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Abstract

We consider the problem of clustering a collection of elements based on pairwise judgments of similarity and
dissimilarity. Bansal et al. (in: Proceedings of 43rd FOCS, 2002, pp. 238-247) cast the problem thus: given a graph
G whose edges are labeled™ (similar) or “—" (dissimilar), partition the vertices into clusters so that the number
of pairs correctly (resp., incorrectly) classified with respect to the input labeling is maximized (resp., minimized).
It is worthwhile studying both complete graphs, in which every edge is labeled, and general graphs, in which some
input edges might not have labels. We answer several questions left open by Bansal et al. (2002) and provide a
sound overview of clustering with qualitative information.

Specifically, we demonstrate a factor 4 approximation for minimization on complete graphs, and @ féagor)
approximation for general graphs. For the maximization version, a PTAS for complete graphs was shown by Bansal
et al. (2002), we give a factor 1664 approximation for general graphs, noting that a PTAS is unlikely by proving
APX-hardness. We also prove the APX-hardness of minimization on complete graphs.
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1. Introduction

The problem of grouping a corpus of data into clusters that contain similar items arises in numerous
contexts and disciplines. Deservedly, it has been studied extensively in the algorithms and combinatorial
optimization literature. Much of this literature works with the following abstraction of the problem: the
input is represented as a tabledi$tancesbetween pairs of items where the distance betweand
y representiow different xandy are. The goal is to find a clustering of the data that optimizes some
function of the distances between items within or across clusters under some global constraint, such as
knowledge of the total number of clusters. Quintessential examples incluétectreger k-median, and
k-sum clustering problems.

This clustering paper departs from the above distance paradigm. All we have at our dispasigbtive
informationfrom a judge: a labeling of each pair of elements as either similar or dissimilar. We are not
provided with any quantitative distance information about the pairs. Our aim is to produce a partitioning
into clusters that puts similar objects in the same cluster and dissimilar objects in different clusters, to
the maximum extent possible. If there exists a clustering thain®ctfor every edge, then the problem
is trivially solved by identifying as clusters the connected components in the graph of similar pairs (see
below). When the judge has made mistakes, interesting and non-trivial questions arise: primarily, finding
a clustering that differs from the judge’s verdicts on the fewest possible pairs. Bansal et al. pointed out
that correlation clustering corresponds to agnostic learflieyy when viewed as a machine learning
problem. The edge labels are the examples and we are only allowed to use partitionings as hypotheses
for the target function.

An obvious graph-theoretic formulation of the problem is the following: given a g@aph (V, E)
with each edge labeled eithet" (similar) or “—" (dissimilar), find a partitioning of the vertices into
clusters that agrees as much as possible with the edge labels. The maximization version, denoted by
MAxXAGREE in this paper, seeks to maximize the number of agreements: the numbeeddes inside
clusters plus the number of—edges across clusters. The minimization version, denote®imARREE,
aims to minimize the number of disagreements: the number of—edges within clusters plus the number of
+ edges between clusters. An intriguing feature of this clustering problem is that, unlike most clustering
formulations, we do not need to specify the number of cludtexs a parameter. We have only a single
objective; whether the optimal solution uses few or many clusters is automatically dictated by the edge
labels.

If every pair of elements is labeled eitheror —, thenG will be a complete graph. So that we can
capture situations where the judge might be unable to tell if certain pairs of elements are similar or
dissimilar, we do not insist on the input being a complete graph. One upshot of the clustering will be
to deduce the missing labels from the existing ones. Also, in some instances the judge might provide
confidence information for each of the labels. This is captured by assigmiigitsto the edges; one can
then consider natural weighted versions ot GrReeand MNDISAGREE

1.1. Previous and related work

The above problem on complete graphs seems to have been first considered by Ben-Di& et al.
motivated by some computational biology questions. Later, Shamir[@0dlstudied the computational
complexity of the problem and showed thatdGReE (and hence also MDIsAGREE) is NP-hard for
complete graphs. Shamir et al. used the t&iumster editingto refer to this problem; recent algorithms
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for fixed parameter versions are presented by Gramm @i2jl.Independently, Chen et §] examined
a very similar problem in the context of phylogeny trees, essentially showing thddI8AGREE is
NP-hard.

As mentioned earlier, Bansal et Hl] considered this problem independently. They initiated the study
of approximate solutions to MDisAGreeand MaxAGREE, focusing mainly on the case whéhis com-
plete. Bansal et al. gave a polynomial time approximation scheme (PTAS)AoAS8REE ON complete
graphs. For the minimization versioniDISAGREE, they gave an approximation algorithm with constant
performance ratio. The constant is a rather large one, so it should be viewed as a qualitative result, demon-
strating that a constant factor approximation can be achieved. In the full version of thei2dsknsal
et al. provide a simple algorithm that is at most a factor three worse than the best partitionitvgointo
clusters. They posed several open questions including those of demonstrating hardness of approximationr
results for complete graphs and understanding the problem on general graphs. These questions motivate
a number of groups, such as ours, to work on this problem simultaneously.

Both Demaine and Immorlic6], and Emanuel and Fid¥], independently from each other and
from this paper, announced results on clustering with qualitative information. These two papers focus
on MinDisAGRreEin general graphs. Demaine and Immorlj6apresent a facto© (log ») algorithm for
general graphs, based myion growing and demonstrate an approximation-preserving reduction from
(weighted) minimum multicut. They also provide @xir3) approximation algorithm for MiDISAGREEIN
K, ,-minor-free graphs. If¥], both reductions to and from minimum multicut are presented,; in particular
the authors show a reduction from unweighted multicut to unweighte®MAGREE FOor MAXAGREEON
general graphs, Swan®1], again independently from this paper, presented a fact66® approximation
algorithm (very slightly better than the factor we present here).

1.2. Our results

In this paper, we answer several questions left open by the work of Bansdligt Ak a consequence,
our results provide a better overview of the approximability of the various variants of clustering with
gualitative information.

Complete graphsOur main algorithmic result here is a factor 4 approximation algorithm for
MinDisAGree on complete graphs. This significantly improves on the performance ratio of the com-
binatorial algorithm if1]. Our algorithm is based on a natural linear programming relaxation; it rounds
the fractional solution (a semi-metric on the vertices) usingeg@mn growingapproach. The complete-
ness of the graph allows us to achieve a constant approximation using region growing, instead of the usual
logarithmic factor[10]. The integrality gap of our LP formulation is 2 and we also show that beating
factor 3 would require significant departure from our strategy. To complement our algorithmic result, we
also prove that MiDiIsAGrReeon complete graphs is APX-hard (that is, is NP-hard to approximate within
some constant factor greater than 1) via a somewhat intricate reduction. The reductior ijsiedirove
NP-hardness does not yield APX-hardness. In contrast, théA\MReE does admit a PTAS on complete
graphd1].

General graphsBansal et al. did not give any algorithms for general graphs, but noted thBt$AGREE
is APX-hard. They provided evidence thahkPGRreEis unlikely to admit a PTAS (unlike the complete
graph case) by showing that a PTAS would imply a much better algorithm for coloring 3-colorable
graphs than is currently known. We give a factbflog ») approximation algorithm for MIDISAGREE—
this follows from a straightforward modification of the Garg, Vazirani, Yannakakis (GVY) region-growing
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algorithm for minimum multicuf10]. We also note that MDiSAGREEIS at least as hard to approximate
as multicut, so a constant factor approximation algorithm would be a major breakthrough.

We prove that MxAGREE is APX-hard and thereby provide a concrete hardness result—in contrast
to the aboveevidenceof hardness based on a relation to graph coloring. A complementary hardness
result follows for MNDisAGree On the algorithmic side, the nai\%approximation algorithm, namely
choosing the better of placing all elements in a single cluster and placing each of them in a separate
cluster, was the best known forAMAGReEE We give a factor (F66 approximation algorithm based on
rounding a semidefinite programming relaxation. Moreover, if there exists a clustering that correctly
classifies most of the edges, then our algorithm will also find one with a similar property (we defer the
guantitative statement to the relevant technical section). Our interest in the latter result is due in part to the
fact that it brings out some of the difficulty that must be overcome if one tries to prove a super-constant
factor inapproximability result for MiDISAGREE Such a result would have to focus on instances where
an almost perfect clustering exists for both ylesandno cases of the gap reduction.

1.3. Organization

We present algorithms for general graphs (for both the minimization and maximization variants) in
Section2. We then turn to complete graphs and describe our factor 4 approximation algorithm for
MINDISAGREE in Section3. Finally, we present the inapproximability results that complement our al-
gorithms in Sectior.

2. Algorithms for general graphs
In this section, we consider the problemsuiisAcreeand MaxAGREEON general weighted graphs.
2.1. MNDISAGREE

We describe a natural LP relaxation forlDiSAGREE This is very similar to the LP used in the GVY
minimum multicut algorithnj10].

minimize Y w;;-xij + Y. wij - (1—x;j)
+G@) (i) 1
xik<xjj+xj, foralli, j, k, @

subject to x;j €1{0,1} foralli, j.

A patrtitioning into clusters can be represented with a set of binary variables, one for each pair of vertices.
If i andj are in the same cluster theyy is O, if they are in different clusters thes; is 1. Since each
cluster is an equivalence class, we know tha if= 0 andx j; = 0, thenx;; = 0. We can express this

fact using the triangle inequality,

Xik <Xij + Xjk.

The objective is to minimize the number of mistakes: the number of positive edges for whistone
and the number of negative edges for whighis zero. The integer prograrh)(summarizes the situation:
+(ij) indicates that the edge betweiesmd]j has a positive label, while (i j) indicates a negative label.
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We note in passing that solid lines indicgtesitiveedges, whereas dashed lines indicagativeedges

in the diagrams. The confidence that the judge places on the (dis)similarity label betivaedj s
represented by the weight;;. The LP relaxation is obtained by replacing the integer constraintg in (
with 0<x;; <1foralli, j.

Let the value of the optimal LP solution be denoted by @RRA fairly straightforward application of
the GVY region growing procedure yields a solution of cost at naugovg »)OPT_p. We briefly describe
this algorithm, AGGENERAL, and outline its analysis.

We will refer tox;; as thedistancebetween andj, which is consistent with the fact thay; is a semi-
metric in the rang¢0, 1]. Intuitively, points that areloseshould be placed in the same cluster and points
that arefar should be placed in different clusters. LBt(i, r) denote the set of points whose distance
fromi is less than or equal to For a set of verticeS, let §(S) be the set of edges betweSands.

ALGGENERAL

1.C < @. I* Collection of clusters */
2. While there exist, j in the graph such that; > %:
(a) LetS = B, (i, r) for somer < % /* See proof for value of */
(b)C < CcU{S}.
(c) RemovesS andds(S) from the current graph.
3. ReturnC.

Theorem 1. ALcGENERAL achieves arO (log n) approximation forMINDISAGREEON general graphs.

Proof. The GVY region growing procedure suggests the choice of radiustep 2(a) of the algorithm.
SetV(i,r) to be

OPTLp
» + Z Wy Xyy + Z Wyy (r — Xiy).

+(uv)eBy(i,r) +(uv)€d(By(i,r))

This is the contribution to the LP solution from positive edges that have at least one endgiat in),
plus an additional amount ORA/n. Let W (i, r) denote the sum of weights of positive edges in
5(B,(i,r)). We choose < % so that the ratio oV (i, r) to V7 (i, r) is minimized. The analysis tech-
nigue in[10] can be used to show that there exists a I’a.diktS% suchthatF (i, r)< (3 logn) V. (i, r).
This and the triangle inequality imply that the total weight of positive edges with end points in different
clusters is inO (log n)OPTp.

Now we account for the negative edges. Any negative §dhat ends up inside a cluster in our solution
contributesw;; - (1 — x;;) to the LP, which is at least;; /3, sincex;; < :—23 On the other hand, we pay;
for this edge. This implies that the total weight of negative edges with end points in the same cluster is at
mostO (log n)OPTp. O

The O(log n) approximation ratio we obtain from our LP is asymptotically the best possible. Our LP
formulation has integrality gag@(log n), as shown by examples similar to the expander gap examples
for minimum multicut[10].
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We expect that a procedure such as this one, wigiaimsdistances from similarity judgment infor-
mation, will have further applications in situations where no natural distance function exists.

2.2. MaXAGREE

Since Bansal et aJ1] presented a PTAS for complete graphs, we need only look at general graphs for
MaxAGREE Obtaining a% approximation for MxAGREEis trivial, as observed by Bansal et ] for
the complete graph. If the total weight of positive edges is greater than the total weight of negative edges,
place all vertices in one cluster; otherwise, put each of them in an individual cluster.

2.2.1. Alinear program with poor integrality gap
Consider an LP relaxation for MAGreesimilar to the LP used for MDISAGREE The constraints are
exactly the same, but the objective is

maximize Z wij - (1 —x5) + Z Wij - Xij-
+(ij) =@y

Theorem 2. The integrality gap of the LP relaxation fiMaxAGREEIS no better tharg + ¢ foranye > 0.

Proof. Ourgap instance consists of two s&@ndB of nvertices each. The graph is in fact complete, with
every edge having a positive or negative label. The edges betvardB are positive; those with end
points within the same set are negative. Thus thereZpesitive edges ana(n — 1) negative edges. The
optimal LP solution assigns; = % for +(ij) andx;; = 1 for —(ij), and so OP{pisn(n — 1) + n?/2.

On the other hand, the value ©FT for this instance i&2: any instance with equal numbers of elements
from A andB in each cluster suffices—we leave the proof to the reader. Hence the integrality gap is
2n/(3n — 2), which approache% asnincreases. [J

2.2.2. Rounding a semidefinite program

We next consider a semidefinite program (SDP) foxxMGRrReg as SDPs can be solved to arbitrary
precision in polynomial time. To motivate the SDP, we associate a distinct basis vector with each cluster in
a solution; for every vertekin that cluster we set the unit vectarto be that basis vector. The agreement
of the clustering solution can now be expressed in terms of the dot praguats If verticesi andj are
in the same cluster, then - v; = 1, if not,v; - v; = 0. With this vector solution in mind, we consider the
SDP relaxationZ) for MAXAGREE

maximize Y w;;j(vi-v)+ > wij(1—v;-v))
+@@j) —(@i))
v -v; =1 foralli, 2)

subject to o
v -v; >0 foralli, j.

Consider the following general approach for rounding this SDP: fasiakdom hyperplanes, dividing the
set of vertices into2clusters. We refer to this schememds Our rounding scheme takes the better of the
two solutions returned byf, and H3z, denoted by BesH>, H3).
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Theorem 3. Best(H>, H3) returns a solution in which the expected number of agreements is at least
0.7664 OPEpp.

Proof. Inordertoanalyze BeGH>, H3), we consider a slightly different scheme: pigkwith probability
1 — « and pick H3 with probability «, denoted by Coml#H>, H3). Clearly, the approximation ratio of
Combh(H>, H3) is a lower bound on the approximation ratio of Bét, Hs).

We perform an edge-by-edge analysis: for each éidgee measure the expected contribution to the
solution produced relative to its SDP contribution. The (non-negative) edge weights are common to both
the integral formulation and its SDP relaxation and so can be ignored. Consider ai) sdge that
the angle between; andv; is 0 € [0, n/2]. The probability that; andv; arenot separated by{; is
1-0/n).

If ij is a positive edge, the contribution to the SDP solution isv; = cosf. On the other hand, the
expected contribution to the number of agreements in GémbH3) is

1—o0)(1—0/m)°+ a1l — 0/n)3.

If ij is a negative edge, the contribution to the SDP solutionHsyl- v; = 1 — cosf. On the other hand,
the expected contribution to the number of agreements in CHmH3) is

1- 1—o)1—0/m)?—al—0/n)°.
Thus the approximation ratio can be bounded by

L-01-924+41-9% 1-1-0@-H2—u1- 93

min ,
1 — cos

0e[0,7/2] cosl

For «<0.1316, the minimum of the two expressions%ig— /8. In fact the minimum value of the

second expression %Jr /8 for all « € [0, 1] and is achieved wheth= =/2. The upper bound onis
obtained by minimizing the first expression. Setting 0.1316 yields a (#664 approximation. [J

The following simple example shows that the best approximation factor we can hope to achieve using
the SDP ) is at most 828. Our example has three vertices2,13, in which edgeg1, 2) and (2, 3)
are positive, butl, 3) is negative. The optimal SDP solution consists of the veatprs (1, 0), vo =
(1/4/2,1/+/2), v3 = (0, 1), with objective value H 2/+/2 = 1+ +/2. On the other han@)PT = 2, so
the integrality gap is at most/21 + +/2) ~ 0.828.

Our SDP formulation does not, however, respect the triangle inequalities on the valeeg — v; -
vj. Even with such constraints added, the example below shows that significant improvements to the
approximation ratio may not be possible. Consider an instance on five vertite? @, 4. Edges from
0 are positive, but all others are negative. With= (0.5, 0.5, 0.5, 0.5), andv; equal to the'th basis
vectore;, OPTspp = 8. However,0PT = 7, with clusterg0, 1}, {2}, {3}, {4}, showing that we can rule
out an SDP-based algorithm with approximation factor greater than Ig8ghat observes the triangle
inequalities.

An alternative approach is to use the rounding scheme used by Frieze and [rfanvax k-cut.
The basic idea is to pick random unit vectorsspoke} and assign each vector to the closest spoke.
The analysis of such a scheme is quite involved and the gap example above suggests that pursuing this
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direction is unlikely to yield significant improvements. Swaf@{l] recently carried out an analysis of
such a rounding procedure and reported a facie8®6 approximation algorithm for \AGREE

2.3. Almost satisfiable instances

Consider an instance for which the optimal SDP solutioflis ¢) W, whereW is the total weight of
all the edges. We show that in this case it is possible to obtain a clustering with expected agreement in
(1 - O0({/elog(1/¢)))W. This strong result suggests there would be difficulty in proving super-constant
inapproximability for MNDISAGREE

It is convenient at this point to define various parametersPlagnote the total weight of the positive
edges andN the total weight of the negative edges. We defirendv as follows:

2 wij (L —vi - v)) > i) wij (Vi - vj)
= v = .
p P v
Since OPEpp = (1 — &)W, we observe that- W = p- P +v- N.
Lemmal. P, /p< W./e.

Proof. Itis trivially true if p<e. Otherwise, by definitiolPp<We, soP /p<We/ /p < W/e. O

We prove that the rounding scherfie with r = log(1/¢) satisfies the following two lemmas and then
conclude with the main result of this section.

Lemma 2. The expected contribution from the positive edges is at IBastO (/¢ log(1/e))W.

Proof. Defineg;; to be 1—-v; - v}, so the expected weight of positive edges thatateut in the solution
is

Z w;j [l — COS_l(l — 8,‘_,')/7‘5)][ .

+@))

The function(1 — cos (x)/n)" is convex, so by applying Jensen’s inequality, we obtain the lower bound
P[1—cost@—p)/a] .

Since cosl(1— p)isin 0 (/p), the contribution of the positive edges is at least
PL—0(/p)' >PL—-10(/p)=>P — O(Je log(1/e)W,

by Lemmal. O

Lemma 3. The expected contribution from the negative edges is at ekt ¢ — v).
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Proof. Now redefines;; to bev; - v;. The expected weight of negative edges tratcut in the solution
is

Z Wi <1 — [1— COS_l(é‘,'j)/‘lt]t) .

)]
Again, convexity tells us that

[1-cosieij)/m)]
is no greater than

g1 (L—cos 2 (W)/x) + (1 — &) (1 — cos () /x)" .
This is bounded above by; +1/2". SinceNv = Z—(ij) w;;&;;, the expected contribution of the negative
edgesisatleasf(1—v—¢), forr =log(l/e). O
Theorem 4. The expected number of agreements as a result of rounding High1/:) is in
W(1— O( /e log(1/e))).

minimize Y x;; + Y (1—x;))

+(i)) —@j) <
: Xik <xij +xji forall i, j. &,
subject to 0<xi; <1 for alli, j.

Proof. Lemmas2 and 3 show that the expected number of agreements resulting fronfithg /)
rounding scheme is at least

(P +N) — O(Jelog(1/e) W — (e + v)N.

We note thate + v) N <2¢W and that is in O( /e log(1/¢)) ase — 0. Therefore the expected number
of agreements is at leaBt(1 — O( /e log(1/¢)).

3. MiNnDisAGREE on complete graphs

We now study the clustering problem on complete graphs. As already mentioned, Bansélt al.
present a PTAS for MkAGREE on complete graphs, hence we focus omDIsAGReE We present a
factor four algorithm for minimizing disagreements in the complete graph. In contrast to Bans§lkt al.
who devised a combinatorial algorithm with factor 17433, our algorithm uses a linear programming
formulation of the problem.

3.1. The four approximation
Our approach bears some similarity to the algorithm fosIMsAGReein general graphs, & GENERAL,

that we presented in Sectidghl Once the linear relaxatior8) of the program for the is solved, in
polynomial time, we are ready for our factor four approximation algorithm.
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ALGCOMPLETE

1. LetS = V and repeat the following steps uriis empty.

2. Select a vertey arbitrarily fromS.

3. LetT be the set of vertices whose distance froim no greater thaé,
exceptu itself: By(u, 3) —{ u}:

4. If the average distance of the verticegifrom uiis not less thar},
then makeC = { u}a singleton cluster and jump to step 6.

5. If the average distance is less thdd lthen makeC ={u} O T a cluster.

6. LetS= S- C and jump to step 2 (the start of the loop).

T ST

Fig. 1. lllustration of the two main choices irL &COMPLETE numerical annotations are tldestancesrom u.

We refer tox;; not only as thedistancebetweeni andj, but also as thdength of edgeij. The
procedure we present, L, AComPLETE, illustrated also in Figl, clearly describes a partitioning. We an-
alyze its performance by comparing the number of mistakes incurred to the LP costs of appropriate
edges.

Let us reflect on the natural intuition behind the algorithm. Intuitively, the LP solutjprgives a
handle on how different andi are: the smaller the value &f; the more incentive there is to placand
i in the same cluster. Therefore, it makes sense to cluster the points cloa toball B, (u, r)) in one
cluster, sayC, together withu. If bothi andj are close ta, but are connected by a negative edge, we will
cluster them together and make a mistake, but the LP cost of that edge; Will also be high since
x;j <xiy + xj, must also be small. This basic strategy works well with negative edges. However, there
is a problem if most of the vertices i@ are near itgperiphery that is, at distance close tdrom u. In
such a case, the LP might have very low cagtfor some+(ij) crossing the cut, compared to the unit
cost that the algorithm incurs on the same edge. A natural measure of whether this phenomenon could
occur is the average distance franof points inC. If this is large, then there could be many points on
the periphery, and the above difficulty could occur, so we simply pldodts own cluster. It turns out,
from the analysis that follows, that the best criterion for choosing between the ball cluster and a singleton
cluster, is whether the average distance is greater or Ies:%than

At each iteration of the loop, we relabel the vertices (other tha thati < j if x,; < x,;, breaking
ties arbitrarily. The triangle inequality tells us that fox j,

Xuj <Xxui +xi; o and  x; <xyi + Xy

Observation 1. The LP cost of a positive edgeJj;, is at leasty,; — x,;. The LP cost of a negative edge
ij, 1—x;;,is atleastmax{0, 1 — x,; — x,;}.
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0.375 0.5

Fig. 2. Charging mistakes and LP costs to the further (fixed) vértex

Associatedwvith the new clusterC, are the edges withi@ and the edges betweéhandS — C. We
show that the mistakes in each iteration atz&ompPLETE can be charged to the LP costs of the edges
associated with the new clustérLet us now consider one iteration at a time, starting with the case when
a singleton cluster is formed.

3.1.1. Singleton cluster
The edges associated with a singleton cluster are simply all the edges incidetiteégositive ones
are the mistakes. We know from our choice in step 4 that

> xui=IT|/4.

ieT

Fori € T, 1— x,; >xy,i, SO the LP cost adll edges fronuto T, is at leastT'| /4. The number of (positive)
edge mistakes from to T, which is at mostT'|, is thus at most four times the LP cost of edges ftom
toT.

The remaining edges associated with this cluster are between S — 7. Each positive mistake
incident onu has distance, and thus LP cost, greater %l,aso the number of mistakes is at most twice
the LP cost of these edges.

3.1.2. Cluster with T

We now turn to the case in whiahh = {u} U T'. There are two kinds of mistakes in this case: negative
edges insid€ and positive edges betwe€randS — C.

(i) Negative edge mistakes: If botlandj are within distanc% of u, then the LP cost of negative edge
ij is at Ieast%, by Observatiorl. This accounts for the mistake within factor 4.

Each remaining negative edge mistajkeill be charged to vertek the vertex that is further from
(see Fig2).

Sofix j and assume,,; lies in the rangag, %]. Observatiorl tells us that the total LP cost of all the
edges withinC, associated with, is at least

Z (xuj —xm')+ Z (1_xui _xuj)-
iti<j,+(j) iti<j,—(ij)

We let x,, = 0 for all v so that this summation is well-defined. Denote fythe number of posi-
tive edgesj for whichi < j, and letrn; stand for the number of such negative edges. The total cost
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is then

Pjxuj +nj(l—xy5) — Z Xui- 4)

ii<j

Since we are including in C, we know that the average value of; is less than}1 fori € T. The
summation above is over the gét: i < j}, but sincex,; 2% fori > j, the average value of the
summation terms ird is less than}l. Hence the LP cost is greater than
pjtn
i (5)
The number of mistakes associated wjitls merelyn;. The LP cost is bounded below by a linear
function ©) that ranges fronp; /8 4 3n;/8, whenx,; = g, top;j/4+n;/4, whenx,; = % Therefore
the LP cost is at least; /4 and all the (negative) mistakes are accounted for within factor four. Since
this property holds for everyin the range(%, %], we conclude that the total number of negative edge
mistakes is accounted for by appropriate LP edge costs within factor four.

(i) Positive edge mistakes: Consider positive edfdsat cross the distanc%boundaryvcui < % but
Xyj > % In particular, ifx,; > %, thenx,; — x,; 2;11 and so each such positive edge pays for itself within
factor four.

Again, we associate each remaining edge with the vertex that is furthenfr@m fixj and assume
thatx,; is in the range(%, %). The LP cost of the edges associated Wyith

pjxuj +nj(1—x,) —

pjxuj+nj(1_xuj)_ Z Xui
i€TUlu)

which is strictly greater tharbj. This time, the linear function lower bound ranges betwegf#+n ; /4,
whenx,; = % andp;/2, whenx,; = %. The number of (positive) mistakes js so again we can
pay for these within factor 4 of the LP cost. This argument holds fgraatid thus for all positive edge
mistakes.

3.1.3. Summary

Each choice of cluster leads to a ratio of at most four between the number of mistakes and the linear
programming cost of associated edges. Since in past iterations we never charged to edgeS within
and in future iterations we charge only to edges witkiin- C, we have a factor four approximation
algorithm.

Theorem 5. ALcCompLETE achieves a factod approximation foMiNnDiISAGREEON complete graphs.

As we remarked earlier, if we assume that all positive edges are correct, the problem is trivial as it
reduces to finding connected components. Shamir ¢2@].studied thecluster deletiorproblem, in
which all negativeedges are deemed to be correct and must be cut, and showed it to be APX-hard. In
this case, the problem analogous touBliSAGREEIS to find a clustering with the fewest possible positive
edges crossing cluster boundaries. Our algorithm forlMsAGREE also achieve a 4 approximation in
this variant. The idea is to add the constrain{s= 1 in the linear program for each(i;), and then run
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Fig. 3. MINDISAGREEIinstance with integrality gap almost 2, showing both the fractional optimum (with distances) and integral
optimum (with clusters). Some edges have been omitted for clarity.

ALcCowmpLETE On the LP solution. We make the minor amendment, which does not affect the proof of
Theorems substantially, thal does not include the vertices whose distance foisiexactly3. Thus

each cluste€ has diameter less than 1 and the endpoints of a negative edge are never placed in the same
cluster. The analysis for the number of mistakes on positive edges remains identical. With this variant, as
with MINDISAGREE, it is an interesting question whether the factor 4 can be improved.

3.2. Approximation limitations

3.2.1. Integrality gap

Any approximation technique that is based on the linear prog8s (imited by its integrality gap.
The following star example, in Fig.3, shows this gap is at least two. Plateertices around a single
center vertex so that the center is joined to the others with positive edges, but the perimeter vertices have
negative edges between them. In an optimum fractional solution the positive edges havé Emgjthe
negative edges have length 1, so QPE n/2. An optimal clustering places all the perimeter vertices
in singleton clusters, except for one, which is in a cluster with the cent&Pso= n — 1. The gap,
2(n — 1)/n, has limit 2 as1 increases.

3.2.2. Limitations of region growing

The approximation technique we used, based on GVY region growing, cannot achieve a factor better
than three. Our algorithm cuts a clusteout of the sefS, whereC is chosen according to the distance
relationx. We allowed ourselves two options f@: the singleton sefu} or B, (u, %). If we restrict
ourselves to clusters of the for®, (u, r), or {u}, then we are confounded by the following star type
example. Admittedly, this example is not an optimal fractional solution to the linear program, but it is a
feasible solution and thus Observatibron which our technique is based, applies.
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D d d, 1-D ds

Fig. 4. Feasible solution example showing that viitihresholds our techniques cannot give an approximation ratio better than
3+ 1/k. The instance is complete, but we have chosen not to show edges that have little impact on the calculations.

The positive and negative labels are identical to the previous star, but now every edge has fractional
length % If our cluster radius is less th%ﬂhen we have a singleton clustgr}, in which case the
gap ratio is 3. Alternatively, if the radius is at Iea%tthen all the vertices are in one cluster and the
number of mistakes is(n — 1)/2. Since the LP costig(n —1)/6 + n/3,thegapis8& — 1)/(n + 1),
which tends to 3 as increases. Therefore, no radius-based approximation algorithm can beat a factor
of three.

3.2.3. Using fixed radii

Our factor four algorithm chose between a singleton cluster and a fixed cluster rac%uA ofiore
general algorithm might select the cluster radius based on the values)odlistance relation. We saw
that even if this option were available, we could not achieve an approximation factor better than three.
We now show that in some sense our algorithm is the best possible if the radius candidates—call them
thresholds—for cluster balls are specifiacadvance

Theorem 6. Given a set of thresholdsf which k are greater thaﬁ, then our analysis techniqueshich
rely only on the solution being feasibleannot be used to show an approximation ratio better than
3+1/k.

Proof. Consider the analysis of the following feasible solution, shown in&itp the MNDISAGREELP,
which could occur in a single iteration of region growing.

Imagine that there an€? vertices at distanc® = k/(3k + 1) — e fromu, and that for each threshaltl
inthe rangg D, 1 — D] there aren vertices at distancé& + ¢. The edges between tievertices and the
all of thed; + e-vertices are positive. There are afseertices at distanc& — ¢ for eachd; greater tha
(including those thresholds greater than D); they have negative edges to hevertices. Finally, every
edge between and any other vertex is positive. We ignore all other edges as their costs are dominated
by the edges incident to tH&-vertices.

For every threshold that lies in the rang%a, D), the number of mistakes is dominated &% and
the LP cost is dominated b®n2. Therefore the integrality gap is’ D, which tends to—> 3+ 1/k as
e — 0.
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For every other threshold, the LP cost is dominated by the edges betweeh Bheertices and the
vertices in the other sets. The LP cost of the edges tos andd; + ¢ could be as low as

n3[(d; +¢&) — D]+ n3[1— (d; — &) — D] = n®[1+ 2¢ — 2D)
s k+1
3k+1

The LP cost of the negative edges betweerheertices and thd; — s-vertices, wherel; > D, could
be zero. For each threshold betwdaiand 1— D, of which there ar&’ <k, the number of mistakes is
(k' + 1)n3. Therefore the ratio of mistakes to LP cost could be as high as

—n ase — 0.

K+1 3k+1
Ko k+1°

which is 3+ 1/ k whenk’ = k, and greater otherwise. The total LP cost associated with thresholds whose
distance is greater than-1 D may be no greater than before. Since the number of mistakedaast
(k' + 1)n3, we cannot prove an approximation ratio any better thani3x. O

Note then that our factor four algorithm, which has one threshold greate%thame best we could
hope for with these techniques and just one threshold.

3.3. The connection to feedback edge sets

Using an alternative linear programming formulation, we demonstrate the link betwe&nsdMGrRee
on complete graphs and a feedback edge set problem.

Polygon inequalities are generalizations of triangle inequalities: the length of one edge in a polygon is
at most the sum of the lengths of all the other edges in the polygfuil Aet of polygon inequalities is
equivalent to a full set of triangle inequalities. Our new formulation, however, contains only one type of
polygon inequality: the length of a negative edge is at most the sum of the lengths of edgesitive

pathconnecting its endpoints. More precisely, foriallio, . . ., i,;, such that+(i1, i2), ..., +Gm—1, im),
but —(i1, i),

m—1

Z Xijijyn — Xigiy = 0.

j=1

minimize Y x;; + Y. (1—x;j)
+@j) —(ij)
) m—1
subjectto ) x;;

ijp1 — Xipin =0 forallCliy, ... im), (6)
j=1

x;j<1l forall — (ij),
x;;=0 foralli, j.
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Fig. 5. Construction of a new NEPPC: Positive edgg part of a tight NEPPE, which has one negative edgeedgeeis also
in a cycle with positive patp.

We call this type of polygon aegative edge with positive path cydldEPPC), and denote it by
C(i1,...,in). Elsewherd7], NEPPCs have been called erroneous cycles.

We now show that the NEPPC constraints are a sufficiently large set that they imply all the triangle
(inequality) constraints fapptimalsolutions to the linear prograrf); The following simple observation,
together with the consequent lemma, is the key.

Observation 2. In an optimal solution to the linear prograf®), a positive edge either has length zero
or it is part of some tight NEPPC constraint. Likewis@ optimal negative edge either has length one
or is part of some tight NEPPC constraint.

Lemma 4. In an optimal solution to LR6), the polygon inequalities apply to every cycle of positive
edges.

Proof. Consider a positive patmthat is incident to both endpoints of positive edgevith x, > x, in
an optimal solution (abusing notation). Since the lengté@dnnot be zero, Observati@rtells us thae
lies in some tight NEPPC. Assume for the moment thatdoes not share any vertices wiilexcept for
the endpoints oé. Now, consider the NEPPE that is formed by replacingin ¢ with p. Sincec was
tight, butp is shorter tham, ¢’ must violate its NEPPC inequality.

It may be thap andc share some vertices other than the endpoingsibso, then form a NEPPE by
building a positive patlp’ in the following way, where refers to the negative edgedrfsee also Figb).
1. Start at one endpoint efand walk along: until it intersectsp.
2. Now start at the other endpoint o&nd walk in the other direction alormguntil it intersects.
3. Complete the patp’ by walking along the subpath gfthat joins

the intersection points, but does not incluale

Note that the intersection points above are well-defined nragst meet at the very least at the endpoints
of e. Clearly p’ andv form an NEPPG/, but the length ofy’ is bounded by the sum of the lengths of
¢ — e — v and ofp. Sincec was tight,

Xy = Xe—y = Xe—e—y T Xe > Xe—emy T Xp 2 X/,

hence the NEPPC inequality fotis breached. O
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Corollary 1. In every triangle of positive edges the triangle inequalities are satisfied in an optimal
solution to(6).

We are now able to prove our main result of this section.

Theorem 7. The linear program with only NEPPC polygon constrai(@sis equivalent to the triangle
inequality program(3), in the sense that their sets of optimal solutions are the same.

Proof. We first show that any optimal solution t6)(must satisfy the triangle inequalities.

Although the corollary above deals with all-positive triangles, there are still a number of different cases
and configurations to consider. We therefore leave the details to the reader, but note the following general
principles of the proof technique.

Consider some triangle in the graph that is not covered by the corollary above: it must have at least
one negative edge. If a negative edge has length one, then some of the triangle inequalities are trivially
satisfied. Otherwise, the negative edge is contained in a tight NEPPC. The combination of tight NEPPCs
and positive triangle edges allows us to use either the NEPPC constraints or l4imbyesure that the
triangle inequality constraints are observed.

minimize > xij + > x;;

+@j) —(ij)
) m—1
subjectto  Y° xi;ij,, +x ;=1 forallCl, ..., in), (7)
j=1 ’

Xij >0 forall+(ij),
xlf/.>0 for all —(ij).

Finally, since the linear progran®)is a relaxation of the original3], the two formulations must have
the same set of optimal solutions]

We note that one can also prove an integral equivalent to Thetirany optimal{0, 1} solution to the
NEPPC constraint LP is an optimal solution to thesBlisAGREE problem, in a complete graph.

If we replace eaclil — x;;) term Withxi’j for each negative edge, we obtain an LP with only positive
coefficients {), in which thexl.’j <1 constraints are unnecessary. In any feasible solutiaf) tthe sum of
the terms around any NEPPC is at least 1. If the variab}emdxlfj are binary, then we have the following
interpretation: around any cycle that contagxsctlyone negative edge we musstlectat least one edge.
That is, we need a feedback edge set for the set of cycles with exactly one negative edge. If the cycles of
interest were those witht leastone negative edge, we would already have a factor two approximation
algorithm([8]. This feedback edge set interpretation might lead to an algorithm with approximation ratio
better than four.

As afinal comment, we note that there is also some similarity to the notisal@hcein signedgraphs,
as used in the social sciend&9]. Each person in some group is represented by a node in a graph; there
is an edge between a pair of nodes if there is some strong relationship between the people, with the sign
of the edge reflecting the nature of the relationship. A group, and therefore the graph, is called balanced
if every cycle in the graph contains an even number of negative edges. There exist linear time algorithms
to determine whether a signed graph is balanced. However, some graphs are neither completely balancec
nor completely unbalanced and there is ongoing research to measure the degree of balance in them.
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4. Hardness of approximation
4.1. MNDisAGrEEIN general graphs

We first show that minimum multicut reduces in an approximation preserving wayNDIM\ GREE
Note that Bansal et aJl1] make a similar observation, though they use the all-pairs version of multicut,
usually called multiway cut, for the reduction. Reducing from the more general multicut problem, as other
groups have also done independeipdly’], provides us with evidence of the difficulty of approximating
MinDisAGRrEE within any constant factor. In contrast, multiway cut has approximation algorithms with
performance ratio a very small constanB8438 being the current be&;, 15].

Theorem 8. Minimum multicut reduces in an approximation preserving waylteDISAGREE

Proof. Given a graphG with k pairs(s;, ¢;), in which eachs; must be separated from eaghform an
instanceH of MINDISAGREE The edges oG become positive edges k with unit weight. For each,

1<i <k, we add a (negative) edge betweemnds; with weight—W for some large positive integ¥y,

sayW = n?. We can make the instance unweighted by replacing a negative edge of wéigbly W

parallel length two paths; each path has a fresh intermediate vertex, with one edge of weight 1 and the
other of weight—1. Clearly, the minimum cost clustering must hayendy; in different clusters for

everyi. The cost of the solution is simply the number of positive edges that lie between clusters, which
is the same as the cost of the multicutl

Since minimum multicut is known to be APX-hajtll], we conclude that MIDisAGREEIs also APX-
hard. Furthermore, an improvement over thdog n) approximation ratio, which we matched in Sec-
tion 2.1, would solve one of the major open problems in the area of approximation algorithms: can
minimum multicut be approximately solved within a factowitiog n)?

We also note the following fact concerning the perceived difficulty of multicut which does not seem
to have been explicitly pointed out in the literature. It is well known that minimum edge deletion graph
bipartization (also known as Min-Uncut) reduces to minimum multicut in an approximation preserving
way. The factorO (log n) approximation for Min-Uncut works by reducing it to a multicut instance
on which the GVY algorithm is rufil0]. It is implicit in Khot's work [17] that a certain conjecture
about Unique games would result in Min-Uncut being NP-hard to approximate within any constant
factor. Therefore, under the same conjecture, it is NP-hard to approximate minimum multicut, and also
MiNDISAGREE, within any constant factor.

Emanuel and Fig¥] also present an approximation preserving reduction in the reverse direction to The-
orem8, from MINDISAGREEtO minimum multicut. This shows that the approximability oiNDISAGREE
is identical to that of the fundamental minimum multicut problem.

In the next section, we study the maximization version. As a corollary of our hardness result for
MaxAGREE, we will also record an explicit constant factor hardness forlMsAGREE (Theoreml0).

4.2. MaxAGREEIN general graphs

Bansal et al[1] provided evidence for the APX-hardness ofMGREE by showing that a PTAS for
MaxAGreewould lead to a polynomial time algorithm f@ (n*) coloring a 3-colorable graph for every
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Fig. 6. Reduction from MAX 3SAT to MXAGREEinstance. Th¢th clause has three verticeg, €2j,€3j- Theith variable has
two verticesy;, x;. Solid lines represent positive edges, dashed negative edges; thick lines represent edges 8f weight

¢ > 0. However, the issue of a concrete NP-hardness result for approximatiddeeremained open
and is resolved here.

Theorem 9. For everye > 0, it is NP-hard to approximate the weighted versiol\#xAGREEWithin a

factor ofg—g + ¢. Furthermoreit is NP-hard to approximate the unweighted versiomvofx AGrReewithin

115
a factor ofm + €.

Proof. We reduce from MAX 3SAT, which is NP-hard to approximate within a facto% af ¢, even on
satisfiable instancdd4]. Let ¢ be an instance of MAX 3SAT with variablesg, x», ..., x, and clauses
C1,Co, ..., Cy. We also assume that for eagh; andx; each appear in the same number of clauses;
this is a minor restriction and the inapproximability result for MAX 3SAT stands.

Construct a grapks with integer edge weights from the instangeas follows. The vertices db are
aroot vertexr, variableverticesy;, x; for 1<i <n, andclauseverticescy;, c2;, c3j for each clause€;,
1< j<m. The edges and their weights are defined as follows (see als6)Fig.

e The rootr is connected to eaah),;, p = 1, 2, 3, by a weight 1 edge, and is connectedtandx; by
a weightB; edge, whereB; is the number of clauses in whiah (andx;) appears.

e A weight—B; edge connects; andx; foreachi =1, 2, ..., n.

e The vertices;, c2;, c3; corresponding to each clause form a triangle with weightedges.

o Finally, if the pth variable in claus€'; isx;, for p = 1, 2, 3 (assuming some fixed ordering of variables
in each clause), then a weightl edge connects,; with x;.

We now prove that the optimum value Gfas an instance of McAGReeis 9n + OPT,, whereOPT,
is the maximum number of clauses@that can be simultaneously satisfied.
To that end, we show that any clustering can be modified to a specific format, still maximizing the
number of agreements. Since the only positive edges incidentaiodx; are the edges joining them to
r, each ofy; andx; can be assumed to be either a singleton cluster or part of the cluster contailfiing
bothx; andx; are in the cluster with, then we can make one of them, saya singleton and the number
of agreements will not decrease, since we will I@dor the edggr, x;), but will gain B; for the edge
(x;, x;). Similarly, if bothx; andx; are singletons, we can plaggin the cluster containing—we will
gain a value ofB; for the edg€r, x;) and might lose at most a value Bf for the edges connecting to
the appropriate ,;s.
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Once in this format, a clustering corresponds to a truth assignment to the varialés afatural
way: variabley; is true if itis in a singleton cluster, but false if it is in the root-cluster. Now for each clause
C;, we can cluster the vertices;, p = 1, 2, 3, in the following way without decreasing the number of
agreements. I€'; is not satisfied by the above assignment, which means all its literals arerkclinster,
we place eacl,; in a singleton cluster fop = 1, 2, 3. If C; is satisfied, say because its first literal is
set true, then we plaag; in ther-cluster, butz; andcs; in singleton clusters. Consequently, we have
four agreements: the negative edges betweenffssand the positive edge ;, r). The negative weight
edges betweer ;, c2;, andcz; ensure that, regardless of how many(yfs literals are true, we always
achieve the same number of agreements whern@yes satisfied.

It is easily seen that the total weight of correctly clustered edges equals

n
(ZZB,-) +6m+m* =9m +m*,
i=1
wherem™ is the number of clauses satisfied by the above assignment. Therefore the optimum value of
this instance of MxAGREEIs 9n + OPT,. The claimed result follows since distinguishing between the
caseOPT, = m andOPT, < (§ + e)m is NP-hard14].

In order to obtain a result for unweighteti)-labeled graphs, we replace each positive (resp., negative)
edge of weightB; (resp.,—B;) by B; length-two paths whose edges have weights (tesp., 1—1), as
in the proof of Theoren®. Now, if a weightB; (positive or negative) edge is correctly clustered, then all
the 2B; newly constructed edges agree with the labeling; otherwise we getBprdgreements. Using
this gadget, we conclude that there i%ll% + ¢ inapproximability factor for the unweighted version of
MaxAGREE, we omit the straightforward calculations]

Since the number of disagreements in an optimum clustering is simply the sum of the weights of edges
minus the number of agreements, the above reduction also establishes the following.

Theorem 10. For everye > 0, it is NP-hard to approximate both the weighted and unweighted versions
MinDisAGREEWithin a factor of33 — .

4.3. MNDIsAGREEIN complete graphs

In addition to their constant factor approximation algorithm, Bansal et[HI. proved the
NP-completeness of MDISAGREE on completegraphs. Their reduction does not yield any hardness
of approximation result, but they do show that the maximization version admits a PTAS on complete
graphs. Theorertil, nicely completes the picture of the complexity of the problem on complete graphs,
complementing our factor four approximation algorithm.

Theorem 11. There exists some constant- 1 for which itisNP-hard to approximatéliNnDiISAGREEON
complete graphs within a factor of ¢

Proof. We give a reduction from the max 2-colorable subgraph problem on bounded degree 3-uniform
hypergraphs. Here, the input is a 3-uniform hypergraph= (V, S) where each hyperedge i =
{e1, e2, ..., en} consists of three elements ®f = {vy, ..., v,} with the added restriction that each
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Fig. 7. Part of the grap® constructed from the hypergrapht) showing a flower, its petals, and ang edge pair.

element oV occurs in at mosB hyperedges, for some absolute consi(go thatn < Bn/3). The goal
is to find a 2-coloring oV that maximizes the number of hyperedges thatsaiti by the coloring, that
is, are bichromatic. It is known that for some absolute constantsO andB (integer), given such a
3-uniform hypergraph it is NP-hard to distinguish between the following two caseésigip-colorable,
i.e., there exists a 2-coloring of its vertices under which no hyperedge is monochromatic, and (ii) every
2-coloring ofV leaves at least a fractignof hyperedges its monochromatic. This follows for example
from the reduction used to show the hardness of max 3-set splittifi]nThe starting point for that
reduction is a constraint satisfaction problem, called MAXZNE[13], that is shown to be hard to
approximate irf14]. The hardness result frofta4] also holds under a bounded occurrence restriction,
and therefore the 3-uniform hypergraph constructed by the reductj@Blisan also be assumed to have
degree bounded by an absolute consBant

The first step in the reduction is to construct a gr&pinom the hypergraphi. This step is analogous
to the reduction from MAX 3SAT to 3-dimensional matching in Section 9.4 of Papadimitti&juand
is sketched in Fig7. Specifically, for eachy; € V, we construct dlower structureF; with 4s; vertices
U;, wheres; < B is the number of hyperedges in whighoccurs. The sel/; consists of 2 vertices that
form an induced cycle, together with;2petal vertices each of which is adjacent to the two endpoints
of one of the 2; cycle edges. LeD; (resp.,E;) be the petal vertices with odd (resp., even) indices
according to an arbitrary cyclic ordering of the vertices a8, 1. ., 2s;. One can then pick two distinct
collections ofs; vertex-disjoint triangles in the graph by picking either all the triangles containing the
petal vertices inO; or all those containing the petal vertices ip—these collections are accordingly
calledodd andevencollections, respectively. The choice of one of these collections will capture which
one of the two colors given to the vertex—this is the crux of the approach guiding the reduction.
Now, corresponding to each hyperedge= (vj,, vj,, vj;), We create two-independent edggsﬂj in
G. We add an edge from each endpoint of one of thempgato the vertex inO;, that corresponds to
the occurrence ob;, in e;. Recall that there are;, vertices inO;, so a different one of them will be
used for each connection corresponding to each of theifferent hyperedges containing,. We make
similar connections between the endpointa pand appropriate vertices ¢f;, and O j,. The endpoints
of the second edgg; are similarly connected to appropriate vertices in ¢henpetal setst;,, E,,
andE ;.
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Denote byN the total number of vertices i@: clearly N = >, 4s; + 4m = 16m. By construction,
G is 4-regular and therefore the number of edge&,menoted byM, is 2N—the crucial point is that
Gis sparse and? = O(N). Finally, we construct an instance ofiMDISAGREEON a complete graph on
N vertices by labeling all edges @& as positive and the remaining edges as negative—let us denote by
7 the resulting+1-weighted copy o ». This completes our reduction, and clearly the transformation
from the 3-uniform hypergrapH to Z can be computed in polynomial time.

Consider any clustering, call@, of the vertices of, or equivalently ofG. Let thevalueof a cluster be
the number of edges @ within the cluster minus the number of non-edge&afithin the cluster—that
is, the correlation associated with edges inside the cluster. Define the value of the clustelengted
value(C), to be the sum of the values of all the cluster<inlt is easy to verify that the number of
disagreements (or mistakes) in the clustetfindenote iDisAg(C), satisfieDisAg(C) = M — value(C).

We now define the valuealc (v) of a vertexv, with respect to the clustering, to be the value of the
cluster containingy divided by the number of vertices in that cluster. This way the value of a cluster is
equally divided among its constituent vertices. For example, if a vertex is in a singleton cluster, its value
is 0, if it is in anedgecluster, its value i%, if it belongs to a triangle cluster, its value is 1, and so on.
Note thatvalue(C) equals the sum of the values (und@rof all the vertices.

(i) H is 2-colorable. We first claim that H is 2-colorable, then there is a clusteriigof G in which
every vertex has value 1, and therefese(C*) = N. In what follows, adiamondrefers to the complete
graphK4 on four vertices minus one edge. Lt V — {Red, Blue} be a 2-coloring under which every
hyperedge oH is bichromatic. First, we pick the following clusters. For each flower struckiyeve
pick thes; triangles of theodd collection (those containing the verticesdn) if f(v;) = Red, and those
belonging to theevencollection (the ones containing the verticedty) if f(v;) = Blue. We know each
hyperedge; is bichromatic, so assume for definiteness that two of its vertiges ;, are colorecRed
and the third one , is coloredBlue. Then, for thig, we pick two clusters, one a triangle containing the
edgex; together with its neighbor i@ ;,, and the other a diamond containing the efilgéogether with
its neighbors inE ;, andE ,.

It is easy to check that the clusteridd defined above covers all the vertices&fSince each vertex
of Gis in either a triangle or a diamond cluster, it has a value of lvah@(C*) = N, as claimed.

(ii) H has at least fraction of edges monochromatic. We now wish to argue that if every 2-coloring of
H leavesym hyperedges monochromatic, theveryclusteringC’ of G must have value at moét — 6) N
for someé > 0. The following claim is crucial to understanding how good clusterings (those with large
value) ofG must appear.

Claim. In any clustering ol of G, the value of every vertex is at mdstand if valc(v) = 1, then v
must belong to a cluster which is either a triangle or a diamond. Moredtersupremunil — p) of the
non-triangle and non-diamond vertex values is strictly less than

The claim can be proved by straightforward inspection of the structure of the @Gapice it is so
sparsely connected—we omit the details. The claim assertg thdl; in fact one can show that= 0.2,
but all we require is that is a strictly positive constant.

Now suppose there exists a clusterifigwith value(C’) = (1 — §)N. A simple counting argument
shows that we must have at least

n—o0N/p=n—160m/p
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values ofi for which everyvertex in the flower structurg; has value equal to 1. Call the vertexe V
for each suchi good Also call an hyperedge df good ifall three of its vertices are good. Since there
are at most 1&n/p bad vertices iV, there are at most 56: B/p bad hyperedges.

Suppose we could prove that there is a 2-coloringl @nder which every good hyperedge is bichro-
matic, then, since every 2-coloring bifleaves at leagtn monochromatic hyperedges, we would have
166B/p>7v. As a consequence,

value(C') = (L= )N < (1= )N,

where({ = py/(16B), and there would be a gap Nfversus(1 — {) N for the value of the best clustering
in the two cases. Recalling that

DisAg(C) = M — value(C) = 2N — value(C),

we would get a gap dfl versus(1 + ()N for the number of disagreements in the best clustering. Since
{ > 0 this will prove the theorem.

Therefore it only remains to prove that there is a 2-cologdg H under which evergoodhyperedge
is bichromatic. Consider a good vertex we know all internal cycle vertices in the flower structure
F; have value 1. Since there is no diamond structure containing any of these vertices, the claim tells us
they must all be covered by vertex-disjoint triangles. There are only two ways to achieve this: either the
triangles containing the odd petals are picked, or those containing the even petalare picked. We
setg(v;) = Red in the former case anglv;) = Blue in the latter case (the colors given to the bad vertices
are of no concern). We now prove that every good hyperedge is bichromatic under this coloring. Indeed,
lete; be a hyperedge on three good vertiegs v ,, v;;, and suppose all of them are coloresti under
g. Letwy € Ej, be the vertex that is adjacent to the endpointg ofSincevale (w1) = 1, w1 must be
clustered together with the edg¢. The same holds for the analogous vertiegsws from E;, andE 5,
respectively. But nowws belongs to a cluster that contains at least five elements (namely the endpoints
of B; andwi, w2, w3) and thereforev1 cannot have value 1, a contradiction. We conclude that all good
hyperedges are bichromatic undgeand the proof is complete.
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