
FEBS Letters 580 (2006) 6948–6954

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Binding of Vac14 to neuronal nitric oxide synthase: Characterisation of
a new internal PDZ-recognition motif

Jean-François Lemaire, Peter S. McPherson*

Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal,
Que., Canada H3A 2B4

Received 11 September 2006; revised 30 October 2006; accepted 24 November 2006

Available online 4 December 2006

Edited by Gianni Cesareni
Abstract PDZ domains mediate protein interactions primarily
through either classical recognition of carboxyl-terminal motifs
or PDZ/PDZ domain associations. Several studies have also
described internal modes of PDZ recognition, most of which
depend on b-finger structures. Here, we describe a novel interac-
tion between the PDZ domain of nNOS and Vac14, the activator
of the PtdIns(3)P 5-kinase PIKfyve. Binding assays using vari-
ous Vac14 deletion constructs revealed a b-finger independent
interaction that is based on a novel internal motif. Mutational
analyses reveal essential residues within the motif allowing us
to define a new type of PDZ domain interaction.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

PDZ domains are protein interaction modules found in

single or multiple copies in a variety of proteins involved in

multiprotein signaling complexes. Examples include the post-

synaptic density protein PSD-95, the septate junction protein

Drosophila Discs-large and the epithelial tight junction protein

ZO-1, from which the name PDZ originates [1]. Although

PDZ/PDZ domain interactions can occur [2,3], the most com-

mon mode of PDZ domain recognition is through the last four

or five C-terminal residues of interacting partners. Proteins

bearing C-terminal peptide motifs generally target specific

PDZ domain proteins [4]. In fact, different classes of PDZ

domains have been defined based on their preferred C-terminal

peptide binding motifs: Class I, -[S/T]-x-U*; Class II, -U-x-U*;

Class III, -[D/E/K/R]-x-U* and Class IV, -x-W-[D/E]* [1],

where * indicates the free carboxyl group at the C-terminus,

U represents hydrophobic residues, W represents aromatic res-

idues and x is any amino acid.

The neuronal isoform of nitric oxide synthase (nNOS) differs

from the two other enzyme paralogs, the endothelial NOS

(eNOS) and inducible NOS (iNOS) by an additional 230 resi-

due N-terminal stretch containing a Class III PDZ domain [5].

Given the physiological importance of nNOS in a number of

cellular processes including neurotransmitter release, cell sur-
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vival, muscle contraction, and translocation of the glucose

transporter GLUT4, efforts have been made to identify nNOS

PDZ domain-binding partners and to define the motifs that

mediate the interactions. Peptide library screens have demon-

strated a preference of the nNOS PDZ domain for peptides

ending with -D-x-V* [6] and more specifically -G-[D/E]-x-V*

[4]. Moreover, nNOS uses an internal b-hairpin ‘‘finger’’ struc-

ture that mimics a typical C-terminal motif to mediate the

interaction of its PDZ domain with the PDZ domains of syn-

trophin and PSD-95/93 [7–9]. Besides b-fingers, there are only

a few examples of internal motifs for PDZ recognition. These

include binding of the Dishevelled PDZ domain to internal -K-

T-x-x-x-[W/I]- motifs in Frizzled [10] and Idax [11] and the

internal sequence -H-R-E-M-A-V- that mediates the Pals1–

Par-6 interaction [12].

Vac14 is an evolutionary conserved eukaryotic gene that was

originally described in yeast based on its mutation causing vac-

uole inheritance, acidification and membrane morphology de-

fects [13,14]. Vac14 is involved in the hyperosmotic stress

response and controls phosphatidylinositol 3,5-biphosphate

(PtdIns(3,5)P2) synthesis by interacting with and activating

the yeast PtdIns3P 5-kinase Fab1p, and its mammalian ortho-

log PIKfyve [14–17]. The phosphoinositide PtdIns(3, 5)P2 is a

non-abundant phospholipid essential for the delivery of cargo

into the vacuole/lysosomal compartment via endosomes

[18,19]. Intriguingly, we identified Vac14 in a screen for vesicle

trafficking proteins [20]. Upon activation with Vac14, PIKfyve

but not Fab1p, also produces PtdIns(5)P, which has implica-

tions in actin remodeling and GLUT4 dynamics [21,22].

Here, we identify nNOS as a Vac14-binding partner and we

demonstrate that the nNOS PDZ domain recognizes two

peptides motifs in Vac14, one at the C-terminus and a novel

motif within the protein chain. The nNOS/Vac14 interaction

depends on the internal motif, whereas the C-terminal motif

is found to contribute to the interaction but is not sufficient

for binding. Through mutational studies, we define critical

residues within the internal motif and propose -G-[D/E]-x-U-

[D/E]- as an internal consensus motif for the nNOS PDZ

omain.
2. Material and methods

2.1. Antibodies
A polyclonal Vac14 antibody was raised in rabbits against a peptide

of human Vac14 (762HLEVRHQRSGRGDHLDRRVVL782) using
a previously described technique [23]. Polyclonal sera against gluta-
thione-S-transferase (GST) and NECAP 1 were previously described
blished by Elsevier B.V. All rights reserved.
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[24,25]. Monoclonal antibodies against synaptophysin and FLAG
were from Sigma–Aldrich, nNOS and His6 monoclonal antibodies
were from BD Transduction Laboratories and Qiagen, respectively.
2.2. DNA constructs and recombinant proteins
GST-, His- and FLAG-tagged expression constructs were generated

by PCR from either Vac14 cDNA (human EST GenBank accession
number BM468215) or from human nNOS cDNA (generous gift of
Dr. Phil Marsden) using the appropriate primers (Supplementary
Table 1) with subsequent cloning into pGEX-4T1 (GE Healthcare),
pFO4 (derived from pET15b; kindly provided by Dr. Mirek Cygler)
and pCMV-tag2b (Stratagene) vectors, respectively. GST- and
His-tagged fusion proteins were expressed in Escherichia coli BL-21.
N-terminal GST-tagged wild-type and mutated variants of Vac14
[768–782]aa and [768–777]aa and 5-HT2B receptor [464–479]aa were
generated by subcloning annealed complementary oligos into pGEX-
4T1 (Supplementary Table 1). All constructs were confirmed by
sequencing.
2.3. Cell and tissue extracts
HEK 293-T cells expressing FLAG-Vac14 were lysed by sonication

in 10 mM HEPES pH 7.4 containing 33 mM NaCl and protease inhib-
itors (PIs) (0.83 mM benzamidine, 0.23 mM phenylmethylsulfonyl
fluoride, 0.5 lg/mL aprotinin, and 0.5 lg/lL leupeptin). Triton X-
100 was added to 1% final concentration and extracts were agitated
for 10 min at 4�C, followed by centrifugation at 300000 · g for
15 min. The resulting supernatant was analyzed by Western blot.
Rat tissues were homogenized in 20 mM Hepes pH 7.4 with PIs and
centrifuged at 800 · g for 5 min. Subcellular fractionation of brain
extracts was performed as previously described [26]. Equal protein
amounts of the cell lysates, tissue extract supernatants and brain sub-
cellular fractions (10, 200 and 100 lg/lane, respectively) were analyzed
by SDS–PAGE and Western blot.
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Fig. 1. Expression pattern of Vac14. (A) Lysates (10 lg/lane) from FLAG a
purified Vac14 antibody. (B) Equal protein aliquots (200 lg/lane) of rat brain
extracts were blotted with affinity-purified Vac14 antibody. (C) Equal protein
and embryonic day 18 (E18) whole brain were blotted with affinity-purified
fraction) were blotted with antibodies against Vac14 and synaptophysin as ind
supernatant, LS).
2.4. Binding studies
2.4.1. Immunoprecipitation assays. A soluble rat brain extract was

prepared in buffer A (10 mM HEPES pH 7.4, 1% Triton X-100, PIs)
and pre-cleared by incubation with Sepharose beads as described
[27]. The extract (2 mg) was incubated overnight at 4 �C with 2 ll of
the preimmune or the Vac14-immune rabbit serum (#3865) precoupled
to protein-A Sepharose. Beads were washed three times in buffer A
prior to processing by SDS–PAGE and either Coomassie staining or
Western blot analysis. Specific bands revealed by Coomassie staining
were analyzed by tandem mass spectrometry (MS) as previously de-
scribed [28].

2.4.2. GST pull-down assays. GST pull-down assays were per-
formed in buffer A, supplemented with 150 mM NaCl, using GST-
fusion proteins precoupled to glutathione-Sepharose, and purified
His-tagged proteins. For experiments shown in Fig. 3A and C, 1%
Triton X-100 was replaced with 1% Tween-20. Protein amounts shown
in Fig. 2D were quantified using ImageJ (National Institutes of Health,
USA).

2.4.3. Overlay assays. The GST tag from the GST-Vac14 full-
length ([1-782]aa) fusion protein (GST-Vac14) was cleaved off by
thrombin and 3 lg of Vac14 protein was immobilized on nitrocellulose
membranes. The membranes were incubated overnight at 4 �C with
10 lg/mL of either eluted GST or GST-nNOS [1–100]aa (GST-nNOS
PDZ) in Tris-buffered saline (20 mM Tris, 150 mM NaCl, pH 7.4),
3% bovine serum albumin, 0.1% Tween-20 and 1 mM dithiothreitol
(DTT). Bound proteins were revealed by Western blotting using a
polyclonal antibody against GST as described [24].
3. Results

To better characterize mammalian Vac14, we raised an anti-

peptide Vac14 polyclonal antibody in rabbits. Reactivity of the

antibody against Vac14 was verified using extracts of either
LP1
LP2
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mock or FLAG-Vac14-transfected cells (Fig. 1A). The anti-

body detected a single band in tissue extracts at approximately

85 kDa, the predicted molecular mass of Vac14. Vac14 was

found to be expressed in brain, lung, kidney and testis with

highest levels in brain and testis (Fig. 1B). For brain, Vac14

is detected in all regions of adult brain tested and is also pres-

ent in embryonic brain (Fig. 1C). Subcellular fractionation of

rat brain shows that Vac14 is present in a microsomal mem-

brane fraction (P3) and also enriches in LP2, a fraction com-

posed of microsomal membranes from synapses, suggesting a

neuronal function for Vac14 (Fig. 1D). The synaptic vesicle

protein synaptophysin shows the expected fractionation profile

(Fig. 1D).

We immunoprecipitated Vac14 from solubilized rat brain

extracts to identify protein binding partners. Coomassie stain-

ing revealed specifically immunoprecipitated bands at approxi-

mately 85 kDa and 160 kDa (data not shown), and tandem

MS analysis identified the 85 kDa band as Vac14 (21 peptides)

and the 160 kDa band as nNOS (7 peptides). The interaction

was confirmed by Western blot of the immunoprecipitates
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Fig. 2. Vac14 interacts with nNOS. (A) A Triton X-100 soluble rat brain extra
pre-immune anti-Vac14 sera pre-coupled to protein-A Sepharose. Proteins
nNOS, Vac14 and NECAP 1 as indicated. An aliquot of the brain extract (2
incubated with GST or GST-nNOS PDZ domain coupled to glutathione-Sep
antibody against the His tag. An aliquot of His-Vac14 (10%) was loaded as s
and transferred to nitrocellulose. Membrane strips were blotted with Vac1
domain and specifically bound proteins were detected with anti-GST antibo
GST-nNOS PDZ domain or 40 lg of the protein was incubated with GST (lef
blotted with antibodies against the His tag and GST. (E) Binding curve
quantification of band intensities from the blot shown in panel D.
(Fig. 2A). In contrast, the abundant brain protein NECAP 1

[29] does not co-immunoprecipitate with Vac14 (Fig. 2A).

nNOS differs from the other enzyme paralogs, eNOS and

iNOS by the presence of an N-terminal PDZ domain. To test

if this domain mediates interaction with Vac14, we generated

constructs encoding the first 100 residues of nNOS (nNOS

PDZ), which includes the complete PDZ domain but does

not harbour the b-finger structure just C-terminal of the

PDZ domain. The binding of His-Vac14 to GST-nNOS PDZ

demonstrates a direct interaction through the nNOS PDZ

domain (Fig. 2B), which was confirmed in overlay assays

(Fig. 2C). When testing a range of His-Vac14 concentrations

for nNOS binding, we found saturation at approximately

20 lg (0.23 lM) (Fig. 2D and E).

The detection of Vac14/nNOS binding by overlay suggests

an interaction through a peptide motif, as secondary and ter-

tiary structures in Vac14 are likely denatured during SDS–

PAGE. To identify the nNOS binding sequences in Vac14,

we tested a series of deletion constructs in pull-down assays

for binding to GST-nNOS PDZ (Fig. 3A–C). GST-nNOS
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PDZ binds with comparable levels to full-length Vac14 and a

Vac14 N-terminal deletion construct [335–782]aa. In contrast,

a Vac14 variant encoding residues 335–667 failed to bind, nar-

rowing down the site of interaction to the last 115 amino acids

(Fig. 3A). The last five residues of Vac14 (-R-R-V-V-L*) do

not fit the Class III PDZ domain consensus motif -[D/E/K/

R]-x-U*, but match the Class II consensus motif -U-x-U*,

which is not expected to recognize the Class III nNOS PDZ

domain. Interestingly, Vac14 contains an internal sequence

-G-D-H-L-D- immediately upstream of the -R-R-V-V-L*

stretch, which is similar to the C-terminal consensus motif

-G-[D/E]-x-V* previously described to bind to the nNOS

PDZ domain [4] (Fig. 3B). In order to elucidate the contribu-

tion of these potential peptide motifs to nNOS PDZ domain

binding, we tested a series of C-terminal Vac14 deletion con-

structs (Fig. 3B and C). Binding is not abolished by deletion

of the last five amino acids, but is abolished with deletions

of the last 53 or last 10 residues (Fig. 3C). The loss of binding

seen for Vac14 [335–772]aa when compared to Vac14 [335–

777]aa reveals the sequence -G-D-H-L-D- from amino acids

773 to 777 as a functional internal binding motif (Fig. 3C).

The decrease in binding for Vac14 [335–777]aa compared to

[335–782]aa (Fig. 3C) raises two possibilities: the Vac14/nNOS

PDZ interaction is mediated (1) by internal and C-terminal

motifs contributing equally to binding or (2) by binding pri-

marily to an internal motif with secondary contributions from

a C-terminal motif.

To examine these possibilities, we tested the binding of

nNOS to a series of Vac14 mutants within the context of

Vac14 [768–782]aa, containing both motifs and Vac14 [768–

777]aa, containing the internal motif only (Fig. 4A). The

wild-type sequences interact with nNOS in pull-down assays

(Fig. 4B–D) and the reduction in binding for the short con-

struct verifies the contribution of both motifs to the interaction
(Fig. 4B). Similar results are seen when the C-terminal motif is

mutated by conversion of L782 to glycine or by the mutation

of residues 780–782 to alanine, further validating the impor-

tance of the internal motif (Fig. 4B). We next performed an

alanine scan for the internal motif. Interestingly, exchange of

D777 to alanine abolishes the interaction within the context

of [768–782]aa, revealing that the internal motif is crucial for

interaction (Fig. 4C). Moreover, the loss of interaction shows

that the C-terminal motif alone is not sufficient to promote

binding and thus appears to enhance the interaction mediated

by the internal motif. In the context of the [768–777]aa peptide,

alanine mutation of G773, D774, L776, and D777 reduces or

abolishes binding to nNOS (Fig. 4D). Similar results were ob-

tained for alanine mutations in the context of [768–782]aa har-

bouring a triple alanine mutation of residues 780–782 (data not

shown). Together, these data reveal the internal sequence G-D-

H-L-D in Vac14 as a binding motif for the nNOS PDZ

domain. Due to the similarity of this motif to the C-terminal

consensus motif -G-[D/E]-x-V*, we propose -G-[D/E]-x-U-[D/

E/*] as a general recognition motif for the nNOS PDZ domain.

In order to test whether this novel motif could function in a

context other than Vac14, we performed a database search of

the vertebrate proteome with the consensus motif -G-[D/E]-x-

U-[D/E]-. Of the multiple entries found, the 5-HT2B receptor

was of particular interest since it was already described to bind

the nNOS PDZ domain. Indeed, the 5-HT2B receptor binds the

nNOS PDZ domain through a Class I recognition motif lo-

cated at the C-terminus of the protein [30]. Supplementary

Fig. 1A illustrates an alignment of 5-HT2B receptor sequences

from various species and reveals that the potential internal mo-

tif is found just N-terminal of the C-terminal motif, similar to

the arrangement in Vac14. To determine if the internal motif is

functional in nNOS interaction, we generated wild-type and

mutant constructs in the context of the 5-HT2B receptor



Fig. 4. Characterization of the internal motif responsible for PDZ interactions. (A) Amino acids 768–782 of human Vac14 with consensus motifs for
PDZ domain interactions indicated. (B–D) Purified His-nNOS PDZ domain was incubated with GST alone or GST-Vac14 fusion proteins coupled
to glutathione-Sepharose. Proteins specifically bound to the beads were blotted with antibody against the His tag. An aliquot of the His-nNOS PDZ
domain (10%) was loaded as starting material (SM). For B, GST-Vac14 L782G and GST-Vac14 AAA represent GST-Vac14 [768–782] with L782
mutated to glycine or residues 780–782 mutated to alanine, respectively. For C and D, point mutations introduced into the fusion proteins are
indicated and Ponceau S stained transfers indicating the levels of GST/GST-peptide are included. (E) Purified His-nNOS PDZ domain was incubated
with GST alone or GST-5HT2B receptor [464–479]aa fusion proteins coupled to glutathione-Sepharose. Proteins specifically bound to the beads were
blotted with anti-His antibody. An aliquot of the His-nNOS PDZ domain (10%) was loaded as starting material (SM). WT, wild-type; AAA,
mutation of residues 477–479 to alanine; GAKAA, mutation of residues 470, 472 and 473 to alanine, all prepared in the context of 5-HT2B receptor
[464–479]aa.
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[464–479]aa rat sequence, which contains both motifs. In agree-

ment with a previous study [30], the wild-type peptide (GST-

5HT2B WT) binds the nNOS PDZ domain (Fig. 4E). Binding

is reduced following mutation of the last three residues (GST-

5HT2B AAA) but is maintained with mutation of the internal

motif (GST-5HT2B GAKAA), confirming the involvement of

the canonical C-terminal motif (Fig. 4E). Interestingly, the tri-

ple mutation of the C-terminal motif does not fully disrupt

binding, indicating an involvement of the internal motif of

the 5-HT2B receptor in its association with the PDZ domain

of nNOS (Fig. 4E). These data further support the involve-

ment of the internal motif in nNOS PDZ domain interactions.
4. Discussion

We have identified a sequence in Vac14, -G-D-H-L-D- that

mediates interactions with the PDZ domain of nNOS and

which is similar to a motif, -G-[D/E]-x-V* (where * equals

the free carboxyl group) identified from peptide library screens

to mediate nNOS PDZ domain interactions [4]. Interestingly,

the motif in Vac14 is unique in that it is internal, unlike canon-
ical PDZ domain-binding motifs, which are located at the C-

terminus. In the later case, the free carboxyl group is essential

for interactions with PDZ domains [7]. For the internal motif

in Vac14, the necessity of the second D (D777) for nNOS PDZ

domain binding suggests that this residue mimics the free

carboxyl group of C-terminal recognition motifs. The ability

of acidic residues C-terminal of a protein interaction motif

to mimic contributions provided by a C-terminal carboxyl

group has been previously described. In particular, we recently

identified a novel motif, W-X-X-F-acidic that mediates inter-

actions of endocytic accessory proteins with the a-ear domain

of the a-adaptin subunit of the clathrin accessory protein AP-2

[29]. In the NECAP proteins, the motif is found at the C-ter-

minus and the free carboxyl group is critical for a-ear binding

[25]. However, in other endocytic proteins, the motif is found

internally and is always followed by one or more acidic resi-

dues. Mutation of these residues disrupts a-ear interactions

[25]. Thus, based on this, the mutational analysis and the

similarity of the internal motif to the C-terminal consensus

motif -G-[D/E]-x-V*, we propose -G-[D/E]-x-U-[D/E/*] as a

consensus motif for nNOS PDZ domain interactions.

The internal nNOS binding sequence -G-D-H-L-D- identi-

fied in this study is conserved in mammalian orthologs of
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Vac14 but is not found in Vac14 from other vertebrates includ-

ing chicken and bony fish (Supplementary Fig. 1B). Even the

less stringent consensus motif -G-[D/E]-x-U-[D/E/*] is, with

exception of Xenopus laevis, only found in mammalian

Vac14. It is interesting to note that X. laevis has lost the C-

terminal motif that enhances Vac14/nNOS interaction. These

observations suggest a specialized role for Vac14 in nNOS

regulation in mammals.

A search of the vertebrate proteome with the consensus mo-

tif -G-[D/E]-x-U-[D/E]- revealed a large number of entries.

Although the biological significance of these sequences is to

date unknown, we have determined that the internal motif

found in the 5-HT2B receptor contributes to nNOS PDZ

domain interactions. Although the internal motif matches

the consensus sequence only in rat, most other mammals pos-

sess a sequence similar to this consensus (Supplementary

Fig. 1A). Interestingly, the internal consensus motif found in

the 5-HT2B receptor is positioned with a similar spacing to

the C-terminus as seen in Vac14 (Supplementary Fig. 1). Both

Vac14 and the 5-HT2B receptor display nNOS PDZ domain

interactions that utilize both the internal and C-terminal mo-

tifs. Whereas Vac14/nNOS interaction is primarily mediated

through an internal motif, the 5-HT2B receptor/nNOS interac-

tion appears to primarily use the C-terminal motif. It is inter-

esting to note that in the case of Vac14, the Class III internal

motif prevails over the Class II C-terminal motif for the critical

binding to the nNOS Class III PDZ domain. Further charac-

terisation of this new type of PDZ interaction involving dual

motifs is needed to better understand the ability of PDZ

domains to contribute to the formation of protein scaffolding

complexes.

Thus, nNOS could be regulated by at least two proteins,

Vac14 and the 5-HT2B receptor, which use the newly defined

consensus motif for interaction with the nNOS PDZ domain

in concert with a canonical C-terminal motif.
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