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Abstract Prediction of medulloblastoma clinical outcome is
crucial to personalizing treatment, both to identify high-risk
patients for aggressive or alternative therapy and to spare those
at low risk from excessive treatment. The best predictors [Po-
meroy et al. (2002) Nature 415, 436^442], based on gene ex-
pression monitoring at diagnosis, have shown much less accura-
cy in recognizing patients with eventual failed outcomes ^
6 50% for the predictor making fewest total errors ^ than those
who would survive, while a single gene predictor exhibited re-
verse asymmetry. Such inaccuracy in recognizing one of the
outcomes is a problem for clinical use. We hypothesized that
a non-linear model could be built to signi¢cantly improve pre-
diction of medulloblastoma outcome, thereby promoting use of
gene-expression-based predictors in a clinical setting. In fact,
this approach resulted in fewer errors and much less asymmetry
in prediction, and bidirectional accuracy of about 80% could be
obtained via its combination with other methods. Indeed, three
combinations of methods were identi¢ed that yielded signi¢-
cantly better predictions of clinical outcome than previously
attained, making feasible predictors of medulloblastoma treat-
ment response with greatly improved bidirectional accuracy es-
sential for clinical use.
2 2002 Published by Elsevier Science B.V. on behalf of the
Federation of European Biochemical Societies.

Key words: Clinical outcome; Treatment response; Gene
expression; Microarray; Medulloblastoma; Embryonal tumor

1. Introduction

Prediction of treatment response of medulloblastoma pa-
tients is crucial to personalizing therapy and improving clin-
ical outcome [1]. Identifying patients likely to have poor
response allows early institution of more aggressive or alter-
native therapy; recognizing other patients likely to have fa-
vorable outcome avoids over-treatment. A classic paper [2]
introduced use of gene expression monitoring, and weighted
voting (WV), to distinguish accurately between various acute
leukemia classes, and motivated much further work with mi-
croarrays. Indeed, prediction of clinical outcome based on
gene expression was recently achieved [1] for a group of 60
children with medulloblastoma, using several di¡erent classi-
¢cation algorithms including k-nearest neighbors (k-NN),
WV, support vector machines (SVM), and IBM SPLASH.

The k-NN made fewest total errors (13), but was much
more accurate in recognizing eventual survivors (37 of 39
correct) than failed outcomes (10 of 21 correct). In fact, all
these methods yielded strongly asymmetric predictors biased
towards the survivor group. The single gene TRKC predictor
showed reversed asymmetry (accuracy: 81% failed group, 59%
survivor group). Two majority-vote combinations of predic-
tors each reduced the number of errors to 12, but were also
strongly asymmetric (accuracy: 61.9% failed group, 89.7%
survivor group).
Here it is shown that a new approach, involving parallel

cascade identi¢cation (PCI) [3], outperforms all individual
methods considered in the original study [1], both in decreas-
ing total errors and in diminishing the asymmetry in accuracy
of recognizing the two outcomes. Most importantly, PCI com-
bines well with metastatic staging, k-NN, TRKC, and SVM
methods: errors are reduced by one-quarter compared to the
best achievable, by the combination of predictors, in the orig-
inal study [1], and asymmetry in performance is considerably
reduced. In addition, PCI combined with staging and TRKC
predictors to essentially eliminate asymmetry, achieving about
80% correct in predicting either failure or survivor outcomes.
These results are important because, for the ¢rst time, they
make feasible combination predictors of medulloblastoma
outcome with good bidirectional accuracy, which is critical
for clinical use.
Two points should be noted about the dataset in the orig-

inal study [1]. First, because survivor outcomes considerably
outnumber failures in the set, simply predicting every outcome
to be survivor would make 65% of the predictions correct.
Hence it is worthwhile to correct for the di¡erent sizes of
the outcome groups by considering the breakdown of predic-
tion errors for each outcome rather than simply the total
number of errors. The k-NN correctly predicted 47.6% of
failure and 94.9% of survivor outcomes, averaging 71%, the
same overall accuracy as WV (52.3% failed group, 89.7% sur-
vivor group) and SVM (57.1% failed group, 84.6% survivor
group). IBM SPLASH averaged 72% accuracy (61.9% failed
group, 82.1% survivor group) though it made two more errors
than k-NN.
Second, prediction of medulloblastoma outcome was di⁄-

cult, and demanded a large training set for the tested methods
[1] to be accurate. The above-reviewed results [1] were ob-
tained by cross-validation, where a predictor was trained on
59 of the pro¢les and then tested on the remaining (held out)
pro¢le, with the procedure repeated until all pro¢les had been
tested. To obtain the k-NN results, models with 1^200 genes
were tested to ¢nd the optimal number of genes (8) for the
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model, and the value of k was similarly selected [1]. The large
number of pro¢les required for training did not allow a subset
to be set aside as an independent set. Hence the obtained
accuracy still requires con¢rmation on independent sets as
was pointed out [1]. Indeed, to date no published paper has
tested a multi-gene-expression-based predictive model for me-
dulloblastoma outcome on a dataset independent of that used
to obtain the model.
Recently, it was shown that the treatment response of a

group of acute myeloid leukemia (AML) patients could be
predicted from their gene expression pro¢les using PCI [3].
See also review by Kirkpatrick [4]. In the present paper, the
need for independent sets is recognized by adopting certain
architectural parameter values for the parallel cascade model,
the number of genes used, and the method of selecting the
genes as previously published [3] for the AML study. While
there is no reason that these choices from the latter study
should be optimal for building the medulloblastoma outcome
predictor, the aim was to approach as closely as possible a
blind test. When the AML choices [3] are directly adopted, the
resulting PCI model also obtains 71% accuracy in predicting
medulloblastoma outcome, with the major di¡erence that crit-
ical values were not chosen over the same set where the per-
formance is measured. In addition, to put the comparison on
the same footing as for the predictors in the earlier study [1],
PCI results are also obtained when the architectural model
parameters and the number of genes used are selected specif-
ically for medulloblastoma outcome prediction. In this case,
the performance is shown to surpass that of each individual
method previously tested [1].

2. Method

The same pro¢les as in [1] (i.e. the raw values given after re-
scaling by Pomeroy et al.) were used here, and were taken at
time of diagnosis. Each pro¢le contained expression levels of
6817 human genes, but because of duplicates and additional
probes in the A¡ymetrix microarray, in total 7129 gene ex-
pression levels were present in the pro¢le. Pro¢le nos. 1^21
were from medulloblastoma patients who ultimately had
failed outcomes, while pro¢les nos. 22^60 were from patients
who proved to be survivors.
Use of PCI for outcome prediction is described in [3] and

now summarized. Brie£y, given one or more expression pro-
¢les for both failed (F) and survivor (S) outcomes, begin by
selecting genes that assist in distinguishing between the two
outcomes. For AML response prediction [3], the genes se-
lected were the 200 having greatest di¡erence in raw expres-
sion levels between the ¢rst F and S pro¢les, and this was
followed here. Accordingly, the ¢rst F pro¢le (no. 1) and ¢rst
S pro¢le (no. 22) were compared to ¢nd the 200 genes with
greatest di¡erence in raw expression levels between the two
pro¢les. The corresponding 200 raw values from pro¢le no. 1
were appended, in the same order as they had in the pro¢le, to
form an F segment, and an S segment was similarly prepared
from pro¢le no. 22. The two segments were spliced together to
form a 400-point training input, and a corresponding training
output was de¢ned as 31 over the F segment and 1 over the S
segment of the input [3]. While only one F and one S pro¢les
were employed here to select the genes to use, and to con-
struct the training input, multiple exemplars can certainly be
used for these purposes.

A parallel cascade model (Fig. 1) was then identi¢ed to
approximate the input/output relation, using the method [5]
previously applied to protein family prediction [6]. In Fig. 1,
each L is a dynamic linear element, each N is a polynomial
static non-linearity. This parallel LN model is related to a
parallel LNL structure proposed earlier by Palm [7] where
the static non-linearities were logarithmic and exponential
functions rather than the polynomials used here. Fig. 2A
shows the training input, and Fig. 2B (solid line) the corre-
sponding training output. When these data were used to iden-
tify a parallel LN model (Fig. 1), the model mean square error
(MSE) was 4.1%, expressed relative to variance of the training
output. Fig. 2B (dashed line) shows the calculated output of
the identi¢ed model, when evoked by the training input. No-
tice that the latter output is predominately negative over the F
segment and positive over the S segment of the training input.
Hence the identi¢ed model is able to distinguish between F
and S pro¢les, at least with respect to the two training exem-
plars.
To identify the PCI model, certain parameter values relat-

ing chie£y to its architecture had to be pre-speci¢ed [5] :
1. Memory length of dynamic linear element L that began

each cascade. The memory has length R+1 if the element’s
output depends on the present value of its input and on the
R previous input values.

2. Degree of polynomial static non-linearity N that followed
the linear element.

3. Maximum number of cascades allowed in the model.
4. A threshold concerning minimum reduction in MSE re-

quired before allowing a candidate cascade into the model.
As noted above, the present choices for these parameters

were taken directly from a di¡erent cancer prediction study
[3]. There it was found that a PCI model could be identi¢ed to
predict treatment response of an AML patient group if the
memory length (R+1) of each linear element was 12, and the
degree of each polynomial static non-linearity was 7, with
seven cascades in the model. These values and the same
threshold of 11 were used here. While it seemed unlikely
that these parameters would also be optimal for medulloblas-
toma outcome prediction, it allowed the remaining 58 pro¢les
that had not been used for training to form an independent
set for testing the PCI model. The latter set comprised pro¢le
nos. 2^21 and 23^60.
To classify a test pro¢le, the raw expression values from the

previously selected genes were appended, in the same order as
used above, to form a 200-point input signal, which was then
fed to the identi¢ed parallel cascade model to obtain a corre-
sponding output signal. Since the model had a memory length

Fig. 1. Parallel cascade model used to predict medulloblastoma clin-
ical outcome. Each L is a dynamic linear element and each N is a
polynomial static non-linearity.
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of 12, the ¢rst 11 points of the output signal were excluded to
allow the model to ‘settle’, and only the last 189 points of
each output signal were used to determine the class for the
corresponding pro¢le.

The class of each of the 58 test output signals was predicted
as follows, using a leave-one-out protocol. Each time, the
Euclidean distance was calculated of the query output signal
from each of the remaining 57 output signals. That is, if zð0Þ(i)

Fig. 2. A: Training input x(i) formed by splicing together the raw expression levels of genes from the ¢rst ‘failed outcome’ pro¢le no. 1 and
¢rst ‘survivor outcome’ pro¢le no. 22. The genes used were the 200 having greatest di¡erence in expression levels between the two pro¢les.
B: Training output y(i) (solid line) de¢ned as 31 over the ‘failed outcome’ portion of the training input and 1 over the ‘survivor outcome’ por-
tion. The training input and output were used to identify a parallel cascade model of the same form as in Fig. 1. The dashed line represents
calculated output z(i) when the identi¢ed model is stimulated by training input x(i). Note that z(i) is predominately negative (average value:
30.961) over the ‘failed outcome’ portion and positive (average value: 0.961) over the ‘survivor outcome’ portion, of the training input. This
ability to separate failed and survivor outcome pro¢les is exploited by using the identi¢ed model to ¢lter corresponding portions of novel pro-
¢les prior to their classi¢cation.
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and zðjÞ(i) respectively represent the query output signal and
one of the remaining 57 output signals, where i=1,T,200, and
the ¢rst 11 output values are excluded as explained above,
then one calculates distance:

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX200
i¼12

ðzð0ÞðiÞ3zðjÞðiÞÞ2
vuut

for each one of the remaining output signals. The query out-
put signal was then assigned the class of the closest one of the
57 other output signals. This process was repeated until all 58
pro¢les had been classi¢ed.
In summary, the model was identi¢ed using only the ¢rst F

and S pro¢les and values from the AML study [3], and so was
never tested on pro¢les employed to obtain the model. The
leave-one-out protocol was simply used to interpret the output
signals of the identi¢ed model. Moreover, to show the bene¢t
of the model, results are also provided when simple Euclidean
distance was used, in a leave-one-out protocol, to classify the
200-point input signals without ¢rst obtaining corresponding
model output signals.
Next, to fairly compare PCI classi¢ers with predictors in [1],

the model architectural parameters and the number of genes
to use were determined speci¢cally for medulloblastoma out-
come prediction. Genes were selected using the same criterion
as employed previously [3], namely the top-ranked genes hav-
ing greatest di¡erence in raw expression levels between the
¢rst F and S pro¢les, and only these two pro¢les were used
to create the training input. PCI models were tested corre-
sponding to 400, 300, 100, and 20^30 genes. Good classi¢ca-
tion ensued when the top-ranked 22 genes were selected (Ta-
ble 1), and memory length (R+1) was 4, polynomial degree
was 5, two cascades were allowed in the model, and threshold
was 6. Model MSE was about 4.9%. Note that here a 44-point
training input was employed, and a 22-point input signal cor-
responded to each of the 58 test pro¢les. However, good clas-
si¢cation was also observed for other numbers of genes used
and other architectural parameters. In Table 1, some genes

alone would not be useful to predict outcome, but are impor-
tant when their expression levels are considered in combina-
tion with others.
A leave-one-out protocol was again employed in the class

prediction. In place of using simple Euclidean distance, better
accuracy generally resulted from calculating the correlation
coe⁄cient of a query output signal with each of the remaining
57 output signals. Since memory length was 4, the ¢rst three
points of each 22-point output signal were not used. Let zð0Þ(i)
and zðjÞ(i) respectively represent the query output signal and
one of the remaining 57 output signals, where now i=1,T,22.
Then, for each of the remaining output signals, calculate cor-
relation coe⁄cient:

r ¼

X22
i¼4

ðzðjÞðiÞ3zðjÞÞðzð0ÞðiÞ3zð0ÞÞ

X22
i¼4

ðzðjÞðiÞ3zðjÞÞ2
 !1

2 X22
i¼4

ðzð0ÞðiÞ3zð0ÞÞ2
 !1

2

where zð0Þ and zðjÞ denote the average of zð0Þ(i) and zðjÞ(i)
respectively over i=4,T,22. The query output signal was as-
signed the class of that one of the 57 other output signals it is
most positively correlated with, i.e. the correlation coe⁄cient
is largest. Again, to show the utility of the identi¢ed PCI
model, classi¢cation accuracy is also reported below when
the correlation coe⁄cient was used, in a leave-one-out proto-
col, to classify the 22-point input signals without ¢rst obtain-
ing corresponding model output signals.
Finally, PCI is shown to combine well with methods con-

sidered previously [1]. The improvement is both in diminish-
ing the asymmetry of the resulting predictor and in reducing
the number of classi¢cation errors.

3. Predicting clinical outcome

3.1. Using parameters from the AML study
In this section, the PCI architectural parameters, and the

Table 1
Twenty-two genes used to predict medulloblastoma outcome

Accession no. Position in pro¢le (1^7129) Description

M33197 42 AFFX-HUMGAPDH/M33197_5_at (endogenous control)
D14530 226 40S ribosomal protein S23
D79205 568 Ribosomal protein L39
HG1612-HT1612 804 Macmarcks
HG3549-HT3751 930 Wilm’S tumor-related protein
J02611 1054 APOD apolipoprotein D
J03040 1068 SPARC SPARC/osteonectin
M63379 2128 CLU clusterin (complement lysis inhibitor; testosterone-repressed prostate

message 2; apolipoprotein J)
U03057 2606 Actin bundling protein mRNA
U12404 2757 HSPB1 heat shock 27 kDa protein 1
X53331 4247 MGP matrix protein gla
X67951 4463 PAGA proliferation-associated gene A (natural killer-enhancing factor A)
X70683 4504 SOX4 SRY (sex-determining region Y)-box 4
Z48950 5168 HISTONE H3.3
D86974 5507 KIAA0220 gene, partial cds
M19311 5642 CALM1 calmodulin 1 (phosphorylase kinase, delta)
L04483 6026 RPS21 ribosomal protein S21
M14483 6181 PTMA gene extracted from human prothymosin alpha mRNA
Z19554 6209 VIM vimentin
M37457 6311 Naþ,Kþ-ATPase catalytic subunit alpha-III isoform gene
S54005 6388 Thymosin beta-10
X01703 6915 Alpha-tubulin mRNA
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number (200) of genes used to construct the training input,
were not chosen from medulloblastoma pro¢les but from the
AML study [3]. The PCI model was obtained using only the
¢rst F and ¢rst S medulloblastoma pro¢les, while the remain-
ing 58 pro¢les were reserved for testing. This is important
because it means that the PCI model was tested here on an
independent dataset from that used to obtain the model. Of
the 58 test pro¢les, 12 of 20 F (60%) and 31 of 38 S (81.6%)
were correctly classi¢ed, a 71% average. This probably under-
estimates PCI accuracy in predicting medulloblastoma out-
come, since critical parameters were not tailored for this pre-
diction task but came, as just noted, from a study to predict
AML treatment response [3]. When the 200-point input sig-
nals corresponding to the test pro¢les were classi¢ed without
¢rst obtaining corresponding model output signals, the accu-
racy dropped to about 50% (35% on F pro¢les, 65.8% on S
pro¢les), showing that the PCI model was essential.

3.2. Using parameters tailored to medulloblastoma
Here, 14 of 20 F (70%) and 32 of 38 S (84.2%) pro¢les were

correctly classi¢ed, so PCI accuracy averaged 77% (misclassi-
¢ed F pro¢les: nos. 5, 8, 13, 14, 20, 21; misclassi¢ed S pro-
¢les: nos. 24, 33, 35, 44, 54, 58). When instead the 22-point
input signals corresponding to the test pro¢les were classi¢ed
without ¢rst obtaining corresponding model output signals,
the accuracy averaged 63% (50% on F pro¢les, 76.3% on S
pro¢les).
Fisher’s exact test probabilities and average accuracy over-

all were respectively P6 0.0002 and 71% (k-NN), and P6
0.000063 and 77% (PCI). Even if the k-NN P-value is re-
garded as the critical level for signi¢cance, and one divides
this by the number of results (2) for the Bonferroni correction
for multiple hypothesis testing, the PCI P-value is less than
the adjusted level. Moreover, Fisher’s exact test probabilities
and average accuracy for a localized-disease subset [1] were
P6 0.00851 and 69.5% (k-NN), and P6 0.001423 and 78%
(PCI). For the latter case, the breakdown was 45.5% on F
and 93.5% on S pro¢les (k-NN), and 72.7% on F and
83.3% on S pro¢les (PCI). Thus, for both cases, PCI provided
improved prediction.

3.3. Combining PCI with other methods
As noted earlier, combining predictors using majority vot-

ing achieved the most accurate predictions in [1] : 12 errors in
total, correct on 61.9% of F and 89.7% of S pro¢les, averaging
76%, Fisher’s exact test probability of P6 0.0000461. It is
now shown that the PCI classi¢cation described in Section
3.2 combines well with various predictors in [1]. In each
case, a majority vote decided the prediction. Combinations
considered were:
1. PCI with metastatic staging, k-NN, TRKC, SVM. This

combination achieved minimum total errors and highest
average correct classi¢cation rate. Recognizing 14 of 20
(70%) test F pro¢les, and 35 of 38 (92.1%) test S pro¢les,
it averaged 81%, making nine errors. Misclassi¢ed F pro-
¢les were nos. 2, 5, 13, 14, 20, 21; misclassi¢ed S pro¢les
were 26, 33, 36. Fisher’s exact test probability was
P6 0.000001712, less than 1/25 of the P-value for the com-
bination prediction in [1], suggesting that PCI would be a
useful component to combine with the predictors from that
study.

2. PCI with metastatic staging, TRKC. This combination
achieved best symmetry in predicting F and S outcomes.
Correctly classifying 16 of 20 (80%) test F pro¢les and 30
of 38 (78.9%) test S pro¢les, it averaged 79%.

3. PCI with metastatic staging, SVM. This combination
ranked second in average correct classi¢cation and total
errors. Recognizing 14 of 20 (70%) test F and 34 of 38
(89.5%) test S pro¢les, it averaged 80%, making 10 er-
rors.

4. Discussion and future applications

In this paper, the identi¢ed parallel cascade model was es-
sentially used as a ¢lter through which input signals represen-
tative of the pro¢les were passed in order to produce output
signals. Nearest neighbor was used to classify the output sig-
nals here, but many other classi¢cation algorithms, such as
SVM, arti¢cial neural networks, or PCI can also be applied to
classify the output signals.
PCI combines well with methods considered by Pomeroy et

al. [1] for medulloblastoma outcome prediction. A future pa-
per will combine PCI with other techniques for interpreting
gene expression pro¢les such as aggregative-hierarchical-clus-
tering [8], self-organizing maps [9], and k-means-clustering
[10]. Recently, microarrays were used to predict disease out-
come of breast cancer [11]. Combining other methods with
PCI here may enhance prediction of recurrence, and assist
in selection of treatment regimen. Finally, PCI can be used
to classify many other biologic pro¢les, e.g. proteomics data,
or pro¢les representative of DNA methylation over large re-
gions of the genome. PCI has been demonstrated by itself
[3,4], and in combination with other methods, to be a valuable
tool in predictive medicine.
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