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Abstract

We consider the problem of clustering a collection of elements based on pairwise judgments of similarity and
dissimilarity. Bansal et al. (in: Proceedings of 43rd FOCS, 2002, pp. 238–247) cast the problem thus: given a graph
Gwhose edges are labeled “+” (similar) or “−” (dissimilar), partition the vertices into clusters so that the number
of pairs correctly (resp., incorrectly) classified with respect to the input labeling is maximized (resp., minimized).
It is worthwhile studying both complete graphs, in which every edge is labeled, and general graphs, in which some
input edges might not have labels. We answer several questions left open by Bansal et al. (2002) and provide a
sound overview of clustering with qualitative information.

Specifically, we demonstrate a factor 4 approximation for minimization on complete graphs, and a factorO(log n)

approximation for general graphs. For the maximization version, a PTAS for complete graphs was shown by Bansal
et al. (2002), we give a factor 0.7664 approximation for general graphs, noting that a PTAS is unlikely by proving
APX-hardness. We also prove the APX-hardness of minimization on complete graphs.
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1. Introduction

The problem of grouping a corpus of data into clusters that contain similar items arises in numerous
contexts and disciplines. Deservedly, it has been studied extensively in the algorithms and combinatorial
optimization literature. Much of this literature works with the following abstraction of the problem: the
input is represented as a table ofdistancesbetween pairs of items where the distance betweenx and
y representshow different xandy are. The goal is to find a clustering of the data that optimizes some
function of the distances between items within or across clusters under some global constraint, such as
knowledge of the total number of clusters. Quintessential examples include thek-center,k-median, and
k-sum clustering problems.

This clustering paper departs from the above distance paradigm.All we have at our disposal isqualitative
informationfrom a judge: a labeling of each pair of elements as either similar or dissimilar. We are not
provided with any quantitative distance information about the pairs. Our aim is to produce a partitioning
into clusters that puts similar objects in the same cluster and dissimilar objects in different clusters, to
the maximum extent possible. If there exists a clustering that iscorrectfor every edge, then the problem
is trivially solved by identifying as clusters the connected components in the graph of similar pairs (see
below). When the judge has made mistakes, interesting and non-trivial questions arise: primarily, finding
a clustering that differs from the judge’s verdicts on the fewest possible pairs. Bansal et al. pointed out
that correlation clustering corresponds to agnostic learning[16], when viewed as a machine learning
problem. The edge labels are the examples and we are only allowed to use partitionings as hypotheses
for the target function.

An obvious graph-theoretic formulation of the problem is the following: given a graphG = (V ,E)

with each edge labeled either “+” (similar) or “−” (dissimilar), find a partitioning of the vertices into
clusters that agrees as much as possible with the edge labels. The maximization version, denoted by
MAXAGREE in this paper, seeks to maximize the number of agreements: the number of+ edges inside
clusters plus the number of—edges across clusters. The minimization version, denoted by MINDISAGREE,
aims to minimize the number of disagreements: the number of—edges within clusters plus the number of
+ edges between clusters. An intriguing feature of this clustering problem is that, unlike most clustering
formulations, we do not need to specify the number of clustersk as a parameter. We have only a single
objective; whether the optimal solution uses few or many clusters is automatically dictated by the edge
labels.

If every pair of elements is labeled either+ or −, thenG will be a complete graph. So that we can
capture situations where the judge might be unable to tell if certain pairs of elements are similar or
dissimilar, we do not insist on the input being a complete graph. One upshot of the clustering will be
to deduce the missing labels from the existing ones. Also, in some instances the judge might provide
confidence information for each of the labels. This is captured by assigningweightsto the edges; one can
then consider natural weighted versions of MAXAGREEand MINDISAGREE.

1.1. Previous and related work

The above problem on complete graphs seems to have been first considered by Ben-Dor et al.[3]
motivated by some computational biology questions. Later, Shamir et al.[20] studied the computational
complexity of the problem and showed that MAXAGREE (and hence also MINDISAGREE) is NP-hard for
complete graphs. Shamir et al. used the termCluster editingto refer to this problem; recent algorithms
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for fixed parameter versions are presented by Gramm et al.[12]. Independently, Chen et al.[4] examined
a very similar problem in the context of phylogeny trees, essentially showing that MINDISAGREE is
NP-hard.

As mentioned earlier, Bansal et al.[1] considered this problem independently. They initiated the study
of approximate solutions to MINDISAGREEand MAXAGREE, focusing mainly on the case whenG is com-
plete. Bansal et al. gave a polynomial time approximation scheme (PTAS) for MAXAGREE on complete
graphs. For the minimization version MINDISAGREE, they gave an approximation algorithm with constant
performance ratio. The constant is a rather large one, so it should be viewed as a qualitative result, demon-
strating that a constant factor approximation can be achieved. In the full version of their work[2], Bansal
et al. provide a simple algorithm that is at most a factor three worse than the best partitioning intotwo
clusters. They posed several open questions including those of demonstrating hardness of approximation
results for complete graphs and understanding the problem on general graphs. These questions motivated
a number of groups, such as ours, to work on this problem simultaneously.

Both Demaine and Immorlica[6], and Emanuel and Fiat[7], independently from each other and
from this paper, announced results on clustering with qualitative information. These two papers focus
on MINDISAGREEin general graphs. Demaine and Immorlica[6] present a factorO(log n) algorithm for
general graphs, based onregion growing, and demonstrate an approximation-preserving reduction from
(weighted) minimum multicut. They also provide anO(r3) approximation algorithm for MINDISAGREEin
Kr,r -minor-free graphs. In[7], both reductions to and from minimum multicut are presented; in particular
the authors show a reduction from unweighted multicut to unweighted MINDISAGREE. For MAXAGREEon
general graphs, Swamy[21], again independently from this paper, presented a factor 0.7666 approximation
algorithm (very slightly better than the factor we present here).

1.2. Our results

In this paper, we answer several questions left open by the work of Bansal et al.[1]. As a consequence,
our results provide a better overview of the approximability of the various variants of clustering with
qualitative information.
Complete graphs: Our main algorithmic result here is a factor 4 approximation algorithm for

MINDISAGREE on complete graphs. This significantly improves on the performance ratio of the com-
binatorial algorithm in[1]. Our algorithm is based on a natural linear programming relaxation; it rounds
the fractional solution (a semi-metric on the vertices) using theregion growingapproach. The complete-
ness of the graph allows us to achieve a constant approximation using region growing, instead of the usual
logarithmic factor[10]. The integrality gap of our LP formulation is 2 and we also show that beating
factor 3 would require significant departure from our strategy. To complement our algorithmic result, we
also prove that MINDISAGREEon complete graphs is APX-hard (that is, is NP-hard to approximate within
some constant factor greater than 1) via a somewhat intricate reduction. The reduction used in[1] to prove
NP-hardness does not yield APX-hardness. In contrast, the MAXAGREEdoes admit a PTAS on complete
graphs[1].
General graphs: Bansal et al. did not give any algorithms for general graphs, but noted that MINDISAGREE

is APX-hard. They provided evidence that MAXAGREEis unlikely to admit a PTAS (unlike the complete
graph case) by showing that a PTAS would imply a much better algorithm for coloring 3-colorable
graphs than is currently known. We give a factorO(log n) approximation algorithm for MINDISAGREE—
this follows from a straightforward modification of the Garg,Vazirani,Yannakakis (GVY) region-growing
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algorithm for minimum multicut[10]. We also note that MINDISAGREEis at least as hard to approximate
as multicut, so a constant factor approximation algorithm would be a major breakthrough.

We prove that MAXAGREE is APX-hard and thereby provide a concrete hardness result—in contrast
to the aboveevidenceof hardness based on a relation to graph coloring. A complementary hardness
result follows for MINDISAGREE. On the algorithmic side, the naive12-approximation algorithm, namely
choosing the better of placing all elements in a single cluster and placing each of them in a separate
cluster, was the best known for MAXAGREE. We give a factor 0.766 approximation algorithm based on
rounding a semidefinite programming relaxation. Moreover, if there exists a clustering that correctly
classifies most of the edges, then our algorithm will also find one with a similar property (we defer the
quantitative statement to the relevant technical section). Our interest in the latter result is due in part to the
fact that it brings out some of the difficulty that must be overcome if one tries to prove a super-constant
factor inapproximability result for MINDISAGREE. Such a result would have to focus on instances where
an almost perfect clustering exists for both theyesandnocases of the gap reduction.

1.3. Organization

We present algorithms for general graphs (for both the minimization and maximization variants) in
Section2. We then turn to complete graphs and describe our factor 4 approximation algorithm for
MINDISAGREE in Section3. Finally, we present the inapproximability results that complement our al-
gorithms in Section4.

2. Algorithms for general graphs

In this section, we consider the problems MINDISAGREEand MAXAGREEon general weighted graphs.

2.1. MINDISAGREE

We describe a natural LP relaxation for MINDISAGREE. This is very similar to the LP used in the GVY
minimum multicut algorithm[10].

minimize
∑
+(ij)

wij · xij + ∑
−(ij)

wij · (1− xij )

subject to
xik�xij + xjk for all i, j, k,
xij ∈ {0,1} for all i, j.

(1)

A partitioning into clusters can be represented with a set of binary variables, one for each pair of vertices.
If i and j are in the same cluster thenxij is 0, if they are in different clusters thenxij is 1. Since each
cluster is an equivalence class, we know that ifxij = 0 andxjk = 0, thenxik = 0. We can express this
fact using the triangle inequality,

xik�xij + xjk.

The objective is to minimize the number of mistakes: the number of positive edges for whichxij is one
and the number of negative edges for whichxij is zero. The integer program (1) summarizes the situation:
+(ij) indicates that the edge betweeni andj has a positive label, while−(ij) indicates a negative label.



364 M. Charikar et al. / Journal of Computer and System Sciences 71 (2005) 360–383

We note in passing that solid lines indicatepositiveedges, whereas dashed lines indicatenegativeedges
in the diagrams. The confidence that the judge places on the (dis)similarity label between +i and j is
represented by the weightwij . The LP relaxation is obtained by replacing the integer constraints in (1)
with 0�xij �1 for all i, j .

Let the value of the optimal LP solution be denoted by OPTLP. A fairly straightforward application of
the GVY region growing procedure yields a solution of cost at mostO(log n)OPTLP. We briefly describe
this algorithm, ALGGENERAL, and outline its analysis.

We will refer toxij as thedistancebetweeni andj, which is consistent with the fact thatxij is a semi-
metric in the range[0,1]. Intuitively, points that arecloseshould be placed in the same cluster and points
that arefar should be placed in different clusters. LetBx(i, r) denote the set of points whose distance
from i is less than or equal tor. For a set of verticesS, let �(S) be the set of edges betweenSandS.

ALGGENERAL

1. C← ∅. /* Collection of clusters */
2. While there existi, j in the graph such thatxij > 2

3:
(a) LetS = Bx(i, r) for somer < 1

3. /* See proof for value ofr */
(b) C← C ∪ {S}.
(c) RemoveS and�(S) from the current graph.

3. ReturnC.

Theorem 1. ALGGENERAL achieves anO(log n) approximation forMINDISAGREEon general graphs.

Proof. The GVY region growing procedure suggests the choice of radiusr in step 2(a) of the algorithm.
SetV +x (i, r) to be

OPTLP

n
+

∑
+(uv)∈Bx(i,r)

wuvxuv +
∑

+(uv)∈�(Bx(i,r))

wuv(r − xiu).

This is the contribution to the LP solution from positive edges that have at least one endpoint inBx(i, r),
plus an additional amount OPTLP/n. Let W+x (i, r) denote the sum of weights of positive edges in
�(Bx(i, r)). We chooser < 1

3 so that the ratio ofW+x (i, r) to V +x (i, r) is minimized. The analysis tech-
nique in[10] can be used to show that there exists a radiusr < 1

3 such thatW+x (i, r)�(3 log n)V +x (i, r).

This and the triangle inequality imply that the total weight of positive edges with end points in different
clusters is inO(log n)OPTLP.

Now we account for the negative edges.Any negative edgeij that ends up inside a cluster in our solution
contributeswij · (1− xij ) to the LP, which is at leastwij/3, sincexij � 2

3. On the other hand, we paywij

for this edge. This implies that the total weight of negative edges with end points in the same cluster is at
mostO(log n)OPTLP. �

TheO(log n) approximation ratio we obtain from our LP is asymptotically the best possible. Our LP
formulation has integrality gap�(log n), as shown by examples similar to the expander gap examples
for minimum multicut[10].
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We expect that a procedure such as this one, whichlearnsdistances from similarity judgment infor-
mation, will have further applications in situations where no natural distance function exists.

2.2. MAXAGREE

Since Bansal et al.[1] presented a PTAS for complete graphs, we need only look at general graphs for
MAXAGREE. Obtaining a1

2 approximation for MAXAGREE is trivial, as observed by Bansal et al.[1] for
the complete graph. If the total weight of positive edges is greater than the total weight of negative edges,
place all vertices in one cluster; otherwise, put each of them in an individual cluster.

2.2.1. A linear program with poor integrality gap
Consider an LP relaxation for MAXAGREEsimilar to the LP used for MINDISAGREE. The constraints are

exactly the same, but the objective is

maximize
∑
+(ij)

wij · (1− xij )+
∑
−(ij)

wij · xij .

Theorem 2. The integrality gap of the LP relaxation forMAXAGREEis no better than23+ε for anyε > 0.

Proof. Our gap instance consists of two setsAandBof nvertices each. The graph is in fact complete, with
every edge having a positive or negative label. The edges betweenA andB are positive; those with end
points within the same set are negative. Thus there aren2 positive edges andn(n−1) negative edges. The
optimal LP solution assignsxij = 1

2 for +(ij) andxij = 1 for−(ij), and so OPTLP is n(n− 1)+ n2/2.
On the other hand, the value ofOPT for this instance isn2: any instance with equal numbers of elements
from A andB in each cluster suffices—we leave the proof to the reader. Hence the integrality gap is
2n/(3n− 2), which approaches23 asn increases. �

2.2.2. Rounding a semidefinite program
We next consider a semidefinite program (SDP) for MAXAGREE, as SDPs can be solved to arbitrary

precision in polynomial time. To motivate the SDP, we associate a distinct basis vector with each cluster in
a solution; for every vertexi in that cluster we set the unit vectorvi to be that basis vector. The agreement
of the clustering solution can now be expressed in terms of the dot productsvi · vj . If verticesi andj are
in the same cluster, thenvi · vj = 1, if not,vi · vj = 0. With this vector solution in mind, we consider the
SDP relaxation (2) for MAXAGREE.

maximize
∑
+(ij)

wij (vi · vj )+ ∑
−(ij)

wij (1− vi · vj )

subject to
vi · vi = 1 for all i,

vi · vj �0 for all i, j.

(2)

Consider the following general approach for rounding this SDP: pickt random hyperplanes, dividing the
set of vertices into 2t clusters. We refer to this scheme asHt . Our rounding scheme takes the better of the
two solutions returned byH2 andH3, denoted by Best(H2, H3).
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Theorem 3. Best(H2, H3) returns a solution in which the expected number of agreements is at least
0.7664 OPTSDP.

Proof. In order to analyze Best(H2, H3), we consider a slightly different scheme: pickH2 with probability
1− � and pickH3 with probability �, denoted by Comb(H2, H3). Clearly, the approximation ratio of
Comb(H2, H3) is a lower bound on the approximation ratio of Best(H2, H3).

We perform an edge-by-edge analysis: for each edgeij , we measure the expected contribution to the
solution produced relative to its SDP contribution. The (non-negative) edge weights are common to both
the integral formulation and its SDP relaxation and so can be ignored. Consider an edgeij such that
the angle betweenvi andvj is � ∈ [0, �/2]. The probability thatvi andvj arenot separated byHt is
(1− �/�)t .

If ij is a positive edge, the contribution to the SDP solution isvi · vj = cos�. On the other hand, the
expected contribution to the number of agreements in Comb(H2, H3) is

(1− �)(1− �/�)2+ �(1− �/�)3.

If ij is a negative edge, the contribution to the SDP solution is 1− vi · vj = 1− cos�. On the other hand,
the expected contribution to the number of agreements in Comb(H2, H3) is

1− (1− �)(1− �/�)2− �(1− �/�)3.

Thus the approximation ratio can be bounded by

min
�∈[0,�/2]

{
(1− �)(1− �

�)
2+ �(1− �

�)
3

cos�
,

1− (1− �)(1− �
�)

2− �(1− �
�)

3

1− cos�

}
.

For ��0.1316, the minimum of the two expressions is3
4 + �/8. In fact the minimum value of the

second expression is34 + �/8 for all � ∈ [0,1] and is achieved when� = �/2. The upper bound on� is
obtained by minimizing the first expression. Setting� = 0.1316 yields a 0.7664 approximation. �

The following simple example shows that the best approximation factor we can hope to achieve using
the SDP (2) is at most 0.828. Our example has three vertices, 1,2,3, in which edges(1,2) and(2,3)
are positive, but(1,3) is negative. The optimal SDP solution consists of the vectorsv1 = (1,0), v2 =
(1/
√

2,1/
√

2), v3 = (0,1), with objective value 1+ 2/
√

2 = 1+√2. On the other hand,OPT = 2, so
the integrality gap is at most 2/(1+√2) ≈ 0.828.

Our SDP formulation does not, however, respect the triangle inequalities on the valuesxij = 1− vi ·
vj . Even with such constraints added, the example below shows that significant improvements to the
approximation ratio may not be possible. Consider an instance on five vertices 0,1,2,3,4. Edges from
0 are positive, but all others are negative. Withv0 = (0.5,0.5,0.5,0.5), andvi equal to theith basis
vectorei , OPTSDP= 8. However,OPT = 7, with clusters{0,1}, {2}, {3}, {4}, showing that we can rule
out an SDP-based algorithm with approximation factor greater than least 7/8 that observes the triangle
inequalities.

An alternative approach is to use the rounding scheme used by Frieze and Jerrum[9] for Max k-cut.
The basic idea is to pickk random unit vectors (spokes) and assign each vector to the closest spoke.
The analysis of such a scheme is quite involved and the gap example above suggests that pursuing this
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direction is unlikely to yield significant improvements. Swamy[21] recently carried out an analysis of
such a rounding procedure and reported a factor 0.7666 approximation algorithm for MAXAGREE.

2.3. Almost satisfiable instances

Consider an instance for which the optimal SDP solution is(1− ε)W , whereW is the total weight of
all the edges. We show that in this case it is possible to obtain a clustering with expected agreement in
(1−O(

√
ε log(1/ε)))W . This strong result suggests there would be difficulty in proving super-constant

inapproximability for MINDISAGREE.
It is convenient at this point to define various parameters. LetP denote the total weight of the positive

edges andN the total weight of the negative edges. We define� and� as follows:

� =
∑
+(ij) wij (1− vi · vj )

P
, � =

∑
−(ij) wij (vi · vj )

N
.

Since OPTSDP= (1− ε)W , we observe thatε ·W = � · P + � ·N .

Lemma 1. P
√

��W
√
ε.

Proof. It is trivially true if ��ε. Otherwise, by definitionP��Wε, soP
√

��Wε/
√

� < W
√
ε. �

We prove that the rounding schemeHt with t = log(1/ε) satisfies the following two lemmas and then
conclude with the main result of this section.

Lemma 2. The expected contribution from the positive edges is at leastP −O(
√
ε log(1/ε))W .

Proof. Defineεij to be 1−vi ·vj , so the expected weight of positive edges that arenotcut in the solution
is ∑

+(ij)
wij

[
1− cos−1(1− εij )/�)

]t
.

The function(1− cos−1(x)/�)t is convex, so by applying Jensen’s inequality, we obtain the lower bound

P
[
1− cos−1(1− �)/�

]t
.

Since cos−1(1− �) is inO(
√

�), the contribution of the positive edges is at least

P(1−O(
√

�))t �P(1− tO(
√

�))�P −O(
√
ε log(1/ε))W,

by Lemma1. �

Lemma 3. The expected contribution from the negative edges is at leastN(1− ε − �).
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Proof. Now redefineεij to bevi · vj . The expected weight of negative edges thatarecut in the solution
is ∑

−(ij)
wij

(
1− [1− cos−1(εij )/�

]t)
.

Again, convexity tells us that[
1− cos−1(εij )/�)

]t
is no greater than

εij
(
1− cos−1(1)/�

)t + (1− εij )
(
1− cos−1(0)/�

)t
.

This is bounded above byεij+1/2t . SinceN� =∑−(ij) wij εij , the expected contribution of the negative
edges is at leastN(1− �− ε), for t = log(1/ε). �

Theorem 4. The expected number of agreements as a result of rounding withHlog(1/ε) is in
W(1−O(

√
ε log(1/ε))).

minimize
∑
+(ij)

xij + ∑
−(ij)

(1− xij )

subject to
xik�xij + xjk for all i, j, k,
0�xij �1 for all i, j.

(3)

Proof. Lemmas2 and 3 show that the expected number of agreements resulting from theHlog(1/ε)
rounding scheme is at least

(P +N)−O(
√
ε log(1/ε))W − (ε + �)N.

We note that(ε+ �)N�2εW and thatε is inO(
√
ε log(1/ε)) asε→ 0. Therefore the expected number

of agreements is at leastW(1−O(
√
ε log(1/ε)).

3. MINDISAGREE on complete graphs

We now study the clustering problem on complete graphs. As already mentioned, Bansal et al.[1]
present a PTAS for MAXAGREE on complete graphs, hence we focus on MINDISAGREE. We present a
factor four algorithm for minimizing disagreements in the complete graph. In contrast to Bansal et al.[1],
who devised a combinatorial algorithm with factor 17433, our algorithm uses a linear programming
formulation of the problem.

3.1. The four approximation

Our approach bears some similarity to the algorithm for MINDISAGREEin general graphs,ALGGENERAL,
that we presented in Section2.1. Once the linear relaxation (3) of the program for the is solved, in
polynomial time, we are ready for our factor four approximation algorithm.
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S-T

u S-T

10.50

u T

T

ALGCOMPLETE

1. LetS = V and repeat the following steps untilS is empty.
2. Select a vertexu arbitrarily fromS.
3. LetT be the set of vertices whose distance fromu is no greater than12,

exceptu itself:Bx(u,
1
2) − { u}.

4. If the average distance of the vertices inT from u is not less than14,
then makeC = { u} a singleton cluster and jump to step 6.

5. If the average distance is less than 1/ 4, then makeC = { u} ∪ T a cluster.
6. LetS = S− C and jump to step 2 (the start of the loop).

Fig. 1. Illustration of the two main choices in ALGCOMPLETE: numerical annotations are thedistancesfrom u.

We refer toxij not only as thedistancebetweeni and j, but also as thelength of edge ij . The
procedure we present, ALGCOMPLETE, illustrated also in Fig.1, clearly describes a partitioning. We an-
alyze its performance by comparing the number of mistakes incurred to the LP costs of appropriate
edges.

Let us reflect on the natural intuition behind the algorithm. Intuitively, the LP solutionxui gives a
handle on how differentu andi are: the smaller the value ofxui the more incentive there is to placeu and
i in the same cluster. Therefore, it makes sense to cluster the points close tou (in a ballBx(u, r)) in one
cluster, sayC, together withu. If both i andj are close tou, but are connected by a negative edge, we will
cluster them together and make a mistake, but the LP cost of that edge 1− xij will also be high since
xij �xiu + xju must also be small. This basic strategy works well with negative edges. However, there
is a problem if most of the vertices inC are near itsperiphery, that is, at distance close tor from u. In
such a case, the LP might have very low costxij for some+(ij) crossing the cut, compared to the unit
cost that the algorithm incurs on the same edge. A natural measure of whether this phenomenon could
occur is the average distance fromu of points inC. If this is large, then there could be many points on
the periphery, and the above difficulty could occur, so we simply placeu in its own cluster. It turns out,
from the analysis that follows, that the best criterion for choosing between the ball cluster and a singleton
cluster, is whether the average distance is greater or less than1

4.
At each iteration of the loop, we relabel the vertices (other thanu) so thati < j if xui < xuj , breaking

ties arbitrarily. The triangle inequality tells us that fori < j ,

xuj �xui + xij and xij �xui + xuj .

Observation 1. The LP cost of a positive edge ij, xij , is at leastxuj −xui .The LP cost of a negative edge
ij , 1− xij , is at leastmax{0,1− xui − xuj }.
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Fig. 2. Charging mistakes and LP costs to the further (fixed) vertexj.

Associatedwith the new cluster,C, are the edges withinC and the edges betweenC andS − C. We
show that the mistakes in each iteration of ALGCOMPLETE can be charged to the LP costs of the edges
associated with the new clusterC. Let us now consider one iteration at a time, starting with the case when
a singleton cluster is formed.

3.1.1. Singleton cluster
The edges associated with a singleton cluster are simply all the edges incident tou: the positive ones

are the mistakes. We know from our choice in step 4 that∑
i∈T

xui � |T |/4.

For i ∈ T , 1−xui �xui , so the LP cost ofall edges fromu toT, is at least|T |/4. The number of (positive)
edge mistakes fromu to T, which is at most|T |, is thus at most four times the LP cost of edges fromu
toT.

The remaining edges associated with this cluster are betweenu andS − T . Each positive mistake
incident onu has distance, and thus LP cost, greater than1

2; so the number of mistakes is at most twice
the LP cost of these edges.

3.1.2. Cluster with T
We now turn to the case in whichC = {u} ∪ T . There are two kinds of mistakes in this case: negative

edges insideC and positive edges betweenC andS − C.
(i) Negative edge mistakes: If bothi andj are within distance38 of u, then the LP cost of negative edge

ij is at least14, by Observation1. This accounts for the mistake within factor 4.
Each remaining negative edge mistakeij will be charged to vertexj, the vertex that is further fromu

(see Fig.2).
Sofix j and assumexuj lies in the range(3

8,
1
2]. Observation1 tells us that the total LP cost of all the

edges withinC, associated withj, is at least∑
i:i<j,+(ij)

(xuj − xui)+
∑

i:i<j,−(ij)
(1− xui − xuj ).

We let xvv = 0 for all v so that this summation is well-defined. Denote bypj the number of posi-
tive edgesij for which i < j , and letnj stand for the number of such negative edges. The total cost
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is then

pjxuj + nj (1− xuj )−
∑
i:i<j

xui . (4)

Since we are includingT in C, we know that the average value ofxui is less than1
4 for i ∈ T . The

summation above is over the set{i : i < j}, but sincexui � 3
8 for i > j , the average value of the

summation terms in (4) is less than1
4. Hence the LP cost is greater than

pjxuj + nj (1− xuj )− pj + nj

4
. (5)

The number of mistakes associated withj is merelynj . The LP cost is bounded below by a linear
function (5) that ranges frompj/8+ 3nj/8, whenxuj = 3

8, topj/4+ nj/4, whenxuj = 1
2. Therefore

the LP cost is at leastnj/4 and all the (negative) mistakes are accounted for within factor four. Since
this property holds for everyj in the range(3

8,
1
2], we conclude that the total number of negative edge

mistakes is accounted for by appropriate LP edge costs within factor four.
(ii) Positive edge mistakes: Consider positive edgesij that cross the distance12 boundary:xui � 1

2, but
xuj >

1
2. In particular, ifxuj � 3

4, thenxuj − xui � 1
4 and so each such positive edge pays for itself within

factor four.
Again, we associate each remaining edge with the vertex that is further fromu. So fix j and assume

thatxuj is in the range(1
2,

3
4). The LP cost of the edges associated withj is

pjxuj + nj (1− xuj )−
∑

i∈T∪{u}
xui,

which is strictly greater than (5). This time, the linear function lower bound ranges betweenpj/4+nj/4,
whenxuj = 1

2, andpj/2, whenxuj = 3
4. The number of (positive) mistakes ispj so again we can

pay for these within factor 4 of the LP cost. This argument holds for allj and thus for all positive edge
mistakes.

3.1.3. Summary
Each choice of cluster leads to a ratio of at most four between the number of mistakes and the linear

programming cost of associated edges. Since in past iterations we never charged to edges withinS,
and in future iterations we charge only to edges withinS − C, we have a factor four approximation
algorithm.

Theorem 5. ALGCOMPLETEachieves a factor4 approximation forMINDISAGREEon complete graphs.

As we remarked earlier, if we assume that all positive edges are correct, the problem is trivial as it
reduces to finding connected components. Shamir et al.[20] studied thecluster deletionproblem, in
which all negativeedges are deemed to be correct and must be cut, and showed it to be APX-hard. In
this case, the problem analogous to MINDISAGREEis to find a clustering with the fewest possible positive
edges crossing cluster boundaries. Our algorithm for MINDISAGREE also achieves a 4 approximation in
this variant. The idea is to add the constraintsxij = 1 in the linear program for each−(ij), and then run
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Fig. 3. MINDISAGREEinstance with integrality gap almost 2, showing both the fractional optimum (with distances) and integral
optimum (with clusters). Some edges have been omitted for clarity.

ALGCOMPLETE on the LP solution. We make the minor amendment, which does not affect the proof of
Theorem5 substantially, thatT does not include the vertices whose distance fromu is exactly 1

2. Thus
each clusterC has diameter less than 1 and the endpoints of a negative edge are never placed in the same
cluster. The analysis for the number of mistakes on positive edges remains identical. With this variant, as
with MINDISAGREE, it is an interesting question whether the factor 4 can be improved.

3.2. Approximation limitations

3.2.1. Integrality gap
Any approximation technique that is based on the linear program (3) is limited by its integrality gap.

The followingstar example, in Fig.3, shows this gap is at least two. Placen vertices around a single
center vertex so that the center is joined to the others with positive edges, but the perimeter vertices have
negative edges between them. In an optimum fractional solution the positive edges have length1

2 and the
negative edges have length 1, so OPTLP = n/2. An optimal clustering places all the perimeter vertices
in singleton clusters, except for one, which is in a cluster with the center, soOPT = n − 1. The gap,
2(n− 1)/n, has limit 2 asn increases.

3.2.2. Limitations of region growing
The approximation technique we used, based on GVY region growing, cannot achieve a factor better

than three. Our algorithm cuts a clusterC out of the setS, whereC is chosen according to the distance
relation x. We allowed ourselves two options forC: the singleton set{u} or Bx(u,

1
2). If we restrict

ourselves to clusters of the formBx(u, r), or {u}, then we are confounded by the following star type
example. Admittedly, this example is not an optimal fractional solution to the linear program, but it is a
feasible solution and thus Observation1, on which our technique is based, applies.
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Fig. 4. Feasible solution example showing that withk thresholds our techniques cannot give an approximation ratio better than
3+ 1/k. The instance is complete, but we have chosen not to show edges that have little impact on the calculations.

The positive and negative labels are identical to the previous star, but now every edge has fractional
length 1

3. If our cluster radius is less than13 then we have a singleton cluster{u}, in which case the
gap ratio is 3. Alternatively, if the radius is at least1

3 then all the vertices are in one cluster and the
number of mistakes isn(n− 1)/2. Since the LP cost isn(n− 1)/6+ n/3, the gap is 3(n− 1)/(n+ 1),
which tends to 3 asn increases. Therefore, no radius-based approximation algorithm can beat a factor
of three.

3.2.3. Using fixed radii
Our factor four algorithm chose between a singleton cluster and a fixed cluster radius of1

2. A more
general algorithm might select the cluster radius based on the values of thex distance relation. We saw
that even if this option were available, we could not achieve an approximation factor better than three.
We now show that in some sense our algorithm is the best possible if the radius candidates—call them
thresholds—for cluster balls are specifiedin advance.

Theorem 6. Given a set of thresholds, of which k are greater than14, then our analysis techniques,which
rely only on the solution being feasible, cannot be used to show an approximation ratio better than
3+ 1/k.

Proof. Consider the analysis of the following feasible solution, shown in Fig.4, to the MINDISAGREELP,
which could occur in a single iteration of region growing.

Imagine that there aren2 vertices at distanceD = k/(3k+1)−ε fromu, and that for each thresholddi
in the range(D,1−D] there aren vertices at distancedi + ε. The edges between theD-vertices and the
all of thedi+ε-vertices are positive. There are alsonvertices at distancedi−ε for eachdi greater thanD
(including those thresholds greater than 1−D); they have negative edges to theD-vertices. Finally, every
edge betweenu and any other vertex is positive. We ignore all other edges as their costs are dominated
by the edges incident to theD-vertices.

For every threshold that lies in the range(1
4,D), the number of mistakes is dominated byn2 and

the LP cost is dominated byDn2. Therefore the integrality gap is 1/D, which tends to→ 3+ 1/k as
ε→ 0.
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For every other threshold, the LP cost is dominated by the edges between then2 D-vertices and the
vertices in the other sets. The LP cost of the edges todi − ε anddi + ε could be as low as

n3[(di + ε)−D] + n3[1− (di − ε)−D] = n3[1+ 2ε − 2D]

→ n3 · k + 1

3k + 1
asε→ 0.

The LP cost of the negative edges between theD-vertices and thedi − ε-vertices, wheredi > D, could
be zero. For each threshold betweenD and 1− D, of which there arek′�k, the number of mistakes is
(k′ + 1)n3. Therefore the ratio of mistakes to LP cost could be as high as

k′ + 1

k′
· 3k + 1

k + 1
,

which is 3+1/k whenk′ = k, and greater otherwise. The total LP cost associated with thresholds whose
distance is greater than 1− D may be no greater than before. Since the number of mistakes isat least
(k′ + 1)n3, we cannot prove an approximation ratio any better than 3+ 1/k. �

Note then that our factor four algorithm, which has one threshold greater than1
4, is the best we could

hope for with these techniques and just one threshold.

3.3. The connection to feedback edge sets

Using an alternative linear programming formulation, we demonstrate the link between MINDISAGREE

on complete graphs and a feedback edge set problem.
Polygon inequalities are generalizations of triangle inequalities: the length of one edge in a polygon is

at most the sum of the lengths of all the other edges in the polygon. Afull set of polygon inequalities is
equivalent to a full set of triangle inequalities. Our new formulation, however, contains only one type of
polygon inequality: the length of a negative edge is at most the sum of the lengths of edges in apositive
pathconnecting its endpoints. More precisely, for alli1, i2, . . . , im such that+(i1, i2), . . . ,+(im−1, im),
but−(i1, im),

m−1∑
j=1

xij ,ij+1 − xi1,im �0.

minimize
∑
+(ij)

xij + ∑
−(ij)

(1− xij )

subject to
m−1∑
j=1

xij ,ij+1 − xim,i1 �0 for allC(i1, . . . , im),

xij �1 for all − (ij),

xij �0 for all i, j.

(6)
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Fig. 5. Construction of a new NEPPC: Positive edgee is part of a tight NEPPCc, which has one negative edge�; edgee is also
in a cycle with positive pathp.

We call this type of polygon anegative edge with positive path cycle(NEPPC), and denote it by
C(i1, . . . , im). Elsewhere[7], NEPPCs have been called erroneous cycles.

We now show that the NEPPC constraints are a sufficiently large set that they imply all the triangle
(inequality) constraints foroptimalsolutions to the linear program (6). The following simple observation,
together with the consequent lemma, is the key.

Observation 2. In an optimal solution to the linear program(6), a positive edge either has length zero,
or it is part of some tight NEPPC constraint. Likewise, an optimal negative edge either has length one
or is part of some tight NEPPC constraint.

Lemma 4. In an optimal solution to LP(6), the polygon inequalities apply to every cycle of positive
edges.

Proof. Consider a positive pathp that is incident to both endpoints of positive edgee, with xe > xp in
an optimal solution (abusing notation). Since the length ofecannot be zero, Observation2 tells us thate
lies in some tight NEPPCc. Assume for the moment thatc does not share any vertices withp except for
the endpoints ofe. Now, consider the NEPPCc′ that is formed by replacinge in c with p. Sincec was
tight, butp is shorter thane, c′ must violate its NEPPC inequality.

It may be thatpandc share some vertices other than the endpoints ofe. If so, then form a NEPPCc′ by
building a positive pathp′ in the following way, where� refers to the negative edge inc (see also Fig.5).
1. Start at one endpoint of� and walk alongc until it intersectsp.
2. Now start at the other endpoint of� and walk in the other direction alongc until it intersectsp.
3. Complete the pathp′ by walking along the subpath ofp that joins

the intersection points, but does not includee.
Note that the intersection points above are well-defined, aspmust meetcat the very least at the endpoints
of e. Clearlyp′ and� form an NEPPCc′, but the length ofp′ is bounded by the sum of the lengths of
c − e − � and ofp. Sincecwas tight,

x� = xc−� = xc−e−� + xe > xc−e−� + xp�xp′,

hence the NEPPC inequality forc′ is breached. �
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Corollary 1. In every triangle of positive edges the triangle inequalities are satisfied in an optimal
solution to(6).

We are now able to prove our main result of this section.

Theorem 7. The linear program with only NEPPC polygon constraints(6) is equivalent to the triangle
inequality program(3), in the sense that their sets of optimal solutions are the same.

Proof. We first show that any optimal solution to (6) must satisfy the triangle inequalities.
Although the corollary above deals with all-positive triangles, there are still a number of different cases

and configurations to consider. We therefore leave the details to the reader, but note the following general
principles of the proof technique.

Consider some triangle in the graph that is not covered by the corollary above: it must have at least
one negative edge. If a negative edge has length one, then some of the triangle inequalities are trivially
satisfied. Otherwise, the negative edge is contained in a tight NEPPC. The combination of tight NEPPCs
and positive triangle edges allows us to use either the NEPPC constraints or Lemma4 to be sure that the
triangle inequality constraints are observed.

minimize
∑
+(ij)

xij + ∑
−(ij)

x′ij

subject to
m−1∑
j=1

xij ,ij+1 + x′im,i1 �1 for allC(i1, . . . , im),

xij �0 for all+(ij),
x′ij �0 for all−(ij).

(7)

Finally, since the linear program (6) is a relaxation of the original (3), the two formulations must have
the same set of optimal solutions.�

We note that one can also prove an integral equivalent to Theorem7: any optimal{0,1} solution to the
NEPPC constraint LP is an optimal solution to the MINDISAGREEproblem, in a complete graph.

If we replace each(1− xij ) term withx′ij for each negative edge, we obtain an LP with only positive
coefficients (7), in which thex′ij �1 constraints are unnecessary. In any feasible solution to (7), the sum of
the terms around any NEPPC is at least 1. If the variablesxij andx′ij are binary, then we have the following
interpretation: around any cycle that containsexactlyone negative edge we mustselectat least one edge.
That is, we need a feedback edge set for the set of cycles with exactly one negative edge. If the cycles of
interest were those withat leastone negative edge, we would already have a factor two approximation
algorithm[8]. This feedback edge set interpretation might lead to an algorithm with approximation ratio
better than four.

As a final comment, we note that there is also some similarity to the notion ofbalancein signedgraphs,
as used in the social sciences[19]. Each person in some group is represented by a node in a graph; there
is an edge between a pair of nodes if there is some strong relationship between the people, with the sign
of the edge reflecting the nature of the relationship. A group, and therefore the graph, is called balanced
if every cycle in the graph contains an even number of negative edges. There exist linear time algorithms
to determine whether a signed graph is balanced. However, some graphs are neither completely balanced
nor completely unbalanced and there is ongoing research to measure the degree of balance in them.
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4. Hardness of approximation

4.1. MINDISAGREEin general graphs

We first show that minimum multicut reduces in an approximation preserving way to MINDISAGREE.
Note that Bansal et al.[1] make a similar observation, though they use the all-pairs version of multicut,
usually called multiway cut, for the reduction. Reducing from the more general multicut problem, as other
groups have also done independently[6,7], provides us with evidence of the difficulty of approximating
MINDISAGREE within any constant factor. In contrast, multiway cut has approximation algorithms with
performance ratio a very small constant, 1.3438 being the current best[5,15].

Theorem 8. Minimum multicut reduces in an approximation preserving way toMINDISAGREE.

Proof. Given a graphG with k pairs(si, ti), in which eachsi must be separated from eachti , form an
instanceH of MINDISAGREE. The edges ofG become positive edges inH with unit weight. For eachi,
1�i�k, we add a (negative) edge betweensi andti with weight−W for some large positive integerW,
sayW = n2. We can make the instance unweighted by replacing a negative edge of weight−W byW
parallel length two paths; each path has a fresh intermediate vertex, with one edge of weight 1 and the
other of weight−1. Clearly, the minimum cost clustering must havesi and ti in different clusters for
everyi. The cost of the solution is simply the number of positive edges that lie between clusters, which
is the same as the cost of the multicut.�

Since minimum multicut is known to be APX-hard[11], we conclude that MINDISAGREEis also APX-
hard. Furthermore, an improvement over theO(log n) approximation ratio, which we matched in Sec-
tion 2.1, would solve one of the major open problems in the area of approximation algorithms: can
minimum multicut be approximately solved within a factor ino(log n)?

We also note the following fact concerning the perceived difficulty of multicut which does not seem
to have been explicitly pointed out in the literature. It is well known that minimum edge deletion graph
bipartization (also known as Min-Uncut) reduces to minimum multicut in an approximation preserving
way. The factorO(log n) approximation for Min-Uncut works by reducing it to a multicut instance
on which the GVY algorithm is run[10]. It is implicit in Khot’s work [17] that a certain conjecture
about Unique games would result in Min-Uncut being NP-hard to approximate within any constant
factor. Therefore, under the same conjecture, it is NP-hard to approximate minimum multicut, and also
MINDISAGREE, within any constant factor.

Emanuel and Fiat[7] also present an approximation preserving reduction in the reverse direction to The-
orem8, from MINDISAGREEto minimum multicut. This shows that the approximability of MINDISAGREE

is identical to that of the fundamental minimum multicut problem.
In the next section, we study the maximization version. As a corollary of our hardness result for

MAXAGREE, we will also record an explicit constant factor hardness for MINDISAGREE(Theorem10).

4.2. MAXAGREEin general graphs

Bansal et al.[1] provided evidence for the APX-hardness of MAXAGREE by showing that a PTAS for
MAXAGREEwould lead to a polynomial time algorithm forO(nε) coloring a 3-colorable graph for every
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Fig. 6. Reduction from MAX 3SAT to MAXAGREEinstance. Thejth clause has three verticesc1j , c2j , c3j . Theith variable has
two verticesxi, x̄i . Solid lines represent positive edges, dashed negative edges; thick lines represent edges of weightBi .

ε > 0. However, the issue of a concrete NP-hardness result for approximating MAXAGREEremained open
and is resolved here.

Theorem 9. For everyε > 0, it is NP-hard to approximate the weighted version ofMAXAGREEwithin a
factor of 79

80+ ε. Furthermore, it is NP-hard to approximate the unweighted version ofMAXAGREEwithin
a factor of 115

116+ ε.

Proof. We reduce from MAX 3SAT, which is NP-hard to approximate within a factor of7
8 + ε, even on

satisfiable instances[14]. Let � be an instance of MAX 3SAT with variablesx1, x2, . . . , xn and clauses
C1, C2, . . . , Cm. We also assume that for eachi, xi andx̄i each appear in the same number of clauses;
this is a minor restriction and the inapproximability result for MAX 3SAT stands.

Construct a graphG with integer edge weights from the instance� as follows. The vertices ofG are
a root vertexr, variableverticesxi, x̄i for 1�i�n, andclauseverticesc1j , c2j , c3j for each clauseCj ,
1�j�m. The edges and their weights are defined as follows (see also Fig.6):

• The rootr is connected to eachcpj , p = 1,2,3, by a weight 1 edge, and is connected toxi andx̄i by
a weightBi edge, whereBi is the number of clauses in whichxi (andx̄i) appears.
• A weight−Bi edge connectsxi andx̄i for eachi = 1,2, . . . , n.
• The verticesc1j , c2j , c3j corresponding to each clause form a triangle with weight−1 edges.
• Finally, if thepth variable in clauseCj isxi , forp = 1,2,3 (assuming some fixed ordering of variables

in each clause), then a weight−1 edge connectscpj with xi .

We now prove that the optimum value ofG as an instance of MAXAGREE is 9m + OPT�, whereOPT�

is the maximum number of clauses of� that can be simultaneously satisfied.
To that end, we show that any clustering can be modified to a specific format, still maximizing the

number of agreements. Since the only positive edges incident toxi andx̄i are the edges joining them to
r, each ofxi andx̄i can be assumed to be either a singleton cluster or part of the cluster containingr. If
bothxi andx̄i are in the cluster withr, then we can make one of them, sayxi , a singleton and the number
of agreements will not decrease, since we will loseBi for the edge(r, xi), but will gainBi for the edge
(xi, x̄i). Similarly, if bothxi andx̄i are singletons, we can placexi in the cluster containingr—we will
gain a value ofBi for the edge(r, xi) and might lose at most a value ofBi for the edges connectingxi to
the appropriatecpjs.
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Once in this format, a clustering corresponds to a truth assignment to the variables of� in a natural
way: variablexi is true if it is in a singleton cluster, but false if it is in the root-cluster. Now for each clause
Cj , we can cluster the verticescpj , p = 1,2,3, in the following way without decreasing the number of
agreements. IfCj is not satisfied by the above assignment, which means all its literals are in ther-cluster,
we place eachcpj in a singleton cluster forp = 1,2,3. If Cj is satisfied, say because its first literal is
set true, then we placec1j in the r-cluster, butc2j andc3j in singleton clusters. Consequently, we have
four agreements: the negative edges between thecpjs and the positive edge(c1j , r). The negative weight
edges betweenc1j , c2j , andc3j ensure that, regardless of how many ofCj ’s literals are true, we always
achieve the same number of agreements wheneverCj is satisfied.

It is easily seen that the total weight of correctly clustered edges equals(
n∑

i=1

2Bi

)
+ 6m+m∗ = 9m+m∗,

wherem∗ is the number of clauses satisfied by the above assignment. Therefore the optimum value of
this instance of MAXAGREE is 9m + OPT�. The claimed result follows since distinguishing between the
casesOPT� = m andOPT��(7

8 + ε)m is NP-hard[14].
In order to obtain a result for unweighted (±1)-labeled graphs, we replace each positive (resp., negative)

edge of weightBi (resp.,−Bi) by Bi length-two paths whose edges have weights 1,1 (resp., 1,−1), as
in the proof of Theorem8. Now, if a weightBi (positive or negative) edge is correctly clustered, then all
the 2Bi newly constructed edges agree with the labeling; otherwise we get onlyBi agreements. Using
this gadget, we conclude that there is a115

116+ ε inapproximability factor for the unweighted version of
MAXAGREE; we omit the straightforward calculations.�

Since the number of disagreements in an optimum clustering is simply the sum of the weights of edges
minus the number of agreements, the above reduction also establishes the following.

Theorem 10. For everyε > 0, it is NP-hard to approximate both the weighted and unweighted versions
MINDISAGREEwithin a factor of29

28 − ε.

4.3. MINDISAGREEin complete graphs

In addition to their constant factor approximation algorithm, Bansal et al.[1] proved the
NP-completeness of MINDISAGREE on completegraphs. Their reduction does not yield any hardness
of approximation result, but they do show that the maximization version admits a PTAS on complete
graphs. Theorem11, nicely completes the picture of the complexity of the problem on complete graphs,
complementing our factor four approximation algorithm.

Theorem 11. There exists some constantc > 1 for which it isNP-hard to approximateMINDISAGREEon
complete graphs within a factor of c.

Proof. We give a reduction from the max 2-colorable subgraph problem on bounded degree 3-uniform
hypergraphs. Here, the input is a 3-uniform hypergraphH = (V , S) where each hyperedge inS =
{e1, e2, . . . , em} consists of three elements ofV = {v1, . . . , vn} with the added restriction that each
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Fig. 7. Part of the graphG constructed from the hypergraphH, showing a flower, its petals, and an�, 	 edge pair.

element ofV occurs in at mostB hyperedges, for some absolute constantB (so thatm�Bn/3). The goal
is to find a 2-coloring ofV that maximizes the number of hyperedges that aresplit by the coloring, that
is, are bichromatic. It is known that for some absolute constants
 > 0 andB (integer), given such a
3-uniform hypergraph it is NP-hard to distinguish between the following two cases: (i)H is 2-colorable,
i.e., there exists a 2-coloring of its vertices under which no hyperedge is monochromatic, and (ii) every
2-coloring ofV leaves at least a fraction
 of hyperedges inSmonochromatic. This follows for example
from the reduction used to show the hardness of max 3-set splitting in[13]. The starting point for that
reduction is a constraint satisfaction problem, called MAXSNE4 in [13], that is shown to be hard to
approximate in[14]. The hardness result from[14] also holds under a bounded occurrence restriction,
and therefore the 3-uniform hypergraph constructed by the reduction in[13] can also be assumed to have
degree bounded by an absolute constantB.

The first step in the reduction is to construct a graphG from the hypergraphH. This step is analogous
to the reduction from MAX 3SAT to 3-dimensional matching in Section 9.4 of Papadimitrìou[18] and
is sketched in Fig.7. Specifically, for eachvi ∈ V , we construct aflowerstructureFi with 4si vertices
Ui , wheresi �B is the number of hyperedges in whichvi occurs. The setUi consists of 2si vertices that
form an induced cycle, together with 2si petalvertices each of which is adjacent to the two endpoints
of one of the 2si cycle edges. LetOi (resp.,Ei) be the petal vertices with odd (resp., even) indices
according to an arbitrary cyclic ordering of the vertices as 1,2, . . . ,2si . One can then pick two distinct
collections ofsi vertex-disjoint triangles in the graphFi by picking either all the triangles containing the
petal vertices inOi or all those containing the petal vertices inEi—these collections are accordingly
calledoddandevencollections, respectively. The choice of one of these collections will capture which
one of the two colors given to the vertexvi—this is the crux of the approach guiding the reduction.
Now, corresponding to each hyperedgeej = (vj1, vj2, vj3), we create two-independent edges�j , 	j in
G. We add an edge from each endpoint of one of them, say�j , to the vertex inOj1 that corresponds to
the occurrence ofvj1 in ej . Recall that there aresj1 vertices inOj1 so a different one of them will be
used for each connection corresponding to each of thesj1 different hyperedges containingvj1. We make
similar connections between the endpoints of�j and appropriate vertices ofOj2 andOj3. The endpoints
of the second edge	j are similarly connected to appropriate vertices in theevenpetal setsEj1, Ej2,
andEj3.
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Denote byN the total number of vertices inG: clearlyN =∑n
i=1 4si + 4m = 16m. By construction,

G is 4-regular and therefore the number of edges inG, denoted byM, is 2N—the crucial point is that
G is sparse andM = O(N). Finally, we construct an instance of MINDISAGREEon a complete graph on
N vertices by labeling all edges inG as positive and the remaining edges as negative—let us denote by
I the resulting±1-weighted copy ofKN . This completes our reduction, and clearly the transformation
from the 3-uniform hypergraphH to I can be computed in polynomial time.

Consider any clustering, call itC, of the vertices ofI, or equivalently ofG. Let thevalueof a cluster be
the number of edges ofGwithin the cluster minus the number of non-edges ofGwithin the cluster—that
is, the correlation associated with edges inside the cluster. Define the value of the clusteringC, denoted
value(C), to be the sum of the values of all the clusters inC. It is easy to verify that the number of
disagreements (or mistakes) in the clusteringC, denote itDisAg(C), satisfiesDisAg(C) = M − value(C).

We now define the valuevalC(v) of a vertexv, with respect to the clusteringC, to be the value of the
cluster containingv divided by the number of vertices in that cluster. This way the value of a cluster is
equally divided among its constituent vertices. For example, if a vertex is in a singleton cluster, its value
is 0, if it is in anedgecluster, its value is12, if it belongs to a triangle cluster, its value is 1, and so on.
Note thatvalue(C) equals the sum of the values (underC) of all the vertices.

(i) H is 2-colorable. We first claim that ifH is 2-colorable, then there is a clusteringC∗ of G in which
every vertex has value 1, and thereforevalue(C∗) = N . In what follows, adiamondrefers to the complete
graphK4 on four vertices minus one edge. Letf : V → {Red, Blue} be a 2-coloring under which every
hyperedge ofH is bichromatic. First, we pick the following clusters. For each flower structureFi , we
pick thesi triangles of theoddcollection (those containing the vertices inOi) if f (vi) = Red, and those
belonging to theevencollection (the ones containing the vertices inEi) if f (vi) = Blue. We know each
hyperedgeej is bichromatic, so assume for definiteness that two of its verticesvj1, vj2 are coloredRed
and the third onevj3 is coloredBlue. Then, for thisj, we pick two clusters, one a triangle containing the
edge�j together with its neighbor inOj3, and the other a diamond containing the edge	j together with
its neighbors inEj1 andEj2.

It is easy to check that the clusteringC∗ defined above covers all the vertices ofG. Since each vertex
of G is in either a triangle or a diamond cluster, it has a value of 1 andvalue(C∗) = N , as claimed.

(ii) H has at least
 fraction of edges monochromatic. We now wish to argue that if every 2-coloring of
H leaves
m hyperedges monochromatic, theneveryclusteringC′ of Gmust have value at most(1− �)N
for some� > 0. The following claim is crucial to understanding how good clusterings (those with large
value) ofGmust appear.

Claim. In any clustering ofC of G, the value of every vertex is at most1, and if valC(v) = 1, then v
must belong to a cluster which is either a triangle or a diamond. Moreover, the supremum(1− �) of the
non-triangle and non-diamond vertex values is strictly less than1.

The claim can be proved by straightforward inspection of the structure of the graphG since it is so
sparsely connected—we omit the details. The claim asserts that� > 0; in fact one can show that� = 0.2,
but all we require is that� is a strictly positive constant.

Now suppose there exists a clusteringC′ with value(C′) = (1− �)N . A simple counting argument
shows that we must have at least

n− �N/� = n− 16�m/�
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values ofi for whicheveryvertex in the flower structureFi has value equal to 1. Call the vertexvi ∈ V
for each suchi good. Also call an hyperedge ofH good if all three of its vertices are good. Since there
are at most 16�m/� bad vertices inV, there are at most 16�mB/� bad hyperedges.

Suppose we could prove that there is a 2-coloring ofH under which every good hyperedge is bichro-
matic, then, since every 2-coloring ofH leaves at least
m monochromatic hyperedges, we would have
16�B/��
. As a consequence,

value(C′) = (1− �)N�(1− �)N,

where� = �
/(16B), and there would be a gap ofN versus(1− �)N for the value of the best clustering
in the two cases. Recalling that

DisAg(C) = M − value(C) = 2N − value(C),
we would get a gap ofN versus(1+ �)N for the number of disagreements in the best clustering. Since
� > 0 this will prove the theorem.

Therefore it only remains to prove that there is a 2-coloringg of H under which everygoodhyperedge
is bichromatic. Consider a good vertexvi : we know all internal cycle vertices in the flower structure
Fi have value 1. Since there is no diamond structure containing any of these vertices, the claim tells us
they must all be covered by vertex-disjoint triangles. There are only two ways to achieve this: either the
triangles containing the odd petalsOi are picked, or those containing the even petalsEi are picked. We
setg(vi) = Red in the former case andg(vi) = Blue in the latter case (the colors given to the bad vertices
are of no concern). We now prove that every good hyperedge is bichromatic under this coloring. Indeed,
let ej be a hyperedge on three good verticesvj1, vj2, vj3, and suppose all of them are coloredRed under
g. Letw1 ∈ Ej1 be the vertex that is adjacent to the endpoints of	j . SincevalC′(w1) = 1,w1 must be
clustered together with the edge	j . The same holds for the analogous verticesw2, w3 fromEj2 andEj3,
respectively. But noww1 belongs to a cluster that contains at least five elements (namely the endpoints
of 	j andw1, w2, w3) and thereforew1 cannot have value 1, a contradiction. We conclude that all good
hyperedges are bichromatic underg and the proof is complete.�
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