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We identify sets of conjugacy classes of ergodic endomorphisms of #(#) where
A is a fixed separable Hilbert space. They correspond to certain equivalence classes
of pure states on the Cuntz algebras (), where n is the Powers index. These states,
called finitely correlated states, and strongly asymptotically shift invariant states,
are defined and characterized. The subsets of these states defining shifts will in
general be identified in a later work, but here an interesting cross section for the
conjugacy classes of shifts called diagonalizable shifts is introduced and studied.
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1. INTRODUCTION

Let o be a given separable infinite-dimensional Hilbert space. If « is a
unital endomorphism of % (), the (Powers) index of « is defined as the
ne{l,2,.., 00} such that the commutant of a(%(#')) is isomorphic to
the factor of type I,, [ Pow2]. Throughout this paper, we will always
let “endomorphism” mean unital *-endomorphism. It is well known (see
[Arv], [Lacl, Theorem 2.1, Proposition 2.2] and [ BJP, Theorem 3.1])
that there is a one-one correspondence between endomorphisms of
AB(A) of index n, and non-degenerate *-representations (henceforth called
representations) of ¢, on #, up to the canonical action of U(n) on 0O,,
where @, is the Cuntz algebra of order n. We say that two endomorphisms
o, ffin End(#(#)) are conjugate if there is an automorphism y of %(#)
such that «aoy =1y f; and this means that they have the same index n, and
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that the corresponding representations of (), are unitarily equivalent up to
the action of U(n), see [ Lacl, Proposition 2.4] and [ BJP, Theorem 3.3].
We are interested in two subclasses of the class of endomorphisms of
B(A), namely the class of ergodic endomorphisms (i.e., those such that C1
are the only invariant elements) and the even smaller class of shifts (i.c.,
those endomorphisms « such that (7, «"(#(#)) = Cl). The first of these
families corresponds to irreducible representations of ¢,, and the classifica-
tion of their conjugacy classes thus amounts to the classification of pure
states of (/,, up to the action of U(n) and unitary equivalence. Since (), is
an antiliminal C*-algebra, this classification is therefore non-smooth,
[BJP, Theorem 1.1], [ Dix], [ Gli]. We show here in Sections 3-6 that the
smaller set of finitely correlated states (definition below) on @), gives both
a “rich” set of conjugacy classes of ergodic endomorphisms, and at the
same time these states lend themselves to explicit calculations. They form
a union of finite-dimensional manifolds. The conjugacy classes can be
calculated. Using recent concepts and results of Fannes et al. [FNW2] we
will in a forthcoming paper, [ BIW ], identify those finitely correlated states
on (), which correspond to shifts on Z(#).

Although our main concern is with pure states of (), which give rise to
shifts, i.e., pure states such that the canonical UHF-subalgebra UHF, is
weakly dense in the operators on the representation Hilbert space, a
generic pure state of (), will of course not have this property. In fact, UHF,,
is the fixed point algebra of the gauge action of T of ¢,, and this is a quasi-
product action by condition 11 of the main theorem in [ BEEK ]. By condi-
tion 9 of that theorem, or, more explicitly by [ Eva], ), has gauge invariant
pure states w, and then w|yyg, is pure, but UHF, is not dense, so these
define ergodic endomorphisms which are not shifts. For the case n = oo, see
[Lac2, Theorem 4.3].

Let S be an isometry on a Hilbert space #, and let n:=dim N(S*).
Then for every k, we have a canonical decomposition

H=C'®- - -®C"®S'x.
R/_/

k times

If S is a shift, ie, () S”# = {0}, we say that n is the multiplicity of
the shift. It is known that n is a complete unitary invariant for the shifts.
For an endomorphism o of #(#°) of finite index n we similarly have a
canonical decomposition

BA)=M,® - @M, (B(H))
~—

k times
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where n denotes the Powers index. But now as noted, even when « is a shift
on #(A), n is not a complete conjugacy invariant. In fact, in [ BJP], we
display a nonsmooth continuum of nonconjugate () shifts for each
value of the Powers index n > 2.

In Section 6, we characterize the pure states w on (), with the property
woc* ' =wog* for some ke N, where ¢ is the canonical shift on 0),, see
(3.1). The set S, of these states has a natural structure as a finite-dimen-
sional differentiable manifold, and as a manifold it is diffeomorphic to the
manifold %, , consisting of all pairs (L, R), where

Le2(C", #(C™)),
Rez(C™),
and, with
L;=L(li)),
we have the following properties:
R>=0 and Tr(R)=1,
S LL¥=P
i=1
where P is a projection in @(C”k),
PL,=L,P=L,, PR=RP=R,

RP > AP for some 4> 0.

S L¥RL,=R,
i=1
and, up to a scalar, R is the unique solution of this equation. See Theorem 6.1
for other versions of the latter conditions.
In Section 7, we show that the action @ — we1,-1 of U(n) on the state
space of (), gives rise to an action R, of U(n) on the manifold %, , by

(R,(g) L)(x)=Adx(g) L(g~'x)
(R,(g) R)=Ad,(g) R
for xe C", ge U(n), where

Ad,(g)=Ad(g)® --- ®Ad(g)

— 7
~

k times
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and 7 is the canonical action of U(n) on @,, see end of Section 2. The
associated orbits correspond 1-1 to conjugacy classes of shifts with Powers
index n. (In Section 7, the action R, will actually be replaced by the
coaction g —» R, (g "))

Of course, by linearization, we may embed %, , as a closed submanifold
of a Hilbert space with inner product

(L, R)|(L', R")) =Trace,, < Y Lj*L}> + Trace,, (R*R’)

Jj=1

and the action of U(n) then extends to a unitary representation.

We are concerned in Section 7 with elements in a closed subset of
Ug_ | Pi, where P, is defined in the introduction to Section 3. Section 8§ is
about the complement of the closure of (J, P,. Suppose we P, then
woag*T1=woag*, and so woo* is o-invariant. This state therefore extends

canonically to a shift invariant state on the UHF-algebra

XM, = M,

z —

which will be denoted w_,. The space %, will be defined in Section 7 such
that the mapping (¥,3 (L, R)) > w (L, R) is 1-1. If 7 denotes the U(n)-
action —

on ¥ *  M,, then the representation R,(g) is given by
0, (L, R)et 1=, (R,(8)L, R)).

Also the assignment w — w,, is such that the two shifts «, and o« (for
given w, @' € P) are conjugate iff there is a g € U(n) such that

or equivalently, for the corresponding elements L, L'e.%,, we have
L'=R,(g) L.

To identify these infinite families of nonconjugate shifts we introduce in
Section 7 a class of elements we P which we call diagonalizable. If 7,
denotes the Haar representation (see [BJP]) of (), acting on #)=
L*(X, uy), where X=27V, and u, denotes the corresponding Haar measure
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on X, then we say that n is diagonalizable if there is a measurable function
u: X—T' such that n(s;) =M, m,(s,) where M, is the multiplication
operator defined from u. The diagonalizable elements will be denoted by
P,,. The result in Section 7 is the assertion that P, is a “section” for the
U(n)-orbits under the representation R, described above: Specifically, P,
intersects a generic set of U(n)-orbits in a finite dimensional manifold dif-
feomorphic to a disjoint union of n! copies of T”. This means that by just
varying the functions u: X - T we get a set of distinct conjugacy classes
in P.

2. PRELIMINARIES AND NOTATION

Let H=H, ~C" be a finite-dimensional complex Hilbert space. The
dimension #n will be fixed throughout, and the inner product on H will be
the usual one

xly>=2 Xy (2.1)
i=1
for elements x, ye H with coordinate representation x = (x, ..., x,,); and
the norm | -| is given by

n
Ix]2 = <x x> =3 Ix]*
1

Consider the free unital *-algebra generated by H, i.e., the *-algebra of
all polynomials of 4 e H and h* € H, where H is the conjugate Hilbert space
of H. If one adds the relation

hWlke=<{h k> 1 (2.2)

then the C*-envelope of the resulting *-algebra is the familiar Cuntz—
Toeplitz C*-algebra, [Eva], [JSW]. If {e;}7_, is a basis for H, e.g.,

e;=(0,..,0, 1,0,..,0), (2.3)

i— 1 places

and one adds the relation

Y eer=1 (2.4)
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then the resulting C*-algebra (), is the Cuntz-algebra. It is well known
[Cun] to be simple, and it plays a crucial role (see [Lacl], [Lac2],
[Arv], and [ BJP]) in the study of the endomorphisms of #(.#).

To stress the distinction between elements in H, and elements in one of
the involutive algebras generated by H and H, we adopt the notation s,
and s;f for the corresponding elements in the algebra. With the specific
choice of basis, we write s; for s,,. The relation (2.2) may then be written
in the familiar form

sks;=0,1, (2.5)

ij

or in a basis free form
sEs=<h k) 1. (2.6)

The second relation (2.4) becomes

Let 7 be the C*-algebra of the compact operators (on a separable Hilbert
space). Then we have the familiar short exact sequence

0->H > T,

n

—>(Qn—>0

where .7, denotes the Cuntz—Toeplitz algebra. See [ Eva] and [ BEGJ] for
details. In fact #" is isomorphic to the two-sided ideal in 7, generated by
=37 ;8.

Let 7 be a representation of ¢, on a Hilbert space J#, and set S;=n(s;).
Then the formula

a(d)=) S,AS} (2.7)

i=1
for VAe #(#) defines an endomorphism of #(#), of Powers index n
(see [Pow2] and [BJP]). As mentioned in the introduction, every
endomorphism of % () arises this way. (The result (see [ Lac2]) may be

modified to apply also to the case when the Powers index is infinite.)
Recall that a € End(#(#)) is ergodic if the subalgebra

(AeB(H)): a(d)=A)

is one-dimensional; and that « is a shift if
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is one-dimensional, i.e., if the intersection is of the form C1 where 1 is the
identity in #().

There is an action 7 by automorphisms of the group T on @,, given by
7.(s,)=2zs,, for ze T and h e H. The corresponding subalgebra

Or={ael,: t.(a)=a,Vze T} (2.8)
is denoted by UHF,,, and has the form

M,QM,® - . (2.9)
W_/

1to ©

Recall from [Cun] that UHF, is generated linearly by the following
elements

8,8, 8, SE o sEsE (2.10)

0o iy

In fact, the isomorphism between (2.8) and (2.9) is given by letting the
element (2.10) correspond to

e ®e? ® - ®elm (2.11)

iy i nm

where ¢; denote the usual matrix units in M,. We will sometimes use the
Dirac notation

ezjj:|ei><€j|~ (2.12)

As mentioned in the introduction, the action 7. of T naturally extends

to an action t of the unitary group U(n) of C”. For ge U(n), the
automorphism 7, on (), is determined by

To(8,) 1= 58g0 for VxeC"

The restriction of 7, to the subalgebra UHF, is just the product action

[o0)

Ad(g) ®Ad(g)® --- on ®M,.
- / )
e

As we pointed out in the introduction, a given a € End(%(#)) is ergodic
iff the corresponding = e Rep(0,, #) is irreducible. We also showed in
[BJP] that « is a shift iff the restriction 7|yyy, is already irreducible. As
a consequence, we found, in [ BJP], that a classification of the shifts up to
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conjugacy is given by equivalence classes in the set P of all pure states
on UHF, such that w is quasi-equivalent to the shifted state, given by x +—
o(1® x), for Vx e UHF,,. This equivalence relation is quasi-equivalence up
to the action of U(n). But the classification problem is difficult in the sense
that the classifiers P/~ form a non-smooth space.

3. STRONGLY ASYMPTOTICALLY SHIFT INVARIANT STATES
AND FINITELY CORRELATED STATES

The present paper deals with a smaller problem. Let ¢ denote the
canonical shift on ¢,, defined by

a(x)=) s,xsf, Vxed,. (3.1)

i=1
We will be considering pure states @ on ¢, such that, for some k,
woag*tl =woak. (3.2)

These states are said to be strongly asymptotically shift invariant (of order
k). If k is given, the corresponding set of pure states will be denoted S,. If
w 18 a pure state on the subalgebra UHF, with the invariance property
(3.2), we say that w e P,. In the latter case, it follows from [ BJP, Lemma
5.2] that o ~,wo0 on UHF,, and w corresponds to a shift on Z(#).
Note that if w e S, restricts to a pure state on UHF,, then the restriction
is contained in P,. If then p=w/|yyr,, we proved in [ BJP, Lemma 5.2]
that p extends to a pure state ¢ on (), such that = (UHF,) is weakly dense
in #(A,), and it is easily checked that the extension has the invariance
property (3.2). It is also clear from the construction in [ BJP, Lemma 5.2]
that the extension ¢ is unique up to the gauge action 7 of T (see [Lacl,
Theorem 4.3] for the corresponding result when n= o0), and it follows
from [ BEEK ] that the extensions ¢ -1., z€ T, are mutually disjoint in the
strong sense that

<L@ ToT, dz> (0,)" =B(H,)®L™(T).

In fact, this is equivalent to 7 (UHF,) being dense in #(.#,) (see [ BEEK]
for details). We will show in [ BIW ] that w is one of these extensions, when
we S, and |yyg, is pure.

We will now introduce a class of states on (), which will be called finitely
correlated states, and in Section 4 we will show that |J, S, is contained in
these states.
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For a given state w on (),, the GNS-representation will be denoted by
(7> A, Q,,) or simply (7, #, Q), ie., 7 is the cyclic representation of @),
on , with cyclic vector 2, such that

o(x)=<{Q | n(x)Q> for Vxel,. (3.3)

Extending a definition in [ FNWI, FNW2], we say that the state w is
finitely correlated if the subspace 7" < # generated linearly by Q and the
vectors

n(S;!;lS;lkZ ..'s;fm)Q (3'4)

for h;e H, and m=1, 2, ..., is finite-dimensional.

The space generated linearly by the vectors (3.4) with a fixed m will be
denoted by 7,,, and 7;= CQ. If w is finitely correlated, there is a smallest
k such that ¥~ =Y*_, ;. If then ¥} is left invariant by all S, we say that
weFC,. (We say this whenever 7} is left invariant, even if k is not the
minimal such k.) Note that FC, is not necessarily increasing in k, and the
union of the FC,’s is not necessarily the set of all finitely correlated states.
The set of pure states in FC, will be denoted by PFC,.

The definition above is new, as [ FNW2] is concerned with a different
C*-algebra, viz.,, the two-sided infinite tensor product <. M, (see
details in Section 8 below). Our present definition for (), is on the face of
it unrelated, but a main point in our paper is to show that our states may
in fact be described with a set of labels which is directly related to those
used in [FNW2] for ® *_ M,,.

The case when ¥~ from above is one-dimensional, yields the identity

n(sF)R=<h,¢>Q for VYheH (3.5)

where ¢ is some fixed vector in H such that ||¢| =1. The corresponding
states are called Cuntz states. When w = w,, is a Cuntz-state, its restriction
to UHF,, is the pure product state

PRPR --- (3.6)
—

1to o

corresponding to the representation (3.3) of UHF,,, so it follows that the
Cuntz states are in P, ~S,. We showed conversely in [ BJP, Theorem 4.1 ]
that every element in P, is a Cuntz-state.

Hence the set P, is parameterized by the unit-ball in the Hilbert space
H=C", and we shall show that a corresponding result is also true for S,.
Since clearly P, = S;|yur,, the results in [ BJW] then give a parameteriza-
tion of P,.
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For states w on @,, the condition (3.2) is important because of a result
which we now proceed to describe. We showed in [ BJP, Lemma 5.2] that
the pure states @ on UHF, define shifts on #(#) iff woo ~, @ where ~,
denotes quasi-equivalence, [ Dix]. If w is given, and (x,,, #,,) is the GNS-
representation (extended to (), on the same Hilbert space as in [ BJP]) then
the corresponding shift «, on #(,) is given by

n

<X’(u(‘A) = Z nw(si) Anw(si)* (37)
i=1
for VAe #(#,). If v and ' are two such pure states, we showed ([ BJP,

Lemma 5.4]) that the corresponding shifts «, and «, are conjugate, i.e.,
that a,, = foa, of " for some feAut (), iff Ige U(n) such that

Iim |w'eoc™—wot, 00" =0. (3.8)

m— oo

The following result is immediate from this:

ProrosiTION 3.1. If w, w' € J;_ | Py, then the corresponding shifts a,,
and o, are conjugate iff Am e N and g € U(n) such that

woc"=wot, 00" 39
g

Remark. Our main use of the more restricted family of states is the fact
that the condition (3.9) in Proposition 3.1 above is easier to verify than the
corresponding asymptotic property (3.8) for the general case. We also show
in Section 6 below that (3.9) lends itself to explicit computations for the
examples of conjugacy classes of shifts which we studied in the precursor
[BIJP].

Proof.  The proof is the assertion that if the limit of an eventually con-
stant sequence is zero, then the terms in the sequence must be identically
zero from a step on.

4. STRONGLY ASYMPTOTICALLY SHIFT INVARIANT
STATES ARE FINITELY CORRELATED

One main object of the present paper is the set of shifts on #(#), and
the corresponding conjugacy classes. More generally, we shall consider
endomorphisms which are not necessarily shifts; but we will also be more
specific in that we look at those states w on (), which are invariant from
a certain step on, i.e., satisfying (3.2) above. For each k, we show that these
states form a finite-dimensional manifold, thus simplifying considerably
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the classification problem for the corresponding subclass of ergodic
endomorphisms of % ().

THEOREM 4.1. Let k and n be positive integers, and let w be a pure state
on O, such that we S,,. It follows that w is finitely correlated and, moreover,
the space ¥, spanned by the vectors m,(sf ---sk)Q, hy, .., h eC" s
invariant under each of the operators S* =m(sF).

Proof. Since w is a pure state on ¢, the corresponding GNS-representa-
tion 7 is irreducible. If S, :==n(s;), then

w(o(x))= ) (SFQ|n(x)SFQ2)

i=1
for all x € @,. More generally, set

Q, ., =8*...S*5*Q (4.1)
m 2 1

iyl

Then
o(a™(x) =), 2Ky [ w(x) Q> for Vxed,. (4.2)
[1 .m

1

It follows that the GNS-representation of woo identifies with the sub-
representation of the n-fold direct sum 7@ 7 @ --- @z defined by the cyclic
subspace generated by the free direct sum of the Q; vectors, ie., Q, ®
.- @Q,, and that of wog” is unitarily equivalent to the subrepresenta-
tion of the n™-fold sum with cyclic vector

2@,

Im

where each index i, runs over {1, .., n}. Since 7 is irreducible, it follows
that the commutant 7 __((,)" is naturally embedded in M,,. This is because

weoa

the commutant of the representation

A ADAD --- O A
W_/

n times
consists of the operator matrices on @7 # of the form },z, E;, with
scalar indices z; € C. The same result holds for woc™ with the obvious
modification coming from consideration of multi-indices.
Using (4.2) and (3.2), we now conclude that each of the states

w (4.4)

feedpd <Qi1"'ik"k+1 | .Qil"‘ik'i/(+l>
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is dominated by woo*; and so, by using Segal’s Radon—Nikodym theorem
[Seg2], [ Br-Rob, Theorem 2.5.19], or [ KR], we conclude that, for each
(i15 ws Dgs [ 41) there are positive operators Z=Z2; . in the commutant
7,,..«(0,) such that

Sl

(A)=wo-c"(AZ) (4.5)

R

where, on the right hand side, we have extended w-c* to (4, ) in the
obvious manner. By the above argument, the representation n,,__« is a sub-
representation of the n*-fold direct sum of 7, and the commutant of the
latter representation is isomorphic to AM,.. The subrepresentation
corresponds to a projection E in M, and the operators Z live inside this
projection. We may extend Z to operators in M, by setting (1 —E) Z=
Z(1 —E)=0. The formula (4.5) may now be written in multi-index summa-
tion form, p=(py, .., pr), ¢=(q1, . qx), With p, and ¢, in {1, .., n}. The
matrix Z and its entries z, , still depend on (i, .., 7, ), but the latter
multi-index is fixed for the moment. We get

o, (A=Y 2,KQ,|4Q,>  for YAeB(H).  (46)

But the matrix Z is positive, so of the form Z=Y*Y where Y=[y,,]€
M, e.g., take Y::\/Z Now set

&=, ,R0,eH (4.7)

P
where r = (r,, ..., r;) is also a multi-index. Formula (4.6) then takes the form
;g (A) =2 CE | AED (4.8)

for Aen,(C,), and thus, by closure, for all 4e #(#). But w, ..,  isa
vector functional on #(#) and thus proportional to a pure state, and it
follows from (4.8) that each of the vector functionals <&, |- &,) are propor-
tional to w; ...; , and thus each of the ¢, are a scalar multiple of Q; ..., .
Thus Q, ..,  is a scalar multiple of some £,. But the vectors ¢, are linear
combinations of the vectors Q,=Sp --- S5 SF Q, and thus Q, ..,  are so.
This proves Theorem 4.1.

e+

5. A RECONSTRUCTION THEOREM

In this section, we first, in Theorem 5.1, describe a map from the set of
all finitely correlated states on (), into a system consisting of a state on a
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matrix algebra and a partition of unity. The hypotheses of this theorem are
in particular fulfilled for w € S, by Theorem 4.1. Subsequently, we show in
Theorem 5.2 that such a system defines a state on (),. Finally, in Theorem
5.3, we give necessary and sufficient conditions on the system for the state
to be pure. In Section 6 we will specialize to the case woog* ' =wocg*.
The first result is a corollary to our previous theorem. Let 2, be the sub-
algebra of UHF, spanned linearly by the elements s;s; ---s; 55 - s,
where i,,, j,,=1, .., n. As explained around (2.10), (2.11), 2, is isomorphic
toM,® - QM,~M,. If x=(x,,..,x;), where x; € H, we will use the

k times
notation s, =s, s, ---5,, and if x, ye H", e, =s. 5% = [x){yl.

THEOREM 5.1. Let k and n be positive integers, and let w e FC; ie., w
is a finitely correlated state such that each S¥ leaves the subspace V; < H,
invariant. Then there are elements L, e W, (i=1, ..., n) such that the state
is given by

* fo%) % %

Oy o5, 5Tt =0l o Lyeg L LE)  (S0)
for x,ye H", i), j,e{l, ... n}. In particular, restriction of w to UHF, is
given by

w(A®e(k+l) ® . ®e(k+m))

i b Jm
=w(L; ---L;L; AL} ---L})  for VAeU,. (5.2)
Hence w is determined by its restriction to W, and the elements {L.}"_,
in W, and we have

i o(L;AL¥)=w(A) forall AeU,. (5.3)

i=1

Furthermore, if Pe W, is the support projection of the restriction of the state
w to Wy, the elements L, € N, may be chosen such that PL; P = L;, and with
this choice the L;’s are unique.

Remark. Since >, s;5% =1, the algebra ¢, is the closed linear span of

operators of the form s.s; ---s; s¥ ---sfsf¥, and so (5.1) defines
1 2 N

uniquely from p :=w|y, and {L;}7_,.

The following useful formula follows immediately from (5.1):

(a"(s?“))np(X)anp(XL;")Q (54)
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for XeA,, j=1, .., n, as follows: By (5.1)

(s sfsF)=wle,,sF)=w(s.s’s*)

But since S} <7} we obtain from here
SHSEQ=S8kn(L}) Q.

Multiplying to the left by S, and summing over y in an orthonormal basis
for H*, we obtain

n(a (s¥*)) Q =n(L}) Q

and since ¢“(s7*) e A, the formula (5.4) follows.
This can also be used to give an alternative definition of L} € P, P
where P is the support projection of w|,. One has

[

n (o (s w="Y S-S, SFSE--SEQ.

RS

But by assumption, S¥S7¥ ---S¥*Q is in 7, and hence the sum above is a
linear combination of elements of the form S; ---S; SF..-S¥Q, ie, of
elements in 7(2,) Q. Hence there exists an L € A, such that

n(ak(sj“)) Q=n(L})Q2
and then (5.4) is valid for all Xe¥,.
Now, as P is the smallest projection in A, such that n(P)Q2 =2, it

follows that we may replace L;* by L* P in the last formula. Furthermore,
as o ( *)e A, we have

n(P) n(c"(s¥)) Q=n(c"(s})) n(P) Q =n(c"(s})) Q
so the formula is unchanged if L is replaced by PL}. Thus, we may
assume L;=PL;P. But as Q is separatlng for n(PA, P), the L; is then
uniquely determlned by the formula.
Next iterating the formula

valid for all a € ¢,, one obtains

as*=s*c*(a)
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for all xe H*. Combining this with an iteration of (5.4) gives

S*

lmI

S¥StQ=Sta(L,)---n(L, )2

ilYI]
and (5.1) follows. We now proceed to another proof.

Proof of Theorem 5.1. Since weFC,, the space ¥, spanned by
{S;’]‘ S,”Z.Q} is invariant under each of the operators S* :=n(s*) where =
is the GNS-representation of w. We also have an antilinear map from the
k-fold tensor product H® --- ® H into ¥, where H ~ C". This map is
given by

QX ® - ®xy) =85 - SELSLQ (3.3)

for x;eH,i=1,..,k The antilinearization of formula (5.5) may be
abbreviated Q(x)=S;".Q,xeC”"; so we get 7, as a quotient space, c
divided out with a linear subspace N consisting of vectors x such that
1Q2(x)|I2=0, ie., C"/N ~ 7.

Let L, be some lifting to € of the induced operator on the quotient,

S*Q(x) =Q(L,x). (5.6)

for all xe C". We conclude that N must be invariant for each L,. Each L,
may be identified with an element in 2, ~ #(C™) in the following way:
Once the basis e¢; for H has been chosen as in (2.3), then the element
el) ® - ®elf) in Ay acts on H®* in a canonical fashion, giving a
*_jsomorphism between 2, and #(H ©*). Transporting L; back with this
*-isomorphism, L, identifies with an element in 2[,. Doing this, one verifies

the formula

LiegL¥=ep. 1, (5.7)

i€xy L
for x, ye C”k, as follows: If u, ve C”k, then
ulLjey LFvy=<u| Lix)<{y|L¥v)
=<u| L;x){L;y|v)
=<uler 1y lv).

Let us now verify formula (5.2). We note that the element 4 in 2, may be
taken to be in the form 4 =e,, where x, y € C™. Then
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weg, @l N ® - @elk M) =Sk ... SES*Q| S} - SESFQ)
=S8 - SEQX) | ST - SHR(Y))
=(Q(L, L %) | QL ---L; 7)>
:a)(eL,.m“.L,-lx, L,-,,,<~~Lj1f’)
=w(L; ---L;e,LF---L})

xy Jm

which is the desired formula.
Formula (5.3) follows by putting m=1 and j, =i, =i in (5.2), and then
summing over i=1 to n, using

Let us now prove the last statement of Theorem 5.1. So far, the L,’s are
only unique up to their action on N. But note that

N={xeC"|Q(x)=0}
={xeC" | {Q(x), 2(x)) =0}
= {xean | w(e,,) :O}‘

Moreover e, ranges over all multiples of one-dimensional projections in
%’(C”A) when x ranges over €™, and it follows from the above formula that

N=(1-P)C"

where P is the support projection of w. But as L,N< N, we have
L,(1—P)=(1—P)L;(1—P) and hence PL,(1—P)=0.
Now

S*Q(x)=Q(L,x)
—Q(PL,x+(1—P) L,x)
=Q(PL,x)

since (1 — P) L;xe N=ker Q(-). Thus
SFQ(x)=Q(PL;x)
=Q(PL,Px)+ Q(PL,(1—P) x)
=Q(PL,Px)
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since PL,(1—P)=0. Thus, if L; is replaced by PL;P, one still has the
formula S*Q(x)=Q(L;x), and hence one derives (5.2) as before. Thus L;
may be chosen such that L,= PL,P. But since the map induced by Q(-)
from Pﬁ(@”k) P to #(7;) is an isomorphism, this choice of L; is unique.

We will now show conversely that if k and » are given, then every system
{L,;}"_, of matrices in Z(C""), together with a positive matrix R in (C"")
of trace 1, determine a state on (), by the formula (5.1), if the pair
{R, {L,}} satisfy a certain normalization condition (5.8).

The question becomes one of extending the fixed state p =Tr(R-) on A,
to @, such that the extended state w is given by (5.1). For Vx, y e C", we
then have

pley,)=<{x| R|y>.

We shall say that the operators {L;}/_, are normalized if

i=1
Z p(efoL[}>) = p(exy) VX, y € ana
or, equivalently,

Y L*RL,=R. (5.8)

This is again equivalent to (5.3).

The normalization is a condition on the combined system consisting of
the L,’s and R, or equivalently the L,’s and p. We will see during the proof
of the next theorem that normalization is a translation of the Cuntz
property >/, A, A¥ =1, to the L.

THEOREM 5.2. Let k and n be positive integers, and p be a state on the
subalgebra W, = O,. Let {L;}7_, be a system of elements in W, which are
normalized relative to p. Then the formula

a)(s S, -.-5, §¥ ...S’_"S*):p(Ll_l]...Ll_lgxijl...L’_k)

xP1 iml jmz J17Y m iy
defines a state w on O, which extends p. Furthermore, w € FC,..

Proof. 1f
exy € Mnk = Q[k < UHFn < @n
we have, with Q the cyclic vector in the GNS representation 7z of 2,

pley) =<2 | n(e,,) 2)=<{x| Ry
=trace(|R"?y){xR"?|) = trace(R' e, R"?). (5.9)
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Since the L; operators are normalized relative to R, we have

2 (R'ZL)* (R'L;)=(R"?)?

i

and hence R'”x=0=R'?L,x=0. Thus each operator L, passes to the
quotient space

Y :=C"/{xeC": R)>x=0). (5.10)

For each i, we denote the corresponding induced operator on ¥, by 4%*.
Specifically

A¥(x+ker(R}?)) = (L,x) +ker(R}?). (5.11)
Relative to the norm, x+— |[R}?x| on
C" /ker(RY?),

the normalization property (5.8) then translates into

Y A AF=1,,. (5.12)

i=1

Using [ Popl, Theorem 2.1] we conclude the existence of a representation
(m, #,) of O, such that ¥} is isometrically embedded in ., and

a(s¥)|,, = AF. (5.13)

(See the remarks before (6.3) for more details on this.) Let P, denote the
orthogonal projection of 5, onto ¥, and consider the completely positive

mapping
@O, = B(V%)
given by
p(a) :=Pn(a)l,, for Vaed,. (5.14)

Viewing the A4,’s as operators on ., by setting them equal to zero on the
orthogonal complement of ¥}, we have from (5.13):

Si*Pk:PkSi*Pk:Ai*
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and we conclude that
gp(sl_] SI[S;:: S;‘]‘):PASZI SI/S;X; S;’I‘Pk

:PkSiIPk "'PkSi,PijTIPk "'P/(S;'TPk
=A; A, AF - AF (5.15)
1 I J1

Im

for all , meN and all corresponding multi-indices (see [ BEGJ, Proposi-
tion 2.1] for a similar argument). We may define a state w on ¢, by the
formula

w(a):={Q2|n(a) 2> =2 | ¢p(a) 2) for Vaed,.
Specifically
w(s;, ---s,,s;il ~--s;’:) = <A,’-f---A,’-’1‘.Q | A;’; ---A;f.Q), (5.16)
and it follows that w on (@), does restrict to the given state p on U,. Let us

introduce the operator V'=3"_, L* ®e, from C"®C"=C""". A calcula-
tion yields

w(a®ey)=p(V*a®e,) V)=p(LaL})

for Vae W,, Vi, je {1, .., n}, where as usual e, denotes the matrix entries in
M,,. The notation a® e, is short for a@eﬁ}" *1 with the e, -term sitting in
the tensor slot k + 1 relative to the infinite tensor product representation
(2.9). The asserted formula (5.1) now follows precisely as in the proof of
Theorem 5.1 above. This formula immediately implies that w e FC,.

Theorems 5.1 and 5.2 say that there is a one-one correspondence
between states we FC, and pairs p(-)=Tr(R-), {L,}7_, consisting of a
state p on U, (alias density matrix R) with support projection P (alias
range projection of R), and n operators L; e PR, P satisfying the nor-
malization condition Y, L* RL,= R. We now address the question on when
w e PFC,. The answer is:

THEOREM 5.3. Let weFC,, and let L,e PU, P, p(-)=Tr(R-) be the
objects associated to w by Theorems 5.1 and 5.2. The following conditions are
equivalent:

(1) o is pure.
(1)  The operator equation

Y L¥xL;=x

has a unique positive solution x € W, with Tr(x)=1 (namely, x = R).
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Remark. We defer a more detailed discussion of the condition (ii) until
the Theorem 6.1, but note that the condition is at least as strong as
irreducibility of the system {L;, L}} of operators on PC™, given that the
equation has a solution.

Proof. The state w is pure if and only if any state ¢ for which there
exists a 4 >0 with A¢ <o is a multiple of w, so we must characterize those
@. The starting point is the relation (5.4)

n,(c"(s¥) Q,=n,(L¥) 2,
which can be written
a)((ak(sl-) - Li)(o'k(si) —L,)*)=0.

Since Ap <w, we obtain

and thus
n,(a"(s¥)) Q,=n,(L¥) Q,.
If 4 €A, this implies
(a0 (sF) mo(A) Q, =1, (4) 7, (a"(s})) 2,
=n,(AL¥) Q,

and iterating this, we obtain

n¢(o"(sj*) . ak(s}'n‘j) n

Thus

¢(Jk(sil coog, 5% "'S.;‘T)A)Z(P(Lfml '-'Li,AL}T < L¥)

by Zm Im
1 Im 2

for all 4eA,, and hence ¢ e FC,, and the L,’s associated to ¢ are the
same as those associated to w, and ¢ is determined by its restriction to 2.
This restriction is determined by the density matrix x € 2, of ¢:

@(A)=Tr(xA)

for 4eU,. But the Cuntz relation > ;s;5¥ =1 implies as before the nor-
malization condition

Y L¥xL,=x
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and as ¢ is determined by x and {L,}”_,, the equivalence of (i) and (ii)
is clear.

COROLLARY 5.4. If weFC, with associated objects R, {L,}, then the
face generated by w in the state space of 0, is finite dimensional, and affinely
isomorphic to the convex set of matrices x € W, with the properties

x=0, Tr(x)=1, and Y L¥xL,=x.

Proof. We showed during the proof of Theorem 5.3 that if ¢ is a state
dominated by a multiple of e, then ¢ € FC, and has the same {L,} as o,
and the density matrix has the properties stated in the corollary. Conver-
sely, if x has the properties in the corollary, then the support of x is con-
tained in P, and if ¢ € FC, is the corresponding state, it follows from finite
dimensionality that there exists a 4 >0 such that g |y, <]y, . But as the
L;’s are the same for ¢ and w, this inequality extends to 0),.

6. ASYMPTOTICALLY SHIFT INVARIANT STATES

In this section we specialize the theorems in Section 5 to the case w e S,.
We already noted in Theorem 4.1 that w is finitely correlated and that
S, « PFC,;; and we will now study which additional requirements the fact
that w e S, places on {L;} and p.

THEOREM 6.1. Let n,keN, let p be a state on N, = O, and let {L,}_,

be elements in W, satisfying the normalization condition (5.8). Then the
corresponding state w on O, from Theorem 5.2 satisfies

wock=woght! (3.2)

Y L;L¥=1 on the support of p. (6.1)

Conversely, if weS,, then the associated operators L, (which exist by
Theorem 4.1 and Theorem 5.1) satisfy (6.1).

Moreover, let w be a state on 0, defined by p and {L,} as in Theorem 5.2,
such that both the normalization conditions (5.8) and (6.1) are satisfied, and
PL,P=L, where P is the support projection of p, so that

Y L,Lf=P and Y L¥RL,=R

i=1 i=1
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where R is the density matrix of p. Let P, be the projection from J,
onto V;. The following conditions are equivalent:

(1) w is pure on 0,.

(i) {L,, L}} acts irreducibly on PC™ (ie, S¥|, acts irreducibly
on ;) and P, em (0,)".

(ii1)  The only positive solutions of the operator equation

Y L¥xL,=x

are the positive scalar multiples of R.

(iv)  The operator W, +—>W,: x>, LF¥xL,; has 1 as eigenvalue of
multiplicity one.

(v) The only positive solutions of the operator equation

Y LxL¥=x

are the positive scalar multiples of P.

(vi) The operator W, — WA, : x>, L,xL}* has 1 as eigenvalue of
multiplicity one.

Proof. From (5.1), we get

woa(e,; ® - ®e; ; )=p(L; ---L; L¥---L¥)

ndm b Im

and

Im

a)oo-k+1(el_ljl ® "'):Zp(Lim "'L,—IL,-L,-*L,,’-’: S L¥),

It is clear from this that (3.2) holds if > ; L, L *=1 on the support of p.
But when the L; operators act irreducibly on PC"", then this condition is
also necessary, as follows from the respective formulas for woo* and
wo O_k+ 1'

We next show that the purity of w, or equivalently the irreducibility of
the representation z from (3.3), is equivalent to irreducibility of the {L,}
system, together with the condition P, ez, (¢,)". But this follows from the
commutant lifting theorem (see [ NaFo]) which is part of the conclusion
of [ Popl, Theorem 2.1]; see also [ BEGJ ] for more details. Specifically, we
need to use the formula (5.11) which relates the L,’s to the A4,’s. When the
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A;’s are given, and 7 is a representation of (), which serves as a minimal
dilation, i.e.,

[n(C,) V] =, (6.2)

and (5.13), then we first observe by GNS representation techniques that
the representation 7 is determined up to unitary equivalence by the system
A; in the sense that if A4} is another system of operators on a finite dimen-
sional Hilbert space 77, and there is a unitary U: 7, — 77} such that
A U= UA,, then the associated minimal dilations = and n’ are unitarily
equivalent representations of (J,. This is proved in the same way as one
proves that the cyclic representation associated to a state is determined up
to unitary equivalence.

More nontrivially, the commutant lifting theorem states that there is a
canonical isomorphism between the commutant of the operator system
{A4,} and the commutant of the representation 7. In view of the uniqueness
of the minimal dilation, in order to prove this it suffices to prove it for a
particular explicit construction of the minimal dilation which we are now
going to describe. We emphasize that by the commutant of the operator
system {A,} we mean those operators that commute both with 4; and A *
for i=1, .., n, ie., the von Neumann algebra generated by those unitaries
Ue%B(7, ) such that UA, U*=4,.

Specifically, let the operator system {A,}7_, on ¥#; be given. Let 4
be the operator-row matrix [A4,,.. A,], and set D, :=(I,— A*A)">
and 2:=D,(@'_, 7). (Note that since AA4*=1, we have that
|A*¥A||=||AA*| =1, and hence D, is well defined.) Let # (C")=
CaC"®(C"®C"® --- be the unrestricted Fock space over C”, and
define operators 6, on Z (C") by

0.6, ® - ®&)=¢,0¢,® - V<,

for £, € C", where e, is the standard basis. The 0, then generate a repre-
sentation of the Toeplitz—Cuntz algebra, [Eva], [BEGJ]. Let Q,=
(1@0@(0@0)@ --) denote the vacuum vector in & (C”), and for
ie{l,..n} define d,: 7, > Z by

Jo;v=D /0, ..,0,0,0, ..,0)

i—1 times

for ve?,. Define also T;: 2 # (C") > 2&® % (C") by T;=1®6,, and
D:v,->2®F(C") by

Dv=0,v® Q,.
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Define S; on 7, ® (2 ® # (C")) by

Si(v+f)=4,0® (0,02, +(1®0;) f)
=A,'U@(DiU+Tif)

-5 2

for Yve 7, and Vfe 2 ® & (C"). Then it can be checked (and follows from
[Popl] and [ BEGJ]) that the S,’s satisfy the Cuntz relations,

SFS,=6,I and Y S,S¥=I (6.4)
i=1

where I denotes the identity operator on 7, ® 2 ® % (C"). Hence they
define a representation 7 of (), which is easily checked to be a minimal
dilation.

To return to the proof of Theorem 6.1, note that the following version
of the commutant lifting theorem is true. (For a general background on
“commutant lifting” see e.g., [ Pop2] and [DMP].)

LEMMA 6.2. Adopt the general assumptions of Theorem 6.1 . If U is a
unitary on vy commuting with the A;’s, then U has a unitary extension to #,,
commuting with the S;’s. Moreover this extension is unique.

Proof. As A,U=UA,;, U commutes with all 4*4;, and hence U®I,
commute with (I, — A*4)'? on ¥, ® C". In particular U® I, leave the sub-
space & invariant, and if the restriction is called U,,, then

U,(l,—A*4)'?=(1,— A*4)'? U,
and hence
(U, ®1Icn) D,=D,U.
Thus, defining U’ on 7, ® (2 & F (C")) by
U=U (U, ®I5cn)
one has
us;=S;U

so U’ is the sought-after extension.
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To prove uniqueness of the extension, note that any unitary extension of

U must have the form
) U o
v= < 0 W>

on #, =7, ®(PR®F(C"), where W is unitary in ¥ ® Z (C). That U’

w T

commute with

A, 0
S ’:<Dl,- T,->
means
UA,=A, U
WD,=D,U
WT,=T,W.

The first relation is fulfilled since Ue {4,}’. Since the representation i — 0,
of the Toeplitz algebra is irreducible, the last relation implies that ¥ has
the form

W=w®]1 zccn
where w is unitary on 2. Now, the second relation means
wd;=0; U.

But this means that w is uniquely defined on the sum of the ranges of the
0,’s by U, and since the sum of these ranges in 2, it follows that w is
uniquely determined (in fact we computed earlier that w= U_,). Thus the
extension U’ is unique, and Lemma 6.2 is proved.

Let us now continue the proof of Theorem 6.1 by establishing the
equivalence of the two statements

(i) Pren,(0,)" and {4} is irreducible

1

and
(i) =, is irreducible.

Clearly (i)=>(ii), since 4,=P,S¥ P, =S*P,. Conversely, assume (ii)
and let U be a unitary in 7,(0,)". Then UP,= P, U, and UP, € {A4,}' thus
UP, =P, U= P, by irreducibility of {A4,}. But by the uniqueness part of
Lemma 6.2 it follows that U= 1. This ends the proof of (i) < (ii).
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It remains to show that each of the conditions (iii)—(vi) are equivalent
to (i):
(1)< (ii1): This follows from Theorem 5.3.
(iii) < (iv): Clearly (iv)=>(iii). To prove the converse implication,
assume that

Y L¥xL;=x

for some x € 2A,. Then

Y LFx*L;=x*

and hence if x;=21(x+x%), x,=(1/2i)(x—x*) then x,,x, are eigen-
elements of eigenvalue 1, x =x; +ix, and x, =x{, x, =x¥. To show that
x is a scalar multiple of R, it therefore suffices to assume that x is self-
adjoint. But as PL; P=L,, it follows from x =), L * xL, that Px =xP =X,
and hence —x <A'P for some A’ > 0. But since P is the support projection
of R it follows from finite dimensionality of 2, that P <A"R, where 1" is
the inverse of the smallest nonzero eigenvalue of R. Hence

—x<AP<AVNA'R=IR

where 4>0. Thus AR+ x>0, and since AR+ x is an eigenelement of
y >, L¥yL, of eigenvalue 1, it follows from (iii) that AR+ x is a scalar
multiple of R. Thus x is a scalar multiple of R, and (iv) is valid.

(v)<>(vi): This is proved as (iii) <> (iv), with P playing the role of R.

To finish the proof of Theorem 6.1 it remains to establish (iv) <> (vi),
and this follows from the following lemma.

LEmMA 6.3. Let U be a unital C*-algebra with a faithful trace state tr,
let Ly, ..., L, be elements in W and let R, S be positive invertible elements in
A with

> L¥RL,=R and ) L,SL}¥=S.

i=1 i=1

For any xeU and any L2eC with || =1, the following statements are
equivalent:

(1) Z?:] LZSXL,* = ;LSX
(i) X7, L¥xRL,=J/xR.
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Proof. Let us first consider the case S=1, and define

®(x)=Y L,xL¥.

i=1

Then @ is a completely positive map with &(1)=1, and hence the
generalized Cauchy—Schwarz inequality is valid

D(x)* O(x) < D(x*x),

[ Br-Rob, pp. 229-230]. We may assume that R is normalized such that
tr(R) =1 and then we may define a state p on 2 by

p(x)=tr(Rx).

Then

p(D(x)) =) tr(RL,xL}¥)=) tr(L} RL;x)=tr(Rx) = p(x).

So p is @-invariant, and then
p(P(x)* B(x)) < p(P(x*x)) = p(x*x)

by Cauchy-Schwarz. If (n, #, Q) is the GNS-representation associated to
p, it follows that we may define a contraction W on # by

Wn(x) Q=n(P(x)) Q.
Let us suppress the notation 7 from now on, and show that
W*xQ = i L¥XRL,R™'Q
for all x e A: -

(WHXQ [ yQ2) = {xQ | WyQ) = (xQ | D(y) Q) = p(x*P(x))

=Y tr(Rx*L,yL *)=) tr(L}*Rx*L,y)
=Y tr(R(R"'L¥R) x*L,y)
=Y (L¥XRL,R™'Q | yQ),

which shows the desired formula.
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Now, choose a specific x € U such that
D(x)=Ix

where |A| =1, and put {=xQ. Then W¢=®(x) 2=1x2 =1, Now one
computes

[W*E = 28117 = IW*E)* = 1217 11€)1
and as [|[W*| = | W| <1 and |A] =1 one deduces
WE = )&,
Using the explicit formula for W*, one thus has the equivalences
D(x)=Ax

§

WxQ =IxQ

§

W*xQ = IxQ
0

Y L¥XRL,R™'Q=/xQ

4

Y L¥xRL,R™'=Jx

§

Y L¥xRL,=/xR

i=1

where the next to last equivalence follows from faithfulness of tr, and thus
of p. This proves Lemma 6.3 in the case S=1.
For a general S, introduce

li — S7 1/2Li Sl/Z
and

R =S"2RS'",
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Then
Y llF=1

and
Z I¥R'I,=R.

Using the lemma with S=1, we thus have the equivalence, for [1| =1;
Z Lyl*=2y

§

Y 1#yS'2RS"l, = jyS'*RS'?

or
Z LiS]/zyS]/zLi* :Asl/zysl/z

§

S LxS~'2yS'2RL,= 1S ~'?yS'”R.

1

Introducing x = S ~?yS'2, this says
Y L;SxL} = Sx

4

Y L*xRL;=JxR

and Lemma 6.3 is proved.

To prove the final equivalence (iv) <> (vi) of Theorem 6.1 we just apply
Lemma 6.3 on A= PA, P and with S=P and A=1, to deduce that the
dimensions of the eigensubspaces of x+—>,L*xL;, and x+— >, L,xL*
corresponding to eigenvalue 1 must be the same. This ends the proof of
Theorem 6.1.
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Remark. Let &(x)=>"_, L;xL}, WxQ=d(x)Q, xe PA, P, be the
operators introduced in the proof of Lemma 6.3. From [ AI-HK ], we know
that

o(W)NnT=a(®)nT

is a subgroup of T, in the present case a finite group, called the Frobenius
Group G .

For the decomposition W=U® V on L*(p), with U unitary, and V
completely nonunitary (see [ NaFo]), we have o(U) =G, and the spec-
trum of V is contained in the interior of {1 C: |1|<1}. This means that
we have the following clustering iff G, = {1}:VmeN, VAe M., VBe (),:

lim w(Ac”*"(B))=w(A) w(B)

r— o0

and the convergence is exponential.

In [ BJW] we will establish that a state w € S, will actually define a state
in P, if and only if (in addition to the properties (i)—(vi) of Theorem 6.1)
the peripheral spectrum of @ consists of a 1 alone, ie., G,={1}. In
general, if G, ~ Z,,, the state @ |yur, has a decomposition into pure states
“over Z,,.” We will illustrate this with an example in Example 6.2, where

m

w|UHF,,=wm|UHFn= z %(POO-WUHF,,
i=1

and ¢ is a pure state on M, . which is periodic with period m under the
two-sided shift. The fact that @ |ypr, =®” |yur, is of course very special for
this example. We defer the general discussion to [ BJW].

The following example is a preamble to the class of examples analyzed
in Section 7.

ExaMPLE 6.1. We consider the setting in Theorem 5.2 and Corol-
lary 6.1 above. We have ne N, but set k=1. In [ BJP, Theorem 8.1] we
gave a concrete example of a state w in P, i.e., a state w on (), such that
woo=wocg? and the restriction w|yyy, is pure. The corresponding shift
on # () we showed was not conjugate to any shift defined from a product
state on UHF,,. Note that the algebra 2, is now just a copy M,, of the n
by n complex matrices and the space 7] from (3.4) has dimension n. Using
Theorems 4.1 and 5.2 we note that the state w, and therefore, the corre-
sponding shift on #(#), may be calculated directly from the elements
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{L}7_, in A =M
yields the formula

and a simple calculation, using [ BJP, Chapter 8]

ns

At:nqu Z <iaj>eji (6.5)

j=1

where

(i, jy :=exp(2n / — 1 ij/n) for Vi, je{l,..n}, (6.6)

and e{/’ denote the usual matrix units for M, (see (2.12) above). As a
result, we note that there are vectors i, € C”, ||h;| =1 Vi, such that

L;=|e;><h,l,
hi(j):=n""2{i, j>.

It is easy to check from (6.5) that

(6.7)

here I, is the unit-matrix in M,. Note also, in this case, that the set
{Q,Q,, .., Q,} is orthogonal, where Q,=S*Q.

For this example, it is also easy to check the minimality condition from
[FNW2, Definition 1.2]. It amounts to the assertion that there is no
proper subalgebra of U, ~ M, which contains the unit, and is invariant
under all the operators

A— L, AL} on A,. (6.8)

Let us discuss this condition a bit further in the present context, where
we have normalization

Y L¥RL,=R
and strong asymptotic invariance
Y L,L¥=P.

By [ FNW2, Theorem 1.5] minimality then means that the only eigenvalue
of the operator x+— Y, L; xL * of absolute value 1 is 1, and the corresponding
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eigenspace is one-dimensional, i.e., the only eigenvector in PR, P of this
operator with eigenvalue of modulus 1 is P. But then a simple argument
(see the proof of Lemma 7.8) shows that the only solutions of

Y L¥xL,=x

are the scalar multiples of R, and hence Theorem 5.3 implies that mini-
mality of the {L,} system implies purity of w.

It can be shown that minimality of the {L,}-system on P, P is equiv-
alent with irreducibility of the corresponding system

{L, - L,L¥-- L}

il I

m=1,2, ., iy, j;=1,..,n, on PC", [FNW2].

ExaMPLE 6.2. Let us end by exhibiting a state in S| on (; where {L;}
is irreducible, but not minimal. Here P =1, A, ~ M, and

00 1 000 00 0
Li=(0 0 0|, L,=[1 0 0], Ly=[0 0 0
000 000 010

Then
ZLiL,?"=ZL,?"Li=1

and

Lim

oL, L¥ - L¥ =4, 6,
/1 Jm

nJ1 "y b = Ly — 1

so the linear span of these consists of all diagonal 3 x 3 matrices. Hence
{L,} is not minimal, albeit irreducible.
Now, if

one computes that
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Thus the operator x —» >, L * xL, has 0 as an eigenvalue of multiplicity 6,
and the three cube roots p” =1, p, p> of 1 as simple eigenvalues with
corresponding eigenvectors

1 0 0
0 p> 0
0 0 pﬁl

In particular, the only possible choice of R is R=1}1, and it follows from
Theorem 5.3 that the corresponding state w is pure, i.e., w €.S;.
Let us compute the restriction of w to UHF;. If

I: (i], i25 ey im)
where i, € Z5, put

5<z>={1 it dper=ip+1mod3, p=1,..m—1

0 otherwise.
Then a calculation using L,=e, ;_; shows that
wley®ef) @ - @e" ) =37"10(1)0(J) 0y sy 10, 5,19, .
=3"'6(LJ) o)
where

1 if I=J
0 otherwise.

&Lh={

Thus w restricted to UHF; is a convex combination of three pure states
o=13 (0, +w,+ w;)
M defined by the

where ; is the pure product state on UHF;= & 7_,
infinite product vector

e;®e . 1 Ve, ® - (cyclic notation from Z5)

where {e;},.,, is the canonical basis of C>. In particular, this shows that
if weS,, then w|yur, is not necessarily pure. Note that in the example
@ |ynr, 18 actually g-invariant, it is a convex combination of 3 pure states
of period 3 under o, which form an orbit of length 3 under the action of
o* on UHF#¥. That the o-invariant state w is not pure then also follows
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from the fact that the peripheral spectrum of x+ Y, L,xL * consists of
more than the point 1, namely the three cube roots of 1.

7. U(n)-ORBITS AND A CROSS SECTION

Let ne N be fixed. From Proposition 3.1, we know that given states w
and o' on UHF,, both in (J;_, P,, determine conjugate shifts on %(#")
iff there is a ge U(n) such that o/, =w,, -7,, where w_, and ', are the
associated translationally invariant pure states on &® *_ M,. (For more
details on the state w_,, see Section 1.) Each w (and w_,) is associated with
elements L € #(C”", M) for some k. We will now show that these elements
L span a Hilbert space which in turn carries a unitary corepresentation of
U(n), g+ L%, such that L¥ is associated with the state wo1, for ge U(n).
We thus get the conjugacy classes of shifts on #(#) labeled by orbits for
this unitary corepresentation. The examples we give below are a set of
shifts (for fixed Powers index n) which are labeled by functions

wl]z,-T (7.1)
1

depending only on a finite number of variables. When k>0, and u is a
nonconstant function, then the corresponding shift «, is not conjugate to
any of the shifts which correspond to a product state on UHF,,, and which
were considered in [ Lacl], [BJP].

We will show in Theorem 7.5 that generically our u-function examples
form a cross section for the U(n)-orbits in the L space in the sense that
each U(n)-orbit intersects the set of u-function examples in at most a
manifold homeomorphic to a disjoint union of n! copies of T": that is,
when the conjugacy class is given then there is only at most this manifold
of functions u which represent the shifts from the conjugacy class.

Now to details: Let k, ne N, and let

u:l,x - x2,-T
—

(k+1) times

be a given function. Let X =[] Z, with Haar measure, and let
A = L*(X) be the corresponding Hilbert space. Then in [BJP] we have
considered the 7 € Rep(0,, #) given by

(7Z(Sl-) é)(xls X2, ) =n l/zu(xls () xk+1) éxlié(xzs X3, ) (72)

(m(s¥) E)xy, X, ) =0 " V2(0, Xy oy X)) E(F, X1, Xy, ) (7.3)
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Now, let w be the state corresponding to the vector @ =1¢e L*(X). A cal-
culation, using the formula for z(s*), now shows that

(1) 2 ... (m)y = R T Fa
a)(e[ljl ®ei2j2 ® ®e[mjm) CO(Sll Slmsjm Sjm)
— * % ko k
_<S[m ...SilQ | Silrz.'.Sle>
he— . .o .
=n m‘gjjk,m(ll)"'a Ls J1s oo Jm)

where

g’;c, m(ila weey lma jla seey ,]m) = Z Ck, m(i’ X) Ck, m(j7 )C) (74)
s ees X

x k
and
gk, m(i: X) = Ck, m(ils () ims xls eeey xk)
:u(ima X1y ey xk) u(imfls ima X5 ey xk*l)
X "'u(im—ka cees im’ xl) u(im—k—la B lm) : "u(ils very ik+])'

This means that {, ,, is given by the expression above if m >k 42, but if
m <k +1 the product defining {, ,, just truncates after the factor

ULy ooy Ty X1y ooy Xp i 1 —ym)-

Using

n
o(e} ® - ®e") )=} €’ ®e’) ® - @e ",

i imJm LW bnJm
i=1
and the formulae above, one now calculates (for m >k +1)

weolef) ® - @)

i

)-

'mIm

12 -
. . . rR - 1
- Yol iy e i) Uiy Jrs eees Ji) w(eﬁ-l}l ® - @et™
i=1
Thus if i, = j,, ..., i = ji, then woo is equal to w, i.e.,
Woo|e=0],

which amounts to the invariance woo**!'=wog* To show weP,, we
must check that w is pure on UHF,,.

We denote the state defined by 2 on @), by @ when it becomes important
to distinguish it from the corresponding state w on UHF,,.
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ProOPOSITION 7.1.  The restricted state @ |yyg, is pure on UHF .
The proof will be based on a lemma (below) and some calculations
which we proceed to describe.

Remark. 1t follows from [ BJP, Lemma 5.27] that

SA) = ¥ 7ofs) Aofs,)*

is a shift on Z(#).
Proof. Set S;:=my(s;) and Q; .., =S8} ... §FQ. We then have

By a— -
Qil i2~~-ik(xl) Xoy o) =0 Py ey By X, X, )
and therefore

By B S e
Sj*Qil,m,i =n /! u(117125"'5 lk7 ])Q i)

K iy ees s J*

Let {L;}7_, be the associated elements in A, ~M,. Let e, ;=

. . . k
el ® --- ®el denote the canonical basis vectors in C" =C"® --- ® C".

The operators L; may be expanded in the vectors e, ..., as follows: Let

1}\
; ; k .
h{ -1 e C" be given by
iy i) _ (=i p)
h}ll i_1 (0(1’ ey o(k) = <e°‘1"'“k | hjll i1 >an
—1/2 . . .
=5ilx2 5/?20(3 "'51‘,(710(,(” Py, iy e B 15 )

Then a small calculation, using the defining relation

Q(L,x)=S}Q(x)

for L;, where x=x,® --- ®Xx, € C"*, and the expansion

'k

Q(X)= Z Xill "‘)EZ(-Q,‘I.H;‘
iy

and the formula for S*Q, above, shows that

“.,i/‘,,
Li= Y ey i o< (7.5)
il

where | »{ | is the Dirac notation.
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In this example, the general formulas from Theorem 6.1 can be verified
directly:

LemmA 7.2. Let (L;) and (hj’:l""'"*‘) be as above and define
R= % [y o]
ok

:nil Z Zzu(alr ila"'a lk) ﬁ(ﬂlaila'"b lk)

i g By
(1) (2) (k)
X€ap ®e[lil ® ®eik—lik—l.
We have
n
* _
Z Lfo =1
j=1
and
n
> L}RL;=R
j=1

when 1 is the identity element in W, ~ M .

Proof. The adjoints of L; e 2, are

Lj?'*‘: Z |h/(‘ilmikil)><ei1---ik,lj

i djy

and it follows that

Z Lij*=Z(|eil---ik71j><h,('im)|)(|hj(~i,m)><eii---j|)

j=1 J
. (1)
_ZZZ <h/ll | h.}l ) 6i1’71 .“5’%71"1@—1 i
i i

(k—1) (k)
® - ®e; ®ej;

i1 if—1
—pn! Z |u(0(1,l.1,..., ikflaj)lzei‘lli)l

oy dy i yJ

(k—1) (k)
® Qe ®ej;

1l

— (1) (k) —
= ) el® - ®e=1

il
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The two systems L; and L* represent shift operators as follows:

Li|iy---izy=n TVPU(ly iy ) iy e i) (7.6)

and
Lj* liy - x> =n oz Zﬁ(Pa By y e bge— 15 Ig) 51‘,(,]' |piy - ip_y>  (7.7)
P
The density matrix Re 2,

R= Z |h(’1 s 1><h(’1 le—1)

then satisfies

ZL*RL % Z 22 (ke )

Jodpeeip o«

s (305 R0 g g, > ChP A0
= Z z 5“1/31 “A 1Bk 510% 5]/&}1("1'“&.,1)(0() m

x |h;(].4.ogk7]><hfl.4./3k7] |

= Z Z|h;‘l"'°‘k—l><h;‘l"'°‘k—l|:R

Xy J

It follows from Theorem 5.2 that the system (L;, R) determines a state
w on (O, whose restriction to UHF, satisfies (5.2).

To finish the proof of Proposition 7.1, we need only check that the
representation (7.2)—(7.3) is irreducible on # = L*(X) when restricted to
UHF,,.

Let Te#(A#) and assume Tn(a)=n(a) T, Vae UHF,. Recall UHF,
contains the canonical m.a.s.a. generated by

() U S T S .
eil i @ lmlm s’l S’mslm Sll

and the representation yields

7[(51'1 sy sk SIT) E(xy, X2, )

m - ‘m

=0, .0, .0, . &(x1,X5,..), Vée LA(X).

X IZXZ m>m
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It follows that there exists f'e L*(X) such that T=m,, ie., that T is a
multiplication operator on L*(X), &+ f&. But T also commutes with the
other operators in UHF,,, and these act as:
(s -eesy SFesF) S(xy, X, )
) f(xla X2, )

1
=n(ef; ® - ®¢;

=uU(X 1, ) U(Xoy ) U(X s o) U(J s Xy 15 oee) =0

m /m

X g(jl! ey jm’ Xm+15 ) 6i|xl e 5 i(]ls ey jm’ Xm+ 15 )

InXm

‘%(,m(i’ jo X) 51'1.\‘1 o 5 6(]19‘ ajm)merla"')

I Xm

(see (7.4) above).
Since 7 is a multiplication operator, it also commutes with

é'_)(silxl"'é f(]h'ajmsmerlsm)'

I Xm

This is because 7(s; ---s; s¥ ---s7) is the product of a unitary multiplica-
tion operator and the latter operator, and 7 commutes with the former,
and thus with the latter. A little computation then shows that the function

fin T=m, must satisfy

f‘(ila ooy ima Xm+15 ) :f'(jla ooy jm: Xm+ 15 )

for all i, j multi-indices x € X, and therefore be constant on X. It follows
that the commutant of z(UHF,,) on L?*(X) is one dimensional, which is the
asserted irreducibility. This ends the proof of Proposition 7.1.

We showed that when u is given as in (7.8) and w is the corresponding
state, then 7, |y, is irreducible. Thus o defines a shzft on #4(A), and by
[ BJP, Lemma 5.4] two shifts defined from w and w’ coincide iff there exists
g€ U(n) such that o' =wo1,.

In conclusion, there is associated with every k, ne N and function

u:Z,x - x2,->T (7.8)

(k+1) times

the following complementary data:

(i

) w,€P,.

(i) =, eReps(O,, H)={neRep(U,, #), |r|yur, is irreducible}.
)
)

o (A)=>m,(s;) Ar,, (s;,)* for all Ae B(A), a shift on B(H).
LM € :S{)((E", M,,k), Ru EMnk.

(iii

(1v
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For (iv), note that a system {L,} € M« determines an L € £(C", M) by
setting for ye C”

L(y):= ), y;L;.

DEerINITION 7.1.  We say that an element w in P, is diagonal if it can be
represented by a function u as in (7.8).

Specifically, there is a function

u:l,x - x2,-T
—

k+1 times

and a basis for C” such that, in the basis, L is represented as follows
L(lj>)=L,(jeZ,) and

Liliy---iyy=n TVPU ey By J) X il g )

and
R |ll lk> =n*1 Zl/l(a, i2a o0y ilc) Ij(l'la i29 () lk) |<X'il "'i/€,1>.
o

We showed in Proposition 3.1 that two diagonal (or arbitrary) states
o, o' e, P, determine conjugate shifts iff there is a ge U(n) such that
', =, °T,. This means that conjugacy classes of shifts correspond to
U(n)-orbits with the group U(n) acting on the data in any one of the forms
(1) or (iv).

We now describe the diagonal elements in (/i P, as a “cross section” for
the associated orbit space.

THEOREM 7.3. Consider two diagonal elements in \ ) P, (relative to the
same basis in C") corresponding to functions u and u'. Then the corre-
sponding shifts are conjugate iff there exists a k such that u and u' are both
functions of k + 1 variables:

Z,x - xZ,—->T
~——

k+1 times
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and there exists a g € U(n) such that

b .
Wiy iys bay s ifc) 5;'”‘, 51'2_/2 "‘6ik_/'k

—Zz Zg]()alo Plall) g(pi,ji) &(pasis) g(pas jo) -+

Jo P1 P

X &(Prs ix) &(Pics Ji) X u(jos Prs P2s s Pic)
for all (i, ...i,)€Z, X -+ XZ,,.
R/_/

k+1

For the proof we need the following result which relates the state w and
the corresponding tensor L, and the transformation rule for the U(n)-coac-
tion.

Lemma 7.4. If a state w € S, is given by the tensor Le ¥ (C", M ) and
g€ Un), then the elements

Lix)=(g7'® - ®g HL(gx)(g® --- ®g) VxeC”
W_/
k (7.10)
Ré¥=(g7'® - ®¢g "YR(E® - Qg)

determines the state wot,.

Proof. Let p:=w| M where M« is viewed as the subalgebra
g[k = Aln’c < UHFn < @n

and let Ad,(g)=2g® --- ®g-27'® --- ®g~". Then it follows that
——

X x
(@oTy)|ar, =poAdi(g).
We have for Vx, yeC”,
p(L(x) L(p)*) =33 x;7;p(L; L})
=33 x;5,(woa")(ey)

= (o) (s, s¥) =wooey,) =, (e,,).
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If ge U(n), and L# is as in (7.10), then

(poAdi(g))(LE(x) L5(p)*) = p(Ad,()(Adi(g ") L(gx)Ad,(g ") L(gy)*))
=p(L(gx) L(gy)*)

(a)oa")(sgxs;‘y

(@o0")(T,(s,5%))

(CO °© Tg) °© O-k(exy)a

and this formula shows that wot, is determined by the tensor L® as
specified.
The formula for R¢ is computed in a similar fashion.

Remark. We say that some L as in the lemma is in reduced form if
L(x)e PM, P, VxeC", where P is the support projection for p :=wl,, . If
L and L' are in reduced form and w and @' are the respective states, then
(for ge U(n)) we have L¥=L" iff w _, o7,=0',. When u=1 the elements
{L(y)},ccr © M, are represented on C*"=C"® --- ®@C" as follows, see

k

(2.10)—(2.11) above: Let w:=n""?(1, .., 1)e C". Then
e

L@ - @x)=<w[xHx*@ - @x'®y
and
Ly)*(x'®@ - @x )=y [ XD wex'® - @x" 1
When u:7Z,x --- xZ,,— T is introduced, the formulas hold with the

R/_/

k+1
following modification: The vector w = (w;)’_, becomes
c=n T Puli ) = u(i )

——

k

w

and
(i, iy, iy, o iy)
is viewed as a diagonal matrix for each (i, ..., ;)

L)' ® - @x) =iy ) | x') ¥ ® - @@
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with the variables ... acting on the tensor x’® --- ® x*® y. Similarly
1tok

u(iy, iy, .., i;) can be interpreted as the corresponding dual operator for
L(y)*.

Proof of Theorem 7.3. Elements in C" will be denoted y, x!, .., x*.
A basis {|i>}7_, for C" will be fixed such that

x'=Y x)liy,v=1,..,k

with summation indices i ranging over Z,,. If

u:l,x - x2,-T,
—

k+1

the contracted function: Z,x --- xZ,,— C is defined by

R/_/

k times

<xl | u('a iz, () i/(+l)> ::zx}lu(ila i29 eeey ik+l)'
i

Functions f on Z, will be identified with diagonal matrices

J(1) 0
< , and similarly functions on Z,x --- xZ, will be iden-
0 f(n) —

k
tified with diagonal elements in M,»=M,® --- ® M,. We then have

k

L)X @ o @x ) =23 o 2y ooy X Ly iy e i)

J i ik
—12 1 k
—n YN Yyl ek
Joh i
><u(ila eey ika ]) |i29 ey ik’ ]>

=n P CE u

)

k

>IN® - @x ).
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Hence, for ge U(n), we have

LE(y) ¥ ®@ - @x)=(¢g'® - ®g ") L(gy) lgx'® - @gx*)
W_/

k
—n (g ® - ®g ) ex Ul )
x(|gx*® - ®egx"R@gy))
T Ad( )

k

X(I¥® - @x" ®y>)
:I’l_l/2<)€1| Adk(g_l) ug(h_v_,)

K
X(I¥°® - ®@x" ®@y))
where
k J k
Recalling the formula
Ji 0 ,
Ad(g™") =< Y &(p.i) g(P,J)fp>, (7.11)
=1
0 Ll

the desired formula (7.9) in the theorem follows.

Remark. When u is given as in (7.8), then it is only for a very special
subset in U(n) that wo7, is diagonal in the same basis.

Let k, ne N be fixed. The transformation rule from the expression on the
right hand side in (7.9) holds for general diagonal elements in P,. The U(n)
coaction refers to the manifold &% of all tensors subject to the conditions
in Theorem 6.1 above. We may define an inner product for elements L and
L' in & as

(L|LY =traceMnk< > LJ*L}>

Jj=1
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and Lemma 7.4 then implies that the U(n)-coaction L+ L# extends to a
unitary coaction on the linearization, i.e., we have

(LE|L'¢*>=(L|L> for VL, L'e%.

By a slight abuse of notation, we will use T” x S,, to denote the subgroup
of U(n) with the property that ge T” xS, iff each row and each column of
g has only one nonzero element, and this element is then necessarily a
phase factor. Thus T"x .S, identifies with the semidirect product of the
n-torus T” by the permutation group S, of n elements, acting on T”" by
permuting coordinates.

THEOREM 7.5. For any ue C(Z%*", T), the U(n)-orbit {L%| ge U(n)} in
<, i intersects the diagonal elements for ge T" xS", and if g=(p, ..., p,) X
oceT"xS,, we have

uf(io, i1y ey ir) :po(io)u(o-(io)s a(iy)s s (i)
Conversely, for a dense open subset of C(Z5*',T), the U(n)-orbit in %,
intersects the diagonal elements only for ge T" x S".

Remark 1. For a general ue C(Z%*', T) the intersection could be
larger. For example, if u(x,, x4, .., x;,) =1 for all x4, x,, ..., x;, then the set
of g such that L¢ is diagonal is the set of all g e U(n) transforming

1

P1
into a vector of the form < : >
P1

1
where |p;|=1fori=1, .., n

Remark 2. For the dense open subset of C(Z%*', T) we shall take the
set of u with the property that for any (i, .., i;) € ZX there exists a pair
i, je Z, such that

Uy By ey Bg) Z Uy By ey B),
but if k£ >2 this is not the optimal choice.

Proof. Fix the function u=u(x,, ..., x;) and assume that ge U(n) is an
element such that o, -7, is diagonal. This means that the »’ defined by
formula (7.9) is a function of k£ + 1 variables such that

[t/ (xg, s Xp)[ =1

for all x,, ..., x, € Z,,. Now, identify u with the finite sequence

Uliy) = [ulio, iy oy 1x) 51'1/'1 "'51',(‘/},]
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of n*xn* unitary diagonal matrices, ie., i, labels the » matrices, and
(E1y ooy Ig» 3 J1 -+ Jx) labels the matrix entries. Formula (7.9) in conjunction
with formula (7.11) then says that g e U(n) is such that w, 7, is diagonal
if and only if

U'ig) =Y g(jo,io)(g7'® - ®@g ™) U(jp)(g® -+ ®E)
Jo — -~ \/_/

k factors k factors

is a new family of n* xn* unitary diagonal matrices.

From this formula we first see that if ge T" x S, then U'(i,) is diagonal
since U(j,) is so, and the first part of the theorem follows. Next note that
g=(pgs - P,) X o corresponds to the matrix

gli, )=pi0; o)

in U(n), and, inserting this into the formula (7.9), the formula for u# follows.

Now, multiply (7.12) by g(k,, i,) and sum over i, to obtain

Zm Uli)=(g7'® - ®g HUk)g® - ®g)
fo ~—— ~——

k factors k factors

for all k, € Z,,. But by Stone-Weierstrass’s theorem, if # has the property in
Remark 2, the #-algebra generated by U(1), .., U(n) is the *-algebra & of
all diagonal operators in M, . Since U'(1), .., U'(n) are assumed to be

diagonal, it thus follows from the relation above that
(g~ ®"2g% = 2.
From a standard result of Weyl, [ Hel], it follows that g®* e T" x S,x, and

hence ge T"x S,. This ends the proof of Theorem 7.5.

THEOREM 7.6. Let k,ne N be given, and let

u:l,x - x2,-T
—

k+1

be a function and let the system L;= L} depending on u be given as in (7.6).
Then the elements

LLLF, oLy Ly LF L,

0N

span all of M x, i.e., the system is minimal in the sense of [FNW?2].
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Proof. The result follows from a brute force calculation, or from the
clustering for w.,, which in turn follows from (7.13), below, and [ FNW2,
Theorem 1.5]. When applied to the present example, [ FNW2] yields the
asserted minimality property for {L;}7_, if we check that, for Vpe N, VA4 e
A, ~M,, and YBe UHF, = (),, lim; , , @ _(Ac?"/(B))=w_(4) 0 (B).

Recall, since w = " satisfies w,, = woc*, the desired clustering property is
implied by the following:

LEMMA 7.7. Let u: X— T be given and suppose it is a function of k + 1
variables, and let « = w" be the corresponding state. Then for all pe N, all
AeU,, and all Be UHF, < (,, we have

w(Aa?*?(B)) = w(A)(w-c")(B). (7.13)

Proof. Let m>2k. Then

o(e)) ® - @elr) ) =n = [ [] ulo"(i,x) e G X)) du(x)  (7.14)

INIjNI
Xn=o0

where du(x) is the Haar measure on X which here involves only a finite
number of summations, and where u is viewed as a function on X=T[]{" Z,
but depending only on the first k + 1 variables;

(i7 x) ::(ila i2> ot ima X], x27 ) EXa
and

a(Yis Y2y ) i=(Y2, y3,..)  for VyelX.

The “infinite” product is really finite, i.e., the last factors u(c”(i, x)) # 1 are

u(l’mkarla ey ims xl) e u(im% X1s X2y eens xk)'

For the evaluation of the left hand side in (7.13) we may restrict to terms
eﬁ.ll}l ® --- ®e§.’f’j.) with m > 2k, and the subindices of the form
(i IR 7% SSRETEEED CYSP R PPE Yot e dy,)

and

(J1 Tt P ap ok 2p 42k 41 e Jm)-
We take A =ef.11j)l ® - ®e% and similarly for B. Then the result follows
where the factors are written out in w(Ac”*?(B)) and terms of the
form w(r,---r, ;) u(r,---r,.,) are cancelled. (Recall u maps into T so
u(x) w(x) = |u(x)|*=1 for ¥xe X.)
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8. DENSITY OF STRONGLY ASYMPTOTICALLY SHIFT
INVARIANT STATES IN THE ASYMPTOTICALLY
SHIFT INVARIANT STATES

Let us use the terminology that a pure state w of UHF,, is asymptotically
shift invariant if it is in P, ie., if
lim [[(weo—w)|e =0
or
lim |wec” ' —woc™| =0.
We say that w is strongly asymptotically shift invariant if there is a ke N
such that we P, ie,
woog* "t =wogk.
We will now address the question how large (), P, is in P. The answer is
that it is less than norm dense:
ProrosiTION 8.1.  There is a state w € P such that if ¢ € Y, Py, then
lw—@)]i =1
Sfor all me N.
Proof. Let w,, be a sequence of pure states on M, such that

o0

z me_wn’l+1 H2< + o0

m=1
but {w,, | m>M} is dense in the pure state space of M, for all MeN
(so in particular Y °_, |®,,—®,, .| =+0o0). (Such a sequence may

be constructed as follows: Let ¢,, be any dense sequence in the
pure state space of M,. The ¢,, are vector states given by unit vectors
in C", and we may assume <{¢,, ¢, > >0 where £, is a unit vector
corresponding to ¢,,. By rotating &,, into &,,, ; through a sequence of m?
equal angles, we obtain m”+1 pure states @,, o= Pps Pon 25 o> P2 =
®mo1 such that (¢, ,— @, 1l <z/m® for k=0,.,m>—1, and thus
S NPk = Ponicr1 I < mP(mfm®)> = 72/m’. Now let ,, be the
SEqUENCE P 1, Py s s P24 =P3 05 s P3.0= P49, .. Then {w,} is dense,
and Y, @, — @, 1 |I?<3,, 7 /m* < + 0.)

Let @w be the corresponding infinite product state on UHF, =

:1): 1 Mn’

o= w,,.
m=1

By [BJP, Example 5.5], we P. Let €>0 and choose ¢ e P, such that
(¢ —w)| .|l <€ for some /e N. But this would imply |w,, —,, || <2e for
all m;,m,>1, and as {w,, | m> M} is dense, it follows that 2e >2. The
proposition follows.



ENDOMORPHISMS OF #(¢), 11 371

Remark. By a simple argument, one may replace 1 by 2 in Propo-
sition 8.1.

ACKNOWLEDGMENTS

The present paper was started while the two authors visited the Fields Institute for
Research in the Mathematical Sciences, and the main body of work was done while the
authors visited the Centre for Mathematics and Its Applications, School of Mathematical
Sciences, Australian National University. The paper was finished when the first author visited
the Department of Mathematics, University of lowa. We are very grateful for hospitality from
the respective hosts, Professors G. A. Elliott (the Fields Institute), D. W. Robinson (ANU),
and P. S. Muhly (University of lowa). The research also benefitted from many helpful conver-
sations with B. V. R. Bhat, G. A. Elliott, A. Kishimoto, M. Laca, P. Muhly, G. Price, and
D. W. Robinson and from e-mail exchanges with R. F. Werner.

The first named author was supported by the Norwegian Research Council, and both
authors by the National Science Foundation (U.S.A.), and the second author was also sup-
ported by a University of Iowa Faculty Scholar Fellowship and travel grant, and by a grant
from the Australian National University. This support is gratefully acknowledged.

Note added in proof. Since the completion of the present paper, the following related
preprints have appeared:

[BJ(a)] O. Bratteli and P. E. T. Jorgensen, Iterated function systems and permutation
representations of the Cuntz algebra, Oslo preprint, UiO Pure Mathematics, No. 12,
June 1996.

[BJ(b)] O. Bratteli and P. E. T. Jorgensen, Isometries, shifts, Cuntz algebras and multi-
resolution wavelet analysis of scale N, Oslo preprint, UiO Pure Mathematics,
No. 25, November 1996.

[BJ(c)] O. Bratteli and P. E. T. Jorgensen, A connection between multiresolution wavelet
theory of scale N and representations of the Cuntz algebra )y, preprint, November
1996; to appear in “Proceedings of the Rome Conference on Operator Algebras and
Quantum Field Theory” (J. Roberts, Ed.).

[J(a)] P.E.T. Jorgensen, A duality for endomorphisms of von Neumann algebras, J. Math.
Phys. 37 (1996), 1521-1538.

[J(b)] P. E. T. Jorgensen, Harmonic analysis of fractal processes via C*-algebras, Math.
Nachr., to appear.

[DP] K. R. Davidson and D. R. Pitts, Free semigroup algebras, preprint, 1996.

These papers continue the study of classes of representations described by (7.2)—(7.3) in the
present paper. In [ DP], the representations go under the name “atomic representations,” and
they are studied (independently) and classified up to equivalence of irreducibles, but the
framework is different. The papers [BJ(a)—(c), J(a), J(b)] are concerned with decomposition
series of representations of ¢y, a geometric model for estimating multiplicities, and applica-
tions to the theory of tilings (with fractal boundaries) and wavelet multiresolutions.
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