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Conjugated diynes have attracted more and more attention not only for their unique rod like structures
and wide existence in nature product, but also the abundant properties and derivations of them.
Although oxidative dimerization of alkynes or Cadiot–Chodkiewicz reactions were the main pathway
and have achieved great success in the synthesis of diynes, oxidative cross coupling, FBW rearrangement
as well as diyne metathesis emerged rapidly recently. Moreover, diynes could be precursors of basic het-
erocycles, which represented an emerging research area. This Letter will cover the recent progresses in
the synthesis and further derivations of diynes.

� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
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Introduction

1,3-Diynes (referred to as diynes hereinafter) are a kind of con-
jugated diynes with unique structures (Scheme 1). They have a
rod-like molecular shape with high rigidness. Chauvin and Lepetit
have a detailed review on the theoretical studies on acetylenic
scaffolds.1 Tykwinski et al. have prepared a series of 1,3-diynes
and derivated polyynes (also known as carbyne) and characterized
their structures using the methods including Raman, IR, XRD, etc.2

In most cases, the four carbon atoms in diynes are arranged line-
arly, although longer chains containing 8 or more linked sp hybrid-
ized carbon atoms may be slightly bent.3 The reported longest
carbyne is also shown in Scheme 1.
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Scheme 1. Rigid structure of 1,3-diyne.
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Because of the rigid structure, diynes are easy to stack in crystal
cells and form a needle-like crystalline solid. This instinct charac-
terization means diynes could be easily recrystallized and purified
from other byproducts. More importantly, diynes are thermally
and moisture stable. Although highly unsaturated, the conjugation
of the carbon atoms provided extra stability. According to the
authors’ experience, pure diynes could be prepared and stored un-
der normal conditions, and remain the same for years. This advan-
tage has made the diynes as one of the most easily handled organic
architectures.

On the other side, the highly unsaturated carbon chains could
also exhibit fascinating reaction properties under special condi-
tions. It is known that 1,3-diynes could undergo polymerization
upon the irradiation of UV light. This reaction could lead to the
cross-linking between different carbon chains and has been widely
used in material field.4

Moreover, diynes could be attacked by nucleophiles such as
amines, alcohols, and sulfides. For example, diynes could react
with water, primary amines, hydroxylamines, or hydrogen sulfide
to form 5-membered heterocycles like furans,5 pyrazoles,6 pyr-
roles,5b,7 isoxazoles,8 and thiophenes.5a,9 Diynes could be also
oxidized to form complex structures, which were used as the
precursor of some organic dyes like indigo.10

The unusual structure, relative stability, and abundant potential
reactivity have together made the diynes as important building
blocks in organic synthesis and material science. More and more
reports have emerged to discuss the synthesis and application of
diynes recently. There have also been a few reviews on the nature
of occurrence of diynes, synthesis of acetylenic scaffolds, and
reactivity of alkynes. However, few reviews concerning the syn-
thetic pathways as well as the applications of this magic structure
were published. As a witness of the rapid development of diyne
chemistry in the recent decades, this review would summarize
the synthetic pathways of diynes, as well as their further
derivations.

Synthesis of diynes

Diynes could be divided into two kinds: symmetrical or unsym-
metrical, according to the substituent groups linked to both sides
of the buta-1,3-diyne structure. While earlier reports focused on
the synthesis of symmetrical diynes, the unsymmetrical diynes
were much more common in nature and have attracted more
and more attention in the recent years.
R2From terminal alkynes:

From derivations of alkynes: R2

R2

Scheme 2. Methods to
Synthesis of symmetrical diynes

Symmetric diynes could be generated simply from the oxidative
coupling of the corresponding terminal alkynes (or their deriva-
tions such as alkynyl metallic reagents or 1-halo-alkynes), as
shown in Scheme 2. Theoretically, pathways directly from alkynes
are more easy-handling with better atom efficiency than other
methods, and hence much more widely used. In most cases, copper
was employed either as a catalyst or additive. Since Glaser had re-
ported the earliest example, and followed modifications made by
Eglinton and Hay, this copper mediated oxidative coupling of ter-
minal alkynes is generally called Glaser–Eglinton–Hay coupling.
Besides this name reaction, other methods have offered an alterna-
tive possible synthetic route by replacing the alkynes with deriva-
tions of alkynes, and have shown certain advantages in some cases.

The oxidative Glaser–Eglinton–Hay coupling
Symmetrical diynes are the earliest diynes prepared in labora-

tories. The first report was published in 1869 by Carl Glaser.10 In
this Letter, phenylacetylene reacted with cuprous chloride to form
a phenylacetylide, and this yellow insoluble solid could dimerize to
form the 1,4-diphenylbuta-1,3-diyne in the presence of oxygen
smoothly (Scheme 3).

Glaser coupling of terminal alkynes could achieve the diynes
with moderate yields. This could be partially due to the instability
of the copper acetylide, the intermediate of the process. On the
other hand, for those aromatic ethynyl compounds, good yields
were observed, while for a broader scope of aliphatic alkynes, the
Glaser coupling failed to give satisfactory results.

The modification of Glaser coupling was then carried out. Addi-
tives such as ammonium salts were introduced and in some cases
improved the efficiency.11 In 1956, Eglinton and Galbraith found
that stoichiometric or excess Cu(OAc)2 in methanolic pyridine
could accelerate the dimerization of alkynes.12 Later, Hay had
found that pyridine served also as ligand in this process. Using this
method, Hay prepared the polymer containing the diyne group13

(Scheme 4).
In 1962, Hay had found that some amines could be a better li-

gand for this process.14 TMEDA (N,N,N0,N0-tetramethylethylenedi-
amine) was proved to be suitable in the dimerization of terminal
alkynes. In this procedure, only a catalytic amount of CuCl was
needed, and good yields of diynes were obtained. Better solubility
of the Cu(I)–TMEDA complex was considered to improve the reac-
tion rate.
R R

R RM

R RX

M = Mg, Si, Sn, etc.; X = Halogen.

symmetric diynes.
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Scheme 3. Glaser’s dimerization of phenylacetylene.
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Scheme 4. Polymerization of m-diethynylbenzene by Hay.
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Using this Cu mediated dimerization of terminal alkynes, a vari-
ety of diynes and macrocycles15 containing diyne structure were
synthesized. Detailed reviews could be found in Diederich’s publi-
cation10,16 and Li’s textbook on name reactions.17 Selected exam-
ples are listed in Scheme 5.
Modifications of Glaser–Eglinton–Hay coupling reactions
The Glaser–Eglinton–Hay coupling has represented the classic

pathways to symmetric diynes in a long time. However, the mod-
ification of this process has not been static. In this new century,
many synthetic scientists have contributed to this reaction. New
catalytic system, oxidants, as well as new solvents were
introduced.

The introduction of other metal catalysts could improve the
efficiency in some cases. The commonly used co-catalysts were
Palladium, Gold, and Nickel. Besides the catalytic systems, oxidants
could also vary from oxygen in the air to other organic/inorganic
reagents. Stefani et al. have reviewed the homocoupling of alkynes
in 2010,18 and Table 1 here shows some selected catalytic systems
apart from that.19

It is noteworthy that one of the applications of alkyne oxidative
coupling reactions is the synthesis of polymers bearing the diyne
group. This represented a new research field and the polymers
could found potential usages in material science research. Readers
O

Fe

CN

O
O

O

O

O

O

Scheme 5. Typical products from th
could refer to Tang’s review20 and find more typical examples
therein.

Oxidative coupling from alkyne derivatives
It is generally supposed that in Cu mediated systems, the cop-

per(I) acetylides are active intermediates.10,17,21 The copper acety-
lides, as well as other metallic acetylides, could be recognized as
the alkyne derivatives, and they have also been used in the synthe-
sis of diynes.

Mori and co-workers had reported that alkynylsilanes could un-
dergo dimerization in the presence of CuCl in DMF smoothly.22

Zhang and co-workers used the alkynyltin but only observed low
yield.19a Kukukawa and co-workers had developed this method
using organic oxidants.23 However, the highly toxic tin had limited
their applications. Oh et al. found that alkynyltriisopropoxyborates
could undergo homocoupling, though only moderate yields were
observed.24 Another alkynyl borate example was reported later
by Paixão and Stefani, in which alkynyltrifluoroborates were
employed.25 Later, Stefani had proved that alkynyltellurides could
also be dimerized to diynes.26 Cahiez et al. reported some Manga-
nese or Iron catalyzed examples from alkynyl Grignard Reagents.27

The protocol had proved to be efficient to both aromatic and ali-
phatic alkynes, and good functional group tolerance was also
observed.

Although all these alkynyl reagents are generated from the cor-
responding terminal alkynes, the utility of them could in some
cases show better stability under oxidative atmosphere. Table 2
has listed the differences of these processes. Comparison of yields
for phenylacetylene and aliphatic alkynes is listed in the table.

Another oxidative system to yield the symmetric diynes could
be the oxidation of dialkynyldialkylborates.28 It is noteworthy that
unsymmetric diynes could also be formed in satisfactory yields
when the two alkynyl substituents were different.29
O

Fe
O

O
CN

O

O

O

O

e Glaser–Egliton–Hay coupling.



Table 1
Different catalytic systems in the oxidative coupling of terminal alkynes

Year Authors Catalytic systems Comments Ref. no.

2002 Zhang and co-workers PdCl2(PPh3)2, CuI, BrCH2COOEt as oxidant Palladium enolate as the intermediate, and double transmetallation was proposed 19a
2006 Xi and co-workers 3.5 mol % Pd(PPh3)4, 0.5 mol % CuI, p-chloranil as oxidant. For aromatic 1-alkynes only 19b
2006 Shi 0.5 mol % NHC-Pd(II), 3.0 mol % CuI, BnNHC2H4OH, O2 Aromatic alkynes showed obvious higher yields than aliphatic alkynes 19c

N

N

N

N

Pd
I

I

2

NHC-Pd(II) complex

2007 Wu

Fe Pd
N
Cl

2

Fe Pd
N

Cl PPh3

Aromatic alkynes showed obvious higher yields than aliphatic alkynes 19d

2008 Mizuno Monomeric dicopper-substituted silicotungstate Broad substrate scope, catalyst could be recycled 19e
2009 Beifuss 2 mol % CuCl, 1.5 mol % ligand, base, O2 Influence of bases and ligands were investigated 19f
2009 Tsai 0.0001–1 mol % cationic 2,20-bipyridyl palladium(II)/CuI system and 1 mol % CuI Reusable catalyst, low Pd loading, water as solvent 19g
2009 Lee, Oberhauser NHC-Pd catalyst Much better performance was obtained by aromatic alkynes 19h
2009 Pale, Sommer 10–30 mol % copper–zeolite Morphology of the zeolite would affect the yields 19i
2009 Radivoy Copper nanoparticles Neither Palladium nor ligand was needed 19j
2010 Chen 3 mol % CuCl2, Et3N, air Solvent free 19k
2011 Jia 5 mol % CuCl, in DMSO, 90 �C Base-, ligand-, Pd-free, electron-rich aromatic alkynes perform better 19l
2013 Sonoda 2 mol % PdCl2(PPh3)2, ligand Moderate to good yields were obtained. Trans-spanning ligands were proved to be effective 19m
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entry substrate X product yield (%)

1

2
X

Br

I

94

97

3

4

Br

I

83

90

5 I 85

6 I 73

7 I 86

8

9

Br

I
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75
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11

Br

I

89

93

X

X

X

XtBu

XMeO

XF

Scheme 6. Diynes from haloalkynes.

Table 2
Oxidative homo-coupling of alkyne derivatives to form diynes

Year Authors Alkyne derivatives Reaction conditions Yields (%) for Ref.

Ph
n

Phenylacetylene Aliphatic alkyne

2000 Mori and co-workers R SiMe3 Stoichiometric CuCl, DMF, 60 �C, 3–12 h >99 80 22

2002 Zhang and co-workers R SnBu3 5 mol % PdCl2(PPh3)2, PhCHBrCOOMe, THF, 3 days 20 — 19a

2004 Oh et al. R B(OiPr)3 Li 5 mol % Pd(OAc)2/DPEPhos, 10 mol % CuI, THF, 60 �C 93 87 24

2007 Cahiez et al. R MgCl 5 mol % MnCl2�2LiCl, dry air, THF, rt, 45 min 89 91 27

2008 Paixão, Stefani et al. R BF3k 10 mol % Cu(OAc)2, DMSO, 60 �C, 6 h 97 86–88 25

2009 Stefani et al. R TenBu 8 mol % PdCl2, AgOAc, MeOH, Ultrasonic 85 75–87 26

R1 R2+ X R1 R2

Cu(I) salt
R2 R2

Scheme 8. Side reactions of the Cadiot–Chodkiewicz reactions.
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Reductive coupling to form symmetric diynes
Besides oxidative coupling, diynes could also be prepared by

reductive coupling reactions from the alkynyl halides. However,
few reports were published using this protocol. Lee and co-workers
R1 R2+ X

Cadiot-Chodkiewicz Reaction

R2

BrBr

R1
FBW rearrangement

R2 R2

R1 R1

Metathesis

R2
BR1

Li

R1

Scheme 7. Different pathways to f
have reported the diyne synthesis from reductive coupling of
1-iodoalkynes using palladium catalysts.30 Jiang et al. have pre-
pared a variety of symmetric diynes from the bromoalkynes or
iodoalkynes under the reduction of potassium iodide,31 as shown
in Scheme 6. The procedure was free from transition metals or
bases, and moderate to high yields were achieved. The authors
had also investigated the cross-coupling between two different
haloalkynes, and statistical distributions of mixed diynes were
obtained as was expected.

Synthesis of unsymmetric diynes

Unsymmetric diynes are more important and more challenging
in synthesis other than symmetric diynes. Typically, there are sev-
eral pathways to form this structure. Simply by mixing two differ-
ent terminal alkynes together in an oxidative atmosphere a
mixture of diynes could be obtained. However, the yields of differ-
ent products are mainly based on statistical distribution. Lack of
chemoselectivity had inhibited the application of this method.
One alternative method is the iodine oxidized dialkynyldialkylb-
orates with different alkynyl substituents.29

The most efficient and widely used method till now is the
Cadiot–Chodkiewicz coupling reaction32 and its modifications,
which requires a 1-haloalkyne as the electrophile and another ter-
minal alkyne as the nucleophile. Another pathway to unsymmetric
R1 R2+

Cross coupling of two alkynes

Elimination from halo-enynes

X
R1

R2

O

R1 R2

decarbonylation

R2

R2

orm the unsymmetric diynes.
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diynes is the Fritsch–Buttenberg–Wiechell (FBW) rearrange-
ment,33 and these methods are usually used to prepare the long
whole Csp-carbon chains. Elimination from halo-enynes could also
generate the diynes.34 Other methods include the oxidation of dial-
kynyldialkylborates29 mentioned in section 2.1.3, decarbonylation
of diynones,35 and metathesis of symmetric diynes.36 Scheme 7
has listed these different pathways.

Cadiot–Chodkiewicz coupling and modifications
Since Cadiot and Chodkiewicz’s first report on the copper cata-

lyzed cross coupling of 1-haloalkynes and terminal alkynes in the
1950s, this procedure had been the major synthetic route to the
unsymmetric diynes over the past half-century. The advantages
of these coupling reactions include the relatively high yields, low
cost of catalyst, wide substrate scope, and mild conditions. There
are so many reports focusing on the total synthesis of naturally
occurring diynes that have used the Cadiot–Chodkiewicz coupling
as the key step.37 However, though powerful in many cases, there
are also some disadvantages. They often suffer from relatively poor
selectivity and yield a considerable amount of homocoupling
byproducts, especially for those bulky alkynes, or the case that
when the electronic properties of the substituents attached to
the haloalkynes and the terminal alkynes are similar (Scheme 8).

Kurth and Schore co-workers had utilized the polymer sup-
ported haloalkynes in the Cadiot–Chodkiewicz couplings to pre-
vent the homocoupling of the haloalkynes.38 Though lower yields
were observed, the side products were effectively inhibited
(Scheme 9).

Another improvement was made by Jiang,39 who has used the
supercritical CO2 as the reaction medium and NaOAc as the base
instead of the organic amine. Moderate to high yields were
R X + Hex R
cross-cou

entry Alkyne ( = 2% crosslinked 
polystyrene backbone)

1

2

3

4

5

6

7

8

9

10

11

12

Br CH2OH

Br CH2CH2OH
O

O

O

O
Br

Cl CH2CH2OH

O

O
Cl

Br CH2CH2CH2OH

O

O

Br

Br

Br CH2CH2CH2CH2OH

O

O

Br

Cl CH2CH2CH2CH2OH

O

O

Cl

Scheme 9. Polymer based haloalkynes
obtained, and the hydroxyl group in haloalkynes was found to be
crucial in this protocol. In a recent report Wang40 et al. have used
CuI and tris(o-tolyl)phosphine and yielded the unsymmetric diynes
in good yields.

To further improve the efficiency of the Cadiot–Chodkiewicz
coupling, Palladium catalysts were employed together with Cu(I)
salts. Potts, Wityak, and Alami et al. have reported the Palladium
catalyst in the coupling of haloalkynes and terminal alkynes
respectively.41 The mechanism of the palladium–copper catalyzed
cross coupling reaction of haloalkynes and terminal alkynes was
investigated by our team,42 and the proposed pathways in this pro-
cess are shown in Scheme 10. A phosphine–olefin ligand was
proved to accelerate the path A by in situ IR spectra. In a recent re-
port also from our team,43 the loading of the Palladium and copper
could be less than 0.01 mol % and 0.2 mol %. The TON of this system
could be up to 350,000. Palladium nanoparticles were proposed to
be the catalytic center by kinetic studies.

Fritsch–Buttenberg–Wiechell (FBW) rearrangement
Fritsch–Buttenberg–Wiechell (FBW) rearrangement reactions

are named after Paul Ernst Moritz Fritsch, Wilhelm Paul Butten-
berg, and Heinrich G. Wiechell. This type of reactions could gener-
ate alkynes from 1,1-dihaloolefins under low temperatures, as
shown in Scheme 11. In the case that either R1 or R2 was the alky-
nyl group, the product could be unsymmetric diyne.44 Triynes or
even longer polyyne chains could be obtained through this trans-
formation when both R1 and R2 were alkynyl groups.

Due to the low temperature in FBW process, this method is
widely applied in the synthesis of polyynes with bulky groups,
which may be unstable in higher temperatures. Tykwinski and
co-worker have done a great work in this field and prepared a
Hex + R R
pled product homocoupling product

cross-coupled 
product (%)

homocoupling 
product (%)

97 trace

69 0

93 trace

81 0

95 trace

84 0

66 34

71 0

37 15

34 0

40 18

36 trace

in Cadiot–Chodkiewicz coupling.
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X = Cl, Br, I

M = Cu

Scheme 10. Proposed pathways in palladium mediated Cadiot–Chodkiewicz coupling.
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plenty of symmetric or unsymmetric diynes and polyynes through
this rearrangement. For a detailed review, readers could refer to a
publication in 2010 and references therein.45 However, since
strong bases such as butyllithium were used, the tolerance of func-
tional group is usually poor for this method. In most cases, the sub-
stitute groups at the end of the diynes or polyymes were silyl,
phenyl, aryl, or alkyl groups without active H atom. Moreover,
the relatively long synthetic steps would be another problem.
These disadvantages had limited the application of FBW rearrange-
ment in a wider application range.

Unsymmetric diynes directly from two different terminal
alkynes

Although Cadiot–Chodkiewicz reactions have achieved great
success, the unstable 1-haloalkynes had limited the application
scope of this reaction. Cross coupling directly from two different
terminal alkynes could be the most efficient pathways to form
the unsymmetric diynes. However, the lack of selectivity often
leads to a mixture of the possible diyne products under the classic
Glaser–Eglinton–Hay conditions by simply mixing two different al-
kynes. Although complex products were obtained, this method
could be potentially useful if the mixtures were easy to be isolated,
or one of the starting alkynes was in large excess. There are also
some achievements recently that could solve the problem in some
cases. Lei and co-workers have reported a nickel catalyzed oxida-
tive coupling reaction between two different terminal alkynes.46

In this process, oxygen was employed as the sole oxidant, and
20 mol % of TMEDA was used as the ligand. Although 5 times ex-
cess of one alkyne was required, this process has represented a po-
tential pathway to unsymmetric diynes. Several reports emerged
R1

I

X
+ R1

Scheme 12. Negishi’s protocol to unsym

R2R1

X base
R2R1

X

R2R1

X = Cl, Br

Scheme 11. FBW rearrangement.
since then, but the requirement of excess of one alkyne had still
limited the application scope.

Other methods to unsymmetric diynes
Negishi et al. had developed a tandem protocol by combining

Palladium catalyzed coupling of terminal alkynes and 1,2-
dihaloalkenes with subsequent base-induced elimination to afford
the conjugated unsymmetric diynes,34,47 shown in Scheme 12. This
method could reach high yields under mild conditions. Eneynes,
also widely existing in nature, were also achieved conveniently.
Like the FBW protocol, this method also suffered from the long
synthetic steps and the limited functional group tolerance.

CAC bond cleavage could be utilized to construct unsymmetric
diynes. Dong et al. have reported the Rh(I)-catalyzed decarbonyla-
tion of diynones to form the unsymmetric diynes via CAC activa-
tion, shown in Scheme 13.

Another example was the alkyne cross-metathesis, which rep-
resented a new route to unsymmetric diynes. Tamm and co-work-
ers have reported a tungsten benzylidyne complex catalyzed
metathetic conversion between diynes to give the unsymmetric
diynes recently.36 This method could start from the readily avail-
able symmetric diynes under room temperature. Scheme 14 has
shown the transformation and the structure of the tungsten ben-
zylidyne complex. High selectivity was achieved with 4 equivalent
excess of one diyne. The authors have proved that the reaction
time was also crucial to the yield of the product. Degradation of
the product could be observed for prolonged period.

Although excess of one initial diyne was necessary to achieve
the selectivity, and column chromatography was required to iso-
late the unsymmetric product from the diyne mixture, this method
had shown another possibility in the synthesis of the unsymmetric
diynes.

Heterocycles from diynes

The derivation of the diynes could be dated to 1882, by Baeyer
who oxidized the diyne to indigo,10 shown in Scheme 15. Indigo
X
1. BuLi or LDA
2. R2X/Pd

R1 R2

metric diynes based on elimination.
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Scheme 13. Diyne synthesis from decarbonylation of diynones.
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has been used as a blue pigment, and was extracted from plants
historically. It is the blue of blue jeans, and the structure could
be recognized as the two heterocycles connected by a double bond.

Heterocycles are important in organic chemistry and bioorganic
chemistry. Although traditional methods to heterocycles were
mainly condensation reactions, the methodology of cycloadditions
from alkynes had also been developing rapidly. Recently, synthetic
chemists have found new pathways to generate heterocycles from
diynes directly with high atom efficiency. Synthesis of five-
membered heterocycles, such as thiophenes, pyrroles, and furans,
was reported from the diyne structure, shown in Scheme 16.

Thiophenes and furans from diynes

Thiophenes prepared from diynes were firstly reported by
Reisch and Schulte in 1960.48 Later, Kagan and co-workers had
used this method to prepare the a-thiophene oligomers in
1982.49 By this novel method, Kagan had prepared a series of
thiophene oligomers in moderate to high yields.9b Potts et al. have
used the gaseous H2S as the sulfur source to react with
1,4-diphenylbuta-1,3-diyne in NaOH solution and obtained the
2,5-diphenylthiophene.9a In a recent report by Zhao and
co-worker,50 the sodium hydrosulfide, NaHS was used and had
greatly improved the yields in most cases. Substrate scope was also
investigated and satisfactory results were obtained for those aryl
substituted diynes. Furans from diynes were much more difficult
than thiophenes. Catalysts and relatively harsh conditions were
typically required. Jiang et al. have reported a Cu(I) catalyzed
synthesis of thiophenes and furans from diynes using 1,10-
phenanthroline as ligand.5a For the furan formation, the authors
had proposed a mechanism, shown in Scheme 17.

Pyrroles from diynes

Methods for pyrroles from the diynes could be dated to 1961,
also by Reisch and Schulte.51 In this early report, five pyrroles were
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prepared from the diynes and primary amines in the presence of
CuCl. Chalk found that according to different reaction conditions,
the diynes could give either pyrroles or pyridines in the presence
of CuCl.52 Huerta et al. have reported the polymers with N-phenyl
fragments from the polymers with diyne chains using this
method.53 Ackermann and Born have used TiCl4 as the catalyst
for the hydroamination of alkynes to form indoles, and while
replacing the alkynes to diyne under the same reaction condition,
they have obtained the corresponding pyrrole.54 Gold could also
show catalytic activities. Bertrand and co-workers have reported
the homogeneous Au catalyst promoted hydroamination of diynes
to pyrroles using ammonia under high temperatures.55 Skrydstrup
et al. had reported the Au(I)-catalyzed pyrroles or furan formation
from diyne in 2010. A double hydroamination or hydration of the
diynes was proved to be the mechanism.5b

Fomina and Huerta had studied the mechanism of the Cu cata-
lyzed transformation from diynes to pyrroles theoretically.56 In
this study, the Cu-stabilized carbenes were considered as the inter-
mediates and the formation of the first intermediate was the rate
determining step. The Cu catalysts were thought to decrease the
activation energy of the carbine intermediate formation, from
75.0 to 50.1 kcal/mol.

Other heterocycles from diynes

Heterocycles rather than the basic five membered rings men-
tioned above could be achieved from the diynes. This may include
siloles,57 germoles,58 pyrazoles,6 and pyridines,52 shown in
Scheme 18. More structures as well as the mechanism were ex-
pected in this area.

Conclusion

This Letter had covered the structure, synthetic route, and der-
ivations of the whole-carbon 1,3-diyne structure. Due to the rigid
and rod-like structures of the diyne framework, this structure
has attracted more and more attention not only of those organic
synthetic chemists, but also the researchers in material science,
natural product isolation and characterization, herbal medicine,
biochemistry, etc. Diynes could be the precursors of many hetero-
cycles, which have provided an alternative pathway to the synthe-
sis of heterocycles.

However, this is still a fast developing research field. Challenges
in this field still remain. One of these challenges could be the syn-
thesis of unsymmetric diynes directly from different terminal al-
kynes, without perceptible excess of either alkyne. Other
challenges would largely lie in the application aspect. Diynes could
be good precursors of more heterocycles, and the mechanism study
was few. On the other hand, diynes could be a suitable and partic-
ular linkage in polymers either in the main chain or in the side
chains and related reports were still limited.
In a word, diynes are unique in structure, important in potential
usage, widely existed in nature, and far from perfect in research.
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