t)
) =

((
f1

f2

)
,

(
ln(1 + h1

1)

ln(1 + h2
1)

)
, . . . ,

(
ln(1 + h1

q)

ln(1 + h2
q)

))

and define two projectors P and Q as P : X → X ,

P
(

y(t)
) = 1

ω

( ∫ ω
0 y1(t)dt∫ ω
0 y2(t)dt

)
;

Q : Y → Y , as

Q

((
f1(t)

f2(t)

)
,

(
h1

1

h2
1

)
, . . . ,

(
h1

q

h2
q

))
=

(
1

ω

( ∫ ω
0 f1(t)dt + ∑q

k=1 h1
k∫ ω

0 f2(t)dt + ∑q
k=1 h2

k

)
,

(
0
0

)
, . . . ,

(
0
0

))

obviously

Im L =
{

z =
( (

f1(t)

f2(t)

)
,

(
h1

1

h2
1

)
, . . . ,

(
h2

q

h2
q

) )
∈ Y

∣∣∣
ω∫

0

f i(t)dt +
q∑

k=1

hi
k = 0, i = 1,2

}

and

Ker L =
{

x
∣∣∣ x ∈ X, y =

(
e1
e2

)
∈ R2

}
= Im P ,

Im L =
{

x ∈ Y
∣∣∣

ω∫
0

f i(t)dt +
q∑

k=1

hi
k = 0, i = 1,2

}
= Ker Q

are closed sets in Y and dim Ker L = codim Im L = 2. Hence, L is a Fredholm mapping of index zero. Furthermore, the
generalized inverse of L:
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K P : Im L → Ker P ∩ Dom L

has the form

K P (z) = K P

( (
ẏ1(t)

ẏ2(t)

)
,

(
h1

1

h2
1

)
, . . . ,

(
h1

q

h2
q

) )

=
⎛
⎝

∫ t
0 f1(s)ds + ∑

0<tk<t h1
k − ∑q

k=1 h1
k − 1

ω

∫ ω
0

∫ t
0 f1(s)ds dt∫ t

0 f2(s)ds + ∑
0<tk<t p2

k − ∑q
k=1 h2

k − 1
ω

∫ ω
0

∫ t
0 f2(s)ds dt

⎞
⎠ .

Thus

Q N
(

y(t)
) =

(
1
ω

( ∫ ω
0 f1(t)dt + ∑q

k=1 ln(1 + h1
k)∫ ω

0 f2(t)dt + ∑q
k=1 ln(1 + h2

k)

)
,

(
0
0

)
, . . . ,

(
0
0

) )

and

K P (I − Q )N
(

y(t)
) =

⎛
⎝

∫ t
0 f1(t)dt + ∑

0<tk<t ln(1 + h1
k)∫ t

0 f2(t)dt + ∑
0<tk<t ln(1 + h2

k)

⎞
⎠ +

(
1

2
− t

ω

)( ∫ ω
0 f1(t)dt + ∑q

k=1 ln(1 + h1
k)∫ ω

0 f2(t)dt + ∑q
k=1 ln(1 + h2

k)

)

− 1

ω

( ∫ ω
0

∫ t
0 f1(s)ds dt + ∑q

k=1 ln(1 + h1
k)∫ ω

0

∫ t
0 f2(s)ds dt + ∑q

k=1 ln(1 + h2
k)

)

by Lebesque convergence theorem, we know Q N and K P (I − Q )N are continuous. Moreover, by Lemma 2.1, we get
Q N(Ω), K P (I − Q )N(Ω) are relatively compact for any open bounded set Ω ⊂ X . Hence, N is L-compact on Ω , here
Ω is any open bounded set in X .

Now we are in a position to search for an appropriate open bounded subset Ω for the application of Lemma 3.1, corre-
sponding to equation Ly = λN y, λ ∈ (0,1), we have{

ẏi(t) = λ f i(t), t �= tk,

yi
(
t+
k

) = λ
(
ln(1 + hi

k) + yi(tk)
)
, t = tk, i = 1,2,

(3.2)

where f i(t) are defined as (3.1). Suppose that y(t) = (y1(t), y2(t))T ∈ X is a solution of system (3.2) for a certain λ ∈ (0,1).
By integrating system (3.2) over the interval [0,ω], we can obtain

ω∫
0

{
b(t) − a(t)e y1(t) − c(t)e y1(t) + e y2(t)

h2e2y1(t)+2y2(t)

}
dt = −

q∑
k=1

ln
(
1 + h1

k

)
. (3.3)

Thus

ω∫
0

{
a(t)e y1(t) + c(t)e y1(t)+y2(t)

h2e2y1(t) + e2y2(t)

}
dt =

q∑
k=1

ln
(
1 + h1

k

) + bω. (3.4)

From (3.2), (3.4), we can obtain

ω∫
0

∣∣ ẏ1(t)
∣∣dt �

(|b| + b
)
ω +

q∑
k=1

∣∣ln(
1 + h1

k

)∣∣ +
q∑

k=1

ln
(
1 + p1

k

) ≡ A1. (3.5)

Similarly, we have

ω∫
0

∣∣ ẏ2(t)
∣∣dt �

(|e| + e
)
ω +

q∑
k=1

∣∣ln(
1 + h2

k

)∣∣ +
q∑

k=1

ln
(
1 + p2

k

) ≡ A2. (3.6)

Note that y = (y1(t), y2(t))T ∈ X , then there exist ξi, ηi ∈ [0,ω], i = 1,2, such that

yi(ξi) = inf
t∈[0,ω] yi(t), yi(ηi) = sup

t∈[0,ω]
yi(t). (3.7)
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It follows from (3.4), (3.7) that

a exp
(

y1(ξ1)
)
ω �

ω∫
0

a(t)exp
(

y1(t)
)

dt �
q∑

k=1

ln
(
1 + h1

k

) + bω,

which implies that

y1(ξ1) � ln

(
1

ω

q∑
k=1

ln
(
1 + h1

k

) + b

)
− ln a ≡ B1. (3.8)

This combined with (3.5) and Lemma 2.2 gives

y1(t) � y1(ξ1) + 1

2

( ω∫
0

∣∣ ẏ1(t)
∣∣dt +

q∑
k=1

∣∣ln(
1 + h1

k

)∣∣) � B1 + A1

2
+ 1

2

q∑
k=1

∣∣ln(
1 + h1

k

)∣∣ ≡ C1. (3.9)

In particular, we have y1(η1) � C1.
On the other hand, from (3.2), (3.4) and (3.9), we have

q∑
k=1

ln
(
1 + h1

k

) + bω � aω exp
(

y1(η1)
) + cω

2|h| . (3.10)

Then we have

y1(η1) � ln
1
ω

∑q
k=1 ln(1 + h1

k) + b − c
2|h|

a
= D1. (3.11)

Then we derive from Lemma 2.2, (3.5), and (3.11) that

y1(t) � y1(η1) − 1

2

( ω∫
0

∣∣ ẏ1(t)
∣∣dt +

q∑
k=1

∣∣ln(
1 + h1

k

)∣∣) � D1 − A1

2
− 1

2

q∑
k=1

∣∣ln(
1 + h1

k

)∣∣ ≡ E1. (3.12)

From (3.9) and (3.12), it follows that

max
t∈[0,ω]

∣∣y1(t)
∣∣ � max

{|C1|, |E1|
} = H1.

Similarly, we have

max
t∈[0,ω]

∣∣y2(t)
∣∣ � max

{|C2|, |E2|
} = H2,

where

C2 = H1 + ln e − ln f + 1

2

(
|e| + e + 1

ω

q∑
k=1

ln
(
1 + h2

k

)) +
q∑

k=1

∣∣ln(
1 + h2

k

)∣∣,
E2 = ln e − ln f − H1 − 1

2

(
|e| + e + 1

ω

q∑
k=1

ln
(
1 + h2

k

)) −
q∑

k=1

∣∣ln(
1 + h2

k

)∣∣.
It is obvious that H1, H2 are independent of λ.

Let H = max{H1, H2} + c, where c is sufficiently large such that the solution (ln u∗
1, ln u∗

2)
T of

b − ae y1 − ce y1+y2

h2e2y1 + e2y2
+ 1

ω

q∑
k=1

ln
(
1 + h1

k

) = 0,

e − f e y2−y1 + 1

ω

q∑
k=1

ln
(
1 + h2

k

) = 0 (3.13)

satisfies max{| ln u∗
i |} < c, then ‖y‖ < M . Let Ω = {y = (y1, y2) ∈ (P C ′

ω)2: ‖x‖ � H} that Ω verifies the requirement (1) in
Lemma 3.1, when x ∈ ∂Ω ∩ R2, x is a constant vector in R2 with ‖x‖ = H , then

Q N y =
⎛
⎝

⎛
⎝ b − ae y1 − ce y1+y2

h2e2y1 +e2y2
+ 1

ω

∑q
k=1 ln(1 + h1

k)

e − f e y2−y1 + 1 ∑q ln(1 + h2)

⎞
⎠ ,

(
0
0

)⎞
⎠

ω k=1 k 2×1
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and for x ∈ Ker L ∩ Ω . We have

J Q N y =
⎛
⎝ b − ae y1 − ce y1+y2

h2e2y1 +e2y2
+ 1

ω

∑q
k=1 ln(1 + h1

k)

e − f e y2−y1 + 1
ω

∑q
k=1 ln(1 + h2

k)

⎞
⎠

2×1

,

a direct computation gives

deg( J Q N|Ker L∩∂Ω) �= 0.

Here J is taken as the identity mapping since Im Q = Ker L. So far we have proved that Ω satisfies all the assumptions
in Lemma 3.1. Hence (3.1) has at least one ω-periodic solutions y with x ∈ Ω ∩ Dom L. Let xi(t) = exp(yi), i = 1,2. Then
(x1(t), x2(t)) are positive ω-periodic solutions of (1.3). The proof is completed. �
4. Attractivity of positive periodic solutions

Lemma 4.1. (See [39].) Let f be a nonnegative function defined on [0,+∞) such that f is integrable on [0,+∞) and is uniformly
continuous on [0,+∞). Then limt→+∞ f (t) = 0.

Theorem 4.1. In addition to the conditions (H1)–(H3), if the following condition also holds:

(H4) There exist positive constants si , ωi , i = 1,2, and ρ such that mint∈[0,ω]{ψi(t), ζi(t)} > ρ , i = 1,2, with

ψi(t) =
(

s1a(t) − s2 f (t)x∗
2(t)

x2∗1(t)
+ 2s1c(t)x2∗1(t)x∗2(t)

(h2x∗2
2 (t) + x∗2

1 (t))2
+ s1c(t)x∗2(t)

h2x∗2
2 (t) + x∗2

1 (t)

)
,

ζi(t) =
(

s2 f (t)

x∗
1(t)

− s1c(t)x∗
1(t)

h2x2∗2(t) + x2∗1(t)
− 2h2s1c(t)x∗

1(t)x∗2
2 (t)

(h2x2∗2(t) + x2∗1(t))
2

)
, (4.1)

where x∗i(t), x∗
i (t), i = 1,2, are defined as Theorem 3.1. Then system (1.3) has a unique positive ω-periodic solution which is globally

attractive.

Proof. We shall show that the periodic solution (x1(t), x2(t)) of system (1.3) is globally attractive. Let (y1(t), y2(t)) be any
other solution of system (1.3). Consider the following Lyapunov function:

W (t) =
2∑

i=1

si
∣∣ln xi(t) − ln yi(t)

∣∣. (4.2)

Calculating the upper right derivative D+W (t) of W (t) along the solution of (4.2), by simplifying, for t �= tk , we have

D+W (t) � −s1c(t) sgn
{

x1(t) − y1(t)
}[ x1(t)x2(t) − y1(t)y2(t)

h2x2
2(t) + x2

1(t)
+ y1(t)y2(t)

h2x2
2(t) + x2

1(t)
− y1(t)y2(t)

h2 y2
2(t) + y2

1(t)

]

− s1a(t)
∣∣x1(t) − y1(t)

∣∣ − s2 f (t) sgn
{

x2(t) − y2(t)
}[ x2(t)

x1(t)
− y2(t)

y1(t)
+ y2(t)

x1(t)
− y2(t)

y1(t)

]

� −s1c(t) sgn
{

x1(t) − y1(t)
}[ x2(t)(x1(t) − y1(t))

h2x2
2(t) + x2

1(t)
+ y1(t)(x2(t) − y2(t))

h2x2
2(t) + x2

1(t)

+ y1(t)y2(t)(h2 y2
2(t) − h2x2

2(t)) + y2
1(t) − x2

1(t)

(h2x2
2(t) + x2

1(t))(h
2 y2

2(t) + y2
1(t))

]
−

(
s1a(t) − s2 f (t)y2(t)

x1(t)y1(t)

)∣∣x1(t) − y1(t)
∣∣

− s2 f (t)

x1(t)

∣∣x2(t) − y2(t)
∣∣

� −
(

s1a(t) − s2 f (t)x∗
2(t)

x2∗1(t)
+ 2s1c(t)x2∗1(t)x∗2(t)

(h2x∗2
2 (t) + x∗2

1 (t))2
+ s1c(t)x∗2(t)

h2x∗2
2 (t) + x∗2

1 (t)

)∣∣x1(t) − y1(t)
∣∣

−
(

s2 f (t)

x∗
1(t)

− s1c(t)x∗
1(t)

(h2x2∗2(t) + x2∗1)
2(t)

− 2h2s1c(t)x∗
1(t)x∗2

2 (t)

(h2x2∗2(t) + x2∗1(t))
2

)∣∣x2(t) − y2(t)
∣∣

� −ρ

2∑
i=1

∣∣xi(t) − yi(t)
∣∣, (4.3)

where ρ is defined as (4.1).
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On the other hand, for t = tk , we have

W
(
t+
k

) =
2∑

i=1

si
∣∣ln xi

(
t+
k

) − ln yi
(
t+
k

)∣∣ = W (tk). (4.4)

From (4.3) and (4.4), we have

D+W (t) � 0, 
W (tk) � 0.

An integration of (4.3) over [T0, t], we obtain that

ρ

t∫
T0

2∑
j=1

∣∣xi(s) − yi(s)
∣∣ds � W (T0) − W (t), for all t � T0.

Therefore, by Lemma 4.1, we have

t∫
T0

2∑
j=1

∣∣xi(s) − yi(s)
∣∣ds � W (T0)

ρ
< +∞. (4.5)

Then we have

lim
t→∞

∣∣xi(t) − yi(t)
∣∣ = 0, i = 1,2,

which implies the global attractivity of system (1.3). This completes the proof of Theorem 4.1. �
5. An example

Consider the following system

ẋ1(t) = x1(t)

(
9 + sin 2t − 4x1(t) −

1
2 x1(t)x2(t)

x2
2(t) + x2

1(t)

)
,

ẋ2(t) = x2(t)

(
9 + cos 2t − 4

x2(t)

x1(t)

)
, t �= tk,

xi
(
t+
k

) = 1

2
xi(tk), tk = kπ, tk+2 = tk + π, i = 1,2, k ∈ Z+ = {1,2, . . . , } (5.1)

then the conditions (H1)–(H4) of Theorem 4.1 are satisfied. Thus (5.1) has a positive periodic solution, which is globally
attractive.
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