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We identify sets of conjugacy classes of ergodic endomorphisms of B(H) where
H is a fixed separable Hilbert space. They correspond to certain equivalence classes
of pure states on the Cuntz algebras On where n is the Powers index. These states,
called finitely correlated states, and strongly asymptotically shift invariant states,
are defined and characterized. The subsets of these states defining shifts will in
general be identified in a later work, but here an interesting cross section for the
conjugacy classes of shifts called diagonalizable shifts is introduced and studied.
� 1997 Academic Press

1. INTRODUCTION

Let H be a given separable infinite-dimensional Hilbert space. If : is a
unital endomorphism of B(H), the (Powers) index of : is defined as the
n # [1, 2, ..., �] such that the commutant of :(B(H)) is isomorphic to
the factor of type In , [Pow2]. Throughout this paper, we will always
let ``endomorphism'' mean unital *-endomorphism. It is well known (see
[Arv], [Lac1, Theorem 2.1, Proposition 2.2] and [BJP, Theorem 3.1])
that there is a one-one correspondence between endomorphisms of
B(H) of index n, and non-degenerate *-representations (henceforth called
representations) of On on H, up to the canonical action of U(n) on On ,
where On is the Cuntz algebra of order n. We say that two endomorphisms
:, ; in End(B(H)) are conjugate if there is an automorphism # of B(H)
such that : b #=# b ;; and this means that they have the same index n, and
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that the corresponding representations of On are unitarily equivalent up to
the action of U(n), see [Lac1, Proposition 2.4] and [BJP, Theorem 3.3].
We are interested in two subclasses of the class of endomorphisms of
B(H), namely the class of ergodic endomorphisms (i.e., those such that C1
are the only invariant elements) and the even smaller class of shifts (i.e.,
those endomorphisms : such that ��

n=1 :n(B(H))=C1). The first of these
families corresponds to irreducible representations of On , and the classifica-
tion of their conjugacy classes thus amounts to the classification of pure
states of On , up to the action of U(n) and unitary equivalence. Since On is
an antiliminal C*-algebra, this classification is therefore non-smooth,
[BJP, Theorem 1.1], [Dix], [Gli]. We show here in Sections 3�6 that the
smaller set of finitely correlated states (definition below) on On gives both
a ``rich'' set of conjugacy classes of ergodic endomorphisms, and at the
same time these states lend themselves to explicit calculations. They form
a union of finite-dimensional manifolds. The conjugacy classes can be
calculated. Using recent concepts and results of Fannes et al. [FNW2] we
will in a forthcoming paper, [BJW], identify those finitely correlated states
on On which correspond to shifts on B(H).

Although our main concern is with pure states of On which give rise to
shifts, i.e., pure states such that the canonical UHF-subalgebra UHFn is
weakly dense in the operators on the representation Hilbert space, a
generic pure state of On will of course not have this property. In fact, UHFn

is the fixed point algebra of the gauge action of T of On , and this is a quasi-
product action by condition 11 of the main theorem in [BEEK]. By condi-
tion 9 of that theorem, or, more explicitly by [Eva], On has gauge invariant
pure states |, and then | |UHFn is pure, but UHFn is not dense, so these
define ergodic endomorphisms which are not shifts. For the case n=�, see
[Lac2, Theorem 4.3].

Let S be an isometry on a Hilbert space H, and let n :=dim N(S*).
Then for every k, we have a canonical decomposition

H=Cn� } } } �Cn

k times

�S kH.

If S is a shift, i.e., � S mH=[0], we say that n is the multiplicity of
the shift. It is known that n is a complete unitary invariant for the shifts.
For an endomorphism : of B(H) of finite index n we similarly have a
canonical decomposition

B(H)=Mn� } } } �Mn

k times

�:k(B(H))
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where n denotes the Powers index. But now as noted, even when : is a shift
on B(H), n is not a complete conjugacy invariant. In fact, in [BJP], we
display a nonsmooth continuum of nonconjugate B(H) shifts for each
value of the Powers index n�2.

In Section 6, we characterize the pure states | on On with the property
| b _k+1=| b _k for some k # N, where _ is the canonical shift on On , see
(3.1). The set Sk of these states has a natural structure as a finite-dimen-
sional differentiable manifold, and as a manifold it is diffeomorphic to the
manifold Ln, k consisting of all pairs (L, R), where

L # L(Cn, B(Cnk
)),

R # B(Cn k
),

and, with

Li=L( |i ) ),

we have the following properties:

R�0 and Tr(R)=1,

:
n

i=1

LiLi*=P

where P is a projection in B(C n k
),

PLi=LiP=Li , PR=RP=R,

RP�*P for some *>0.

:
n

i=1

Li*RLi=R,

and, up to a scalar, R is the unique solution of this equation. See Theorem 6.1
for other versions of the latter conditions.

In Section 7, we show that the action | � | b {g&1 of U(n) on the state
space of On gives rise to an action Rn of U(n) on the manifold Ln, k by

(Rn(g) L)(x)=Adk(g) L(g&1x)

(Rn(g) R)=Adk(g) R

for x # Cn, g # U(n), where

Adk( g)=Ad( g)� } } } �Ad( g)

k times
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and { is the canonical action of U(n) on On , see end of Section 2. The
associated orbits correspond 1�1 to conjugacy classes of shifts with Powers
index n. (In Section 7, the action Rn will actually be replaced by the
coaction g � Rn(g&1).)

Of course, by linearization, we may embed Ln, k as a closed submanifold
of a Hilbert space with inner product

( (L, R) | (L$, R$)) =TraceMn k \ :
n

j=1

Lj*L $j ++TraceMn(R*R$)

and the action of U(n) then extends to a unitary representation.
We are concerned in Section 7 with elements in a closed subset of

��
k=1 Pk , where Pk is defined in the introduction to Section 3. Section 8 is

about the complement of the closure of �k Pk . Suppose | # Pk , then
| b _ k+1=| b _ k, and so | b _ k is _-invariant. This state therefore extends
canonically to a shift invariant state on the UHF-algebra

}
Z

Mn= }
�

&�

Mn

which will be denoted |� . The space Ln will be defined in Section 7 such
that the mapping (Ln % (L, R)) � |�(L, R)

1

is 1�1. If {�
g denotes the U(n)-

action

{�
g := }

�

&�

Ad(g)

on }�
&� Mn , then the representation Rn(g) is given by

|�(L, R) b {�
g&1=|�(Rn(g)(L, R)).

Also the assignment | � |� is such that the two shifts :?| and :?|$
(for

given |, |$ # P) are conjugate iff there is a g # U(n) such that

|$�=|� b {�
g ,

or equivalently, for the corresponding elements L, L$ # Ln , we have
L$=Rn(g) L.

To identify these infinite families of nonconjugate shifts we introduce in
Section 7 a class of elements | # P which we call diagonalizable. If ?0

denotes the Haar representation (see [BJP]) of On acting on H0=
L2(X, +0), where X=ZN

n , and +0 denotes the corresponding Haar measure
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on X, then we say that ? is diagonalizable if there is a measurable function
u : X � T1 such that ?(si)=Mu?0(si) where Mu is the multiplication
operator defined from u. The diagonalizable elements will be denoted by
PD . The result in Section 7 is the assertion that PD is a ``section'' for the
U(n)-orbits under the representation Rn described above: Specifically, PD

intersects a generic set of U(n)-orbits in a finite dimensional manifold dif-
feomorphic to a disjoint union of n ! copies of Tn. This means that by just
varying the functions u : X � T we get a set of distinct conjugacy classes
in P.

2. PRELIMINARIES AND NOTATION

Let H=Hn &Cn be a finite-dimensional complex Hilbert space. The
dimension n will be fixed throughout, and the inner product on H will be
the usual one

(x | y)= :
n

i=1

x� i yi (2.1)

for elements x, y # H with coordinate representation x=(x1 , ..., xn); and
the norm & }& is given by

&x&2=(x | x) =:
n

1

|xi |
2.

Consider the free unital *-algebra generated by H, i.e., the *-algebra of
all polynomials of h # H and h* # H� , where H� is the conjugate Hilbert space
of H. If one adds the relation

h*k=(h, k) 1 (2.2)

then the C*-envelope of the resulting *-algebra is the familiar Cuntz�
Toeplitz C*-algebra, [Eva], [JSW]. If [ei]n

i=1 is a basis for H, e.g.,

ei=( 0, ..., 0,

i&1 places

1, 0, ..., 0), (2.3)

and one adds the relation

:
n

i=1

ei ei*=1 (2.4)
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then the resulting C*-algebra On is the Cuntz-algebra. It is well known
[Cun] to be simple, and it plays a crucial role (see [Lac1], [Lac2],
[Arv], and [BJP]) in the study of the endomorphisms of B(H).

To stress the distinction between elements in H, and elements in one of
the involutive algebras generated by H and H� , we adopt the notation sh

and sh* for the corresponding elements in the algebra. With the specific
choice of basis, we write si for sei . The relation (2.2) may then be written
in the familiar form

si*sj=$ij1, (2.5)

or in a basis free form

sh*sk=(h, k) 1. (2.6)

The second relation (2.4) becomes

:
n

i=1

si si*=1.

Let K be the C*-algebra of the compact operators (on a separable Hilbert
space). Then we have the familiar short exact sequence

0 � K � Tn � On � 0

where Tn denotes the Cuntz�Toeplitz algebra. See [Eva] and [BEGJ] for
details. In fact K is isomorphic to the two-sided ideal in Tn generated by
1&�n

i=1 si si*.
Let ? be a representation of On on a Hilbert space H, and set Si=?(si).

Then the formula

:(A)= :
n

i=1

SiAS i* (2.7)

for \A # B(H) defines an endomorphism of B(H), of Powers index n
(see [Pow2] and [BJP]). As mentioned in the introduction, every
endomorphism of B(H) arises this way. (The result (see [Lac2]) may be
modified to apply also to the case when the Powers index is infinite.)

Recall that : # End(B(H)) is ergodic if the subalgebra

[A # B(H)) : :(A)=A]

is one-dimensional; and that : is a shift if

,
�

k=1

: k(B(H))
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is one-dimensional, i.e., if the intersection is of the form C1 where 1 is the
identity in B(H).

There is an action { by automorphisms of the group T on On , given by
{z(sh)=zsh , for z # T and h # H. The corresponding subalgebra

O{
n=[a # On : {z(a)=a, \z # T] (2.8)

is denoted by UHFn , and has the form

Mn�Mn � } } }

1 to �

. (2.9)

Recall from [Cun] that UHFn is generated linearly by the following
elements

si1
si2

} } } sim
s*jm } } } s*j2

s*j1 . (2.10)

In fact, the isomorphism between (2.8) and (2.9) is given by letting the
element (2.10) correspond to

e (1)
i1 j1

�e (2)
i2 j2

� } } } �e (m)
im jm

(2.11)

where eij denote the usual matrix units in Mn . We will sometimes use the
Dirac notation

eij=|ei)(ej |. (2.12)

As mentioned in the introduction, the action {z of T naturally extends
to an action { of the unitary group U(n) of Cn. For g # U(n), the
automorphism {g on On is determined by

{g(sx) :=sgx for \x # Cn.

The restriction of {g to the subalgebra UHFn is just the product action

Ad( g)�Ad( g)� } } }

1 to �

on }
�

1

Mn .

As we pointed out in the introduction, a given : # End(B(H)) is ergodic
iff the corresponding ? # Rep(On , H) is irreducible. We also showed in
[BJP] that : is a shift iff the restriction ?|UHFn is already irreducible. As
a consequence, we found, in [BJP], that a classification of the shifts up to

329ENDOMORPHISMS OF B(H), II



File: 580J 303308 . By:DS . Date:14:04:97 . Time:08:44 LOP8M. V8.0. Page 01:01
Codes: 2789 Signs: 1987 . Length: 45 pic 0 pts, 190 mm

conjugacy is given by equivalence classes in the set P of all pure states |
on UHFn such that | is quasi-equivalent to the shifted state, given by x [
|(1�x), for \x # UHFn . This equivalence relation is quasi-equivalence up
to the action of U(n). But the classification problem is difficult in the sense
that the classifiers P�t form a non-smooth space.

3. STRONGLY ASYMPTOTICALLY SHIFT INVARIANT STATES
AND FINITELY CORRELATED STATES

The present paper deals with a smaller problem. Let _ denote the
canonical shift on On , defined by

_(x)= :
n

i=1

si xsi* , \x # On . (3.1)

We will be considering pure states | on On such that, for some k,

| b _ k+1=| b _ k. (3.2)

These states are said to be strongly asymptotically shift invariant (of order
k). If k is given, the corresponding set of pure states will be denoted Sk . If
| is a pure state on the subalgebra UHFn with the invariance property
(3.2), we say that | # Pk . In the latter case, it follows from [BJP, Lemma
5.2] that |tq | b _ on UHFn , and | corresponds to a shift on B(H).
Note that if | # Sk restricts to a pure state on UHFn , then the restriction
is contained in Pk . If then \=| |UHFn , we proved in [BJP, Lemma 5.2]
that \ extends to a pure state . on On such that ?.(UHFn) is weakly dense
in B(H.), and it is easily checked that the extension has the invariance
property (3.2). It is also clear from the construction in [BJP, Lemma 5.2]
that the extension . is unique up to the gauge action { of T (see [Lac1,
Theorem 4.3] for the corresponding result when n=�), and it follows
from [BEEK] that the extensions . b {z , z # T, are mutually disjoint in the
strong sense that

\|
�

T

? b {z dz+ (On)"=B(H.)�L�(T).

In fact, this is equivalent to ?.(UHFn) being dense in B(H.) (see [BEEK]
for details). We will show in [BJW] that | is one of these extensions, when
| # Sk and | | UHFn is pure.

We will now introduce a class of states on On which will be called finitely
correlated states, and in Section 4 we will show that �k Sk is contained in
these states.
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For a given state | on On , the GNS-representation will be denoted by
(?| , H| , 0|) or simply (?, H, 0), i.e., ? is the cyclic representation of On

on H, with cyclic vector 0, such that

|(x)=(0 | ?(x) 0) for \x # On . (3.3)

Extending a definition in [FNW1, FNW2], we say that the state | is
finitely correlated if the subspace V/H generated linearly by 0 and the
vectors

?(s*h1
s*h2

} } } s*hm) 0 (3.4)

for hi # H, and m=1, 2, ..., is finite-dimensional.
The space generated linearly by the vectors (3.4) with a fixed m will be

denoted by Vm , and V0=C0. If | is finitely correlated, there is a smallest
k such that V=�k

i=0 Vi . If then Vk is left invariant by all S i*, we say that
| # FCk . (We say this whenever Vk is left invariant, even if k is not the
minimal such k.) Note that FCk is not necessarily increasing in k, and the
union of the FCk 's is not necessarily the set of all finitely correlated states.
The set of pure states in FCk will be denoted by PFCk .

The definition above is new, as [FNW2] is concerned with a different
C*-algebra, viz., the two-sided infinite tensor product }�

&� Mn (see
details in Section 8 below). Our present definition for On is on the face of
it unrelated, but a main point in our paper is to show that our states may
in fact be described with a set of labels which is directly related to those
used in [FNW2] for }�

&� Mn .
The case when V from above is one-dimensional, yields the identity

?(sh*) 0=(h, .) 0 for \h # H (3.5)

where . is some fixed vector in H such that &.&=1. The corresponding
states are called Cuntz states. When |=|. is a Cuntz-state, its restriction
to UHFn is the pure product state

.�.� } } }

1 to �

(3.6)

corresponding to the representation (3.3) of UHFn , so it follows that the
Cuntz states are in P0 &S0 . We showed conversely in [BJP, Theorem 4.1]
that every element in P0 is a Cuntz-state.

Hence the set P0 is parameterized by the unit-ball in the Hilbert space
H=Cn, and we shall show that a corresponding result is also true for Sk .
Since clearly Pk /Sk |UHFn , the results in [BJW] then give a parameteriza-
tion of Pk .
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For states | on On , the condition (3.2) is important because of a result
which we now proceed to describe. We showed in [BJP, Lemma 5.2] that
the pure states | on UHFn define shifts on B(H) iff | b _tq | where tq

denotes quasi-equivalence, [Dix]. If | is given, and (?| , H|) is the GNS-
representation (extended to On on the same Hilbert space as in [BJP]) then
the corresponding shift :| on B(H|) is given by

:|(A)= :
n

i=1

?|(si) A?|(si)* (3.7)

for \A # B(H|). If | and |$ are two such pure states, we showed ([BJP,
Lemma 5.4]) that the corresponding shifts :| and :|$ are conjugate, i.e.,
that :|$=; b :| b ;&1 for some ; # Aut B(H), iff _g # U(n) such that

lim
m � �

&|$ b _ m&| b {g b _ m&=0. (3.8)

The following result is immediate from this:

Proposition 3.1. If |, |$ # ��
k=1 Pk , then the corresponding shifts :|

and :|$ are conjugate iff _m # N and g # U(n) such that

|$ b _ m=| b {g b _ m. (3.9)

Remark. Our main use of the more restricted family of states is the fact
that the condition (3.9) in Proposition 3.1 above is easier to verify than the
corresponding asymptotic property (3.8) for the general case. We also show
in Section 6 below that (3.9) lends itself to explicit computations for the
examples of conjugacy classes of shifts which we studied in the precursor
[BJP].

Proof. The proof is the assertion that if the limit of an eventually con-
stant sequence is zero, then the terms in the sequence must be identically
zero from a step on.

4. STRONGLY ASYMPTOTICALLY SHIFT INVARIANT
STATES ARE FINITELY CORRELATED

One main object of the present paper is the set of shifts on B(H), and
the corresponding conjugacy classes. More generally, we shall consider
endomorphisms which are not necessarily shifts; but we will also be more
specific in that we look at those states | on On which are invariant from
a certain step on, i.e., satisfying (3.2) above. For each k, we show that these
states form a finite-dimensional manifold, thus simplifying considerably
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the classification problem for the corresponding subclass of ergodic
endomorphisms of B(H).

Theorem 4.1. Let k and n be positive integers, and let | be a pure state
on On such that | # Sk . It follows that | is finitely correlated and, moreover,
the space Vk spanned by the vectors ?|(s*h1

} } } s*hk) 0, h1 , ..., hk # Cn, is
invariant under each of the operators S i*=?|(si*).

Proof. Since | is a pure state on On the corresponding GNS-representa-
tion ? is irreducible. If Si :=?(si), then

|(_(x))= :
n

i=1

(S i*0 | ?(x) Si*0)

for all x # On . More generally, set

0i1 i2 } } } im
:=S*im } } } S*i2 S*i1 0. (4.1)

Then

|(_ m(x))=:
i1

} } } :
im

(0i1 } } } im
| ?(x) 0i1 } } } im

) for \x # On . (4.2)

It follows that the GNS-representation of | b _ identifies with the sub-
representation of the n-fold direct sum ?�?� } } } �? defined by the cyclic
subspace generated by the free direct sum of the 0i vectors, i.e., 01 �
} } } �0n , and that of | b _ m is unitarily equivalent to the subrepresenta-
tion of the nm-fold sum with cyclic vector

:
i1

} } } :
im

�0i1 } } } im

where each index ij runs over [1, ..., n]. Since ? is irreducible, it follows
that the commutant ?| b _(On)$ is naturally embedded in Mn . This is because
the commutant of the representation

A [ A�A� } } } �A

n times

consists of the operator matrices on �n
1 H of the form �ij zij Eij , with

scalar indices zij # C. The same result holds for | b _ m with the obvious
modification coming from consideration of multi-indices.

Using (4.2) and (3.2), we now conclude that each of the states

|i1 } } } ik ik+1
=(0i1 } } } ik ik+1

| } 0i1 } } } ik ik+1
) (4.4)
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is dominated by | b _ k; and so, by using Segal's Radon�Nikodym theorem
[Seg2], [Br-Rob, Theorem 2.5.19], or [KR], we conclude that, for each
(i1 , ..., ik , ik+1) there are positive operators Z=Zi1 } } } ik+1

, in the commutant
?| b _ k(On)$ such that

|i1 } } } ik+1
(A)=| b _ k(AZ ) (4.5)

where, on the right hand side, we have extended | b _ k to B(H| b _ k) in the
obvious manner. By the above argument, the representation ?| b _ k is a sub-
representation of the nk-fold direct sum of ?| , and the commutant of the
latter representation is isomorphic to Mn k . The subrepresentation
corresponds to a projection E in Mn k, and the operators Z live inside this
projection. We may extend Z to operators in Mn k by setting (1&E) Z=
Z(1&E)=0. The formula (4.5) may now be written in multi-index summa-
tion form, p=( p1 , ..., pk), q=(q1 , ..., qk), with pj and qj in [1, ..., n]. The
matrix Z and its entries zp, q still depend on (i1 , ..., ik+1), but the latter
multi-index is fixed for the moment. We get

|i1 } } } ik+1
(A)=:

p

:
q

zpq(0p | A0p) for \A # B(H). (4.6)

But the matrix Z is positive, so of the form Z=Y*Y where Y=[ yrp] #
Mnk , e.g., take Y :=- Z. Now set

!r :=:
p

yr, p0p # H (4.7)

where r=(r1 , ..., rk) is also a multi-index. Formula (4.6) then takes the form

|i1 } } } ik+1
(A)=:

r

(!r | A!r) (4.8)

for A # ?|(On), and thus, by closure, for all A # B(H). But |i1 } } } ik+1
is a

vector functional on B(H) and thus proportional to a pure state, and it
follows from (4.8) that each of the vector functionals (!r | } !r) are propor-
tional to |i1 } } } ik+1

, and thus each of the !r are a scalar multiple of 0i1 } } } ik+1
.

Thus 0i1 } } } ik+1
is a scalar multiple of some !r . But the vectors !r are linear

combinations of the vectors 0p=S*pk
} } } S*p2

S*p1
0, and thus 0i1 } } } ik+1

are so.
This proves Theorem 4.1.

5. A RECONSTRUCTION THEOREM

In this section, we first, in Theorem 5.1, describe a map from the set of
all finitely correlated states on On into a system consisting of a state on a
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matrix algebra and a partition of unity. The hypotheses of this theorem are
in particular fulfilled for | # Sk , by Theorem 4.1. Subsequently, we show in
Theorem 5.2 that such a system defines a state on On . Finally, in Theorem
5.3, we give necessary and sufficient conditions on the system for the state
to be pure. In Section 6 we will specialize to the case | b _ k+1=| b _ k.

The first result is a corollary to our previous theorem. Let Ak be the sub-
algebra of UHFn spanned linearly by the elements si1

si2
} } } sik

s*jk } } } s*j1
,

where im , jm=1, ..., n. As explained around (2.10), (2.11), Ak is isomorphic
to Mn� } } } �Mn

k times

&Mnk . If x=(x1 , ..., xk), where xi # H, we will use the

notation sx=sx1
sx2

} } } sxk
, and if x, y # Hk, exy=sxsy*=|x)( y|.

Theorem 5.1. Let k and n be positive integers, and let | # FCk ; i.e., |
is a finitely correlated state such that each Si* leaves the subspace Vk /H|

invariant. Then there are elements Li # Ak (i=1, ..., n) such that the state |
is given by

|(sx si1
} } } sim1

s*jm2
} } } s*j1 sy*)=|(Lim1

} } } Li1
exyL*j1 } } } L*jm2

) (5.1)

for x, y # Hk, il , jl # [1, ..., n]. In particular, restriction of | to UHFn is
given by

|(A�e (k+1)
i1 j1

� } } } �e (k+m)
im jm

)

=|(Lim
} } } Li2

Li1
AL*j1 } } } L*jm) for \A # Ak . (5.2)

Hence | is determined by its restriction to Ak and the elements [Li]n
i=1

in Ak , and we have

:
n

i=1

|(LiALi*)=|(A) for all A # Ak . (5.3)

Furthermore, if P # Ak is the support projection of the restriction of the state
| to Ak , the elements Li # Ak may be chosen such that PLi P=Li , and with
this choice the Li 's are unique.

Remark. Since �i sisi*=1, the algebra On is the closed linear span of
operators of the form sxsi1

} } } sim1
s*jm2

} } } s*j1 sy*, and so (5.1) defines |
uniquely from \ :=| |Ak and [Li]n

i=1.

The following useful formula follows immediately from (5.1):

?|(_ k(sj*)) ?\(X ) 0=?\(XLj*) 0 (5.4)
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for X # Ak , j=1, ..., n, as follows: By (5.1)

|(sx sj*sy*)=|(exy sj*)=|(sx sy*sj*)

But since Sj*Vk �Vk we obtain from here

Sj*Sy*0=S y*?(Lj*) 0.

Multiplying to the left by Sy and summing over y in an orthonormal basis
for H� k, we obtain

?(_ k(sj*)) 0=?(Lj*) 0

and since _ k(sj*) # Ac
k , the formula (5.4) follows.

This can also be used to give an alternative definition of Lj* # PAk P,
where P is the support projection of | |Ak . One has

?|(_ k(sj*)) |= :
i1 } } } ik

Si1
} } } Sik

S j*S*ik } } } S*i1
0.

But by assumption, S j*S*ik } } } S*i1 0 is in Vk , and hence the sum above is a
linear combination of elements of the form Si1

} } } Sik
S*jk } } } S*j1 0, i.e., of

elements in ?(Ak) 0. Hence there exists an Lj* # Ak such that

?(_ k(sj*)) 0=?(Lj*) 0

and then (5.4) is valid for all X # Ak .
Now, as P is the smallest projection in Ak such that ?(P) 0=0, it

follows that we may replace Lj* by Lj*P in the last formula. Furthermore,
as _ k(sj*) # A$k , we have

?(P) ?(_ k(sj*)) 0=?(_ k(sj*)) ?(P) 0=?(_ k(sj*)) 0

so the formula is unchanged if Lj* is replaced by PLj*. Thus, we may
assume Lj=PLj P. But as 0 is separating for ?(PAk P), the Lj is then
uniquely determined by the formula.

Next iterating the formula

asi*=si*_(a),

valid for all a # On , one obtains

as*x=s*x_ k(a)
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for all x # Hk. Combining this with an iteration of (5.4) gives

S*im1
} } } S*i1 S*x 0=S*x?(Li1

) } } } ?(Lim1
) 0

and (5.1) follows. We now proceed to another proof.

Proof of Theorem 5.1. Since | # FCk , the space Vk spanned by
[S*i1 } } } S*ik 0] is invariant under each of the operators S i* :=?(si*) where ?
is the GNS-representation of |. We also have an antilinear map from the
k-fold tensor product H� } } } �H into Vk where H&Cn. This map is
given by

0(x1 � } } } �xk) :=S*xk } } } S*x2
S*x1

0 (5.5)

for xi # H, i=1, ..., k. The antilinearization of formula (5.5) may be
abbreviated 0(x)=S*x0, x # Cnk

; so we get Vk as a quotient space, Cnk

divided out with a linear subspace N consisting of vectors x such that
&0(x)&2=0, i.e., Cnk�N&Vk .

Let Li be some lifting to Cnk
of the induced operator on the quotient,

Si*0(x)=0(Li x). (5.6)

for all x # Cnk
. We conclude that N must be invariant for each Li . Each Li

may be identified with an element in Ak &B(Cnk
) in the following way:

Once the basis ei for H has been chosen as in (2.3), then the element
e(1)

i1 j1 � } } } �e (k)
ik jk in Ak acts on H �k in a canonical fashion, giving a

*-isomorphism between Ak and B(H �k). Transporting Li back with this
*-isomorphism, Li identifies with an element in Ak . Doing this, one verifies
the formula

Li exy Lj*=eLi x, Lj y (5.7)

for x, y # C nk
, as follows: If u, v # Cnk

, then

(u | Li exy Lj*v)=(u | Li x)( y | Lj*v)

=(u | Li x)(Lj y | v)

=(u | eLi x, Lj y | v).

Let us now verify formula (5.2). We note that the element A in Ak may be
taken to be in the form A=exy where x, y # Cnk

. Then
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|(exy �e (k+1)
i1 j1

� } } } �e (k+m)
im jm

)=(S*im
} } } S*i1 S*x0 | S*jm } } } S*j1S y*0)

=(S*im } } } S*i1 0(x� ) | S*jn } } } S*j1 0( y� ))

=(0(Lim
} } } Li1

x� ) | 0(Ljm
} } } Lj1

y� ))

=|(eLim } } } Li1 x, Ljm } } } Lj1 y� )

=|(Lim
} } } Li1

exyL*j1 } } } L*jm
).

which is the desired formula.
Formula (5.3) follows by putting m=1 and j1=i1=i in (5.2), and then

summing over i=1 to n, using

:
n

i=1

eii=1.

Let us now prove the last statement of Theorem 5.1. So far, the Li 's are
only unique up to their action on N. But note that

N=[x # Cnk
| 0(x)=0]

=[x # Cnk
| (0(x), 0(x)) =0]

=[x # Cnk
| |(exx)=0].

Moreover exx ranges over all multiples of one-dimensional projections in
B(Cn k

) when x ranges over Cn k
, and it follows from the above formula that

N=(1&P) Cn k

where P is the support projection of |. But as Li N�N, we have
Li (1&P)=(1&P) Li (1&P) and hence PLi (1&P)=0.

Now

S i*0(x)=0(Li x)

=0(PLi x+(1&P) Li x)

=0(PLi x)

since (1&P) Li x # N=ker 0( } ). Thus

Si*0(x)=0(PLi x)

=0(PLi Px)+0(PLi (1&P) x)

=0(PLi Px)
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since PLi (1&P)=0. Thus, if Li is replaced by PLi P, one still has the
formula S i*0(x)=0(Lix), and hence one derives (5.2) as before. Thus Li

may be chosen such that Li=PLi P. But since the map induced by 0( } )
from PB(Cn k

) P to B(Vk) is an isomorphism, this choice of Li is unique.
We will now show conversely that if k and n are given, then every system

[Li]n
i=1 of matrices in B(Cn k

), together with a positive matrix R in B(Cn k
)

of trace 1, determine a state on On by the formula (5.1), if the pair
[R, [Li]] satisfy a certain normalization condition (5.8).

The question becomes one of extending the fixed state \=Tr(R } ) on Ak

to On such that the extended state | is given by (5.1). For \x, y # Cnk
, we

then have

\(exy)=(x| R | y).

We shall say that the operators [Li]n
i=1 are normalized if

:
i

\(eLi xLi y)=\(exy) \x, y # Cnk
,

or, equivalently,

:
i

L i*RLi=R. (5.8)

This is again equivalent to (5.3).
The normalization is a condition on the combined system consisting of

the Li 's and R, or equivalently the Li 's and \. We will see during the proof
of the next theorem that normalization is a translation of the Cuntz
property �n

i=1 Ai Ai*=IVk
to the Li 's.

Theorem 5.2. Let k and n be positive integers, and \ be a state on the
subalgebra Ak /On . Let [Li]n

i=1 be a system of elements in Ak which are
normalized relative to \. Then the formula

|(sx si1
} } } sim1

s*jm2
} } } s*j1 sy*)=\(Lim1

} } } Li1
exyL*

j1
} } } L*jm2

)

defines a state | on On which extends \. Furthermore, | # FCk .

Proof. If

exy # Mnk &Ak /UHFn /On

we have, with 0 the cyclic vector in the GNS representation ? of Ak ,

\(exy)=(0 | ?(exy) 0)=(x | Ry)

=trace( |R1�2y)(xR1�2| )=trace(R1�2exy R1�2). (5.9)
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Since the Li operators are normalized relative to R, we have

:
i

(R1�2Li)* (R1�2Li)=(R1�2)2

and hence R1�2x=0 O R1�2Lix=0. Thus each operator Li passes to the
quotient space

Vk :=Cn k�[x # Cnk
: R1�2

k x=0]. (5.10)

For each i, we denote the corresponding induced operator on Vk by Ai*.
Specifically

Ai*(x+ker(R1�2
k ))=(Li x)+ker(R1�2

k ). (5.11)

Relative to the norm, x [ &R1�2
k x& on

Cn k�ker(R1�2
k ),

the normalization property (5.8) then translates into

:
n

i=1

Ai Ai*=IVk
. (5.12)

Using [Pop1, Theorem 2.1] we conclude the existence of a representation
(?, H?) of On such that Vk is isometrically embedded in H? , and

?(si*) | Vk
=Ai*. (5.13)

(See the remarks before (6.3) for more details on this.) Let Pk denote the
orthogonal projection of H? onto Vk , and consider the completely positive
mapping

. : On � B(Vk)

given by

.(a) :=Pk?(a) | Vk
for \a # On . (5.14)

Viewing the Ai 's as operators on H? by setting them equal to zero on the
orthogonal complement of Vk , we have from (5.13):

Si*Pk=Pk Si*Pk=Ai*
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and we conclude that

.(si1
} } } sil

s*jm } } } s*j1)=Pk Si1
} } } Sil

S*jm } } } S*j1 Pk

=Pk Si1
Pk } } } Pk Sil

Pk S*jm Pk } } } Pk S*j1 Pk

=Ai1
} } } Ail

A*jm } } } A*j1 (5.15)

for all l, m # N and all corresponding multi-indices (see [BEGJ, Proposi-
tion 2.1] for a similar argument). We may define a state | on On by the
formula

|(a) :=(0| ?(a) 0) =(0 | .(a) 0) for \a # On .

Specifically

|(si1
} } } sil

s*jm } } } s*j1)=(A*il } } } A*i1 0 | A*jm } } } A*j1 0) , (5.16)

and it follows that | on On does restrict to the given state \ on Ak . Let us
introduce the operator V=�n

i=1 Li* �ei from Cnk �Cn=Cnk+1
. A calcula-

tion yields

|(a�eij)=\(V*(a�eij) V )=\(LiaL j*)

for \a # Ak , \i, j # [1, ..., n], where as usual eij denotes the matrix entries in
Mn . The notation a�eij is short for a�e (k+1)

ij , with the eij -term sitting in
the tensor slot k+1 relative to the infinite tensor product representation
(2.9). The asserted formula (5.1) now follows precisely as in the proof of
Theorem 5.1 above. This formula immediately implies that | # FCk .

Theorems 5.1 and 5.2 say that there is a one-one correspondence
between states | # FCk and pairs \( } )=Tr(R } ), [Li]n

i=1 consisting of a
state \ on Ak (alias density matrix R) with support projection P (alias
range projection of R), and n operators Li # PAk P satisfying the nor-
malization condition �i Li*RLi=R. We now address the question on when
| # PFCk . The answer is:

Theorem 5.3. Let | # FCk , and let Li # PAk P, \( } )=Tr(R } ) be the
objects associated to | by Theorems 5.1 and 5.2. The following conditions are
equivalent:

(i) | is pure.

(ii) The operator equation

:
i

L i*xLi=x

has a unique positive solution x # Ak with Tr(x)=1 (namely, x=R).
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Remark. We defer a more detailed discussion of the condition (ii) until
the Theorem 6.1, but note that the condition is at least as strong as
irreducibility of the system [Li , Li*] of operators on PCn k

, given that the
equation has a solution.

Proof. The state | is pure if and only if any state . for which there
exists a *>0 with *.�| is a multiple of |, so we must characterize those
.. The starting point is the relation (5.4)

?|(_ k(si*)) 0|=?|(Li*) 0|

which can be written

|((_ k(si)&Li)(_ k(si)&Li)*)=0.

Since *.�|, we obtain

.((_ k(si)&Li)(_ k(si)&Li)*)=0

and thus

?.(_ k(si*)) 0.=?.(Li*) 0. .

If A # Ak , this implies

?.(_ k(si*)) ?.(A) 0.=?.(A) ?.(_ k(si*)) 0.

=?.(ALi*) 0.

and iterating this, we obtain

?.(_ k(s*j1) } } } _ k(s*jm) ?.(A) 0.=?.(AL*jm } } } L*j1) 0. .

Thus

.(_ k(si1
} } } sim1

s*jm2
} } } s*j1) A)=.(Lim1

} } } Li1
AL*j1 } } } L*jm2

)

for all A # Ak , and hence . # FCk , and the Li 's associated to . are the
same as those associated to |, and . is determined by its restriction to Ak .
This restriction is determined by the density matrix x # Ak of .:

.(A)=Tr(xA)

for A # Ak . But the Cuntz relation �i sisi*=1 implies as before the nor-
malization condition

:
i

Li*xLi=x
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and as . is determined by x and [Li]n
i=1 , the equivalence of (i) and (ii)

is clear.

Corollary 5.4. If | # FCk with associated objects R, [Li], then the
face generated by | in the state space of On is finite dimensional, and affinely
isomorphic to the convex set of matrices x # Ak with the properties

x�0, Tr(x)=1, and :
i

L i*xLi=x.

Proof. We showed during the proof of Theorem 5.3 that if . is a state
dominated by a multiple of |, then . # FCk and has the same [Li] as |,
and the density matrix has the properties stated in the corollary. Conver-
sely, if x has the properties in the corollary, then the support of x is con-
tained in P, and if . # FCk is the corresponding state, it follows from finite
dimensionality that there exists a *>0 such that *. | Ak

�| | Ak
. But as the

Li 's are the same for . and |, this inequality extends to On .

6. ASYMPTOTICALLY SHIFT INVARIANT STATES

In this section we specialize the theorems in Section 5 to the case | # Sk .
We already noted in Theorem 4.1 that | is finitely correlated and that
Sk /PFCk ; and we will now study which additional requirements the fact
that | # Sk places on [Li] and \.

Theorem 6.1. Let n, k # N, let \ be a state on Ak /On , and let [Li]n
i=1

be elements in Ak satisfying the normalization condition (5.8). Then the
corresponding state | on On from Theorem 5.2 satisfies

| b _ k=| b _ k+1 (3.2)

if

:
n

i=1

Li Li*=1 on the support of \. (6.1)

Conversely, if | # Sk , then the associated operators Li (which exist by
Theorem 4.1 and Theorem 5.1) satisfy (6.1).

Moreover, let | be a state on On defined by \ and [Li] as in Theorem 5.2,
such that both the normalization conditions (5.8) and (6.1) are satisfied, and
PLi P=Li where P is the support projection of \, so that

:
n

i=1

Li L i*=P and :
n

i=1

Li* RLi=R
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where R is the density matrix of \. Let Pk be the projection from H|

onto Vk . The following conditions are equivalent:

(i) | is pure on On .

(ii) [Li , Li*] acts irreducibly on PCn k
(i.e., Si* | Vk acts irreducibly

on Vk) and Pk # ?|(On)".

(iii) The only positive solutions of the operator equation

:
i

L i*xLi=x

are the positive scalar multiples of R.

(iv) The operator Ak [ Ak : x [ �i L i*xLi has 1 as eigenvalue of
multiplicity one.

(v) The only positive solutions of the operator equation

:
i

LixL i*=x

are the positive scalar multiples of P.

(vi) The operator Ak [ Ak : x [ �i Li xL i* has 1 as eigenvalue of
multiplicity one.

Proof. From (5.1), we get

| b _ k(ei1 j1
� } } } �eim jm

)=\(Lim
} } } Li1

L*j1 } } } L*jm)

and

| b _ k+1(ei1 j1
� } } } )=:

i

\(Lim
} } } Li1

Li L i* L*j1 } } } L*jm).

It is clear from this that (3.2) holds if �I Li L i*=1 on the support of \.
But when the Li operators act irreducibly on PCn k

, then this condition is
also necessary, as follows from the respective formulas for | b _ k and
| b _ k+1.

We next show that the purity of |, or equivalently the irreducibility of
the representation ? from (3.3), is equivalent to irreducibility of the [Li]
system, together with the condition Pk # ?|(On)". But this follows from the
commutant lifting theorem (see [NaFo]) which is part of the conclusion
of [Pop1, Theorem 2.1]; see also [BEGJ] for more details. Specifically, we
need to use the formula (5.11) which relates the Li 's to the Ai 's. When the
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Ai 's are given, and ? is a representation of On which serves as a minimal
dilation, i.e.,

[?(On) Vk]=H? (6.2)

and (5.13), then we first observe by GNS representation techniques that
the representation ? is determined up to unitary equivalence by the system
Ai in the sense that if A$i is another system of operators on a finite dimen-
sional Hilbert space V$k , and there is a unitary U : Vk � V$k such that
A$i U=UAi , then the associated minimal dilations ? and ?$ are unitarily
equivalent representations of On . This is proved in the same way as one
proves that the cyclic representation associated to a state is determined up
to unitary equivalence.

More nontrivially, the commutant lifting theorem states that there is a
canonical isomorphism between the commutant of the operator system
[Ai] and the commutant of the representation ?. In view of the uniqueness
of the minimal dilation, in order to prove this it suffices to prove it for a
particular explicit construction of the minimal dilation which we are now
going to describe. We emphasize that by the commutant of the operator
system [Ai] we mean those operators that commute both with Ai and Ai*
for i=1, ..., n, i.e., the von Neumann algebra generated by those unitaries
U # B(Vk) such that UAi U*=Ai .

Specifically, let the operator system [Ai]n
i=1 on Vk be given. Let A

be the operator-row matrix [A1 , ..., An], and set DA :=(In&A*A)1�2,
and D :=DA(�n

i=1 Vk). (Note that since AA*=1, we have that
&A*A&=&AA*&=1, and hence DA is well defined.) Let F (Cn)=
C�Cn� (Cn�Cn)� } } } be the unrestricted Fock space over Cn, and
define operators %i on F (Cn) by

%i (!1 � } } } �!k)=ei �!1 � } } } �!k

for !j # Cn, where ei is the standard basis. The %i then generate a repre-
sentation of the Toeplitz�Cuntz algebra, [Eva], [BEGJ]. Let 00=
(1�0� (0�0)� } } } ) denote the vacuum vector in F (Cn), and for
i # [1, ..., n] define $i : Vk � D by

$i v=DA(0, ..., 0,

i&1 times

v, 0, ..., 0)

for v # Vk . Define also Ti : D�F (Cn) � D�F (Cn) by Ti=1�%i , and
Di : Vk � D�F (Cn) by

Di v=$i v�00 .
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Define Si on Vk � (D�F (Cn)) by

Si (v+ f )=Ai v� ($iv�00+(1�%i) f )

=Ai v� (Di v+Ti f )

=\Ai

Di

0
Ti+\

v
f + (6.3)

for \v # Vk and \f # D�F (Cn). Then it can be checked (and follows from
[Pop1] and [BEGJ]) that the Si 's satisfy the Cuntz relations,

Si* Si=$ij I and :
n

i=1

Si S i*=I (6.4)

where I denotes the identity operator on Vk �D�F (Cn). Hence they
define a representation ? of On which is easily checked to be a minimal
dilation.

To return to the proof of Theorem 6.1, note that the following version
of the commutant lifting theorem is true. (For a general background on
``commutant lifting'' see e.g., [Pop2] and [DMP].)

Lemma 6.2. Adopt the general assumptions of Theorem 6.1 . If U is a
unitary on Vk commuting with the Ai 's, then U has a unitary extension to H|

commuting with the Si 's. Moreover this extension is unique.

Proof. As Ai U=UAi , U commutes with all Ai*Aj , and hence U�In

commute with (In&A*A)1�2 on Vk�Cn. In particular U�In leave the sub-
space D invariant, and if the restriction is called UD , then

UD(In&A*A)1�2=(In&A*A)1�2 UD

and hence

(UD �I F(Cn)) Di=Di U.

Thus, defining U$ on Vk � (D�F (Cn)) by

U$=U� (UD �I F(Cn))

one has

U$Si=Si U$

so U$ is the sought-after extension.
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To prove uniqueness of the extension, note that any unitary extension of
U must have the form

U$=\U
0

0
W+

on H|=Vk � (D�F (Cn)), where W is unitary in D�F (C). That U$
commute with

Si=\Ai

Di

0
Ti+

means

UAi=Ai U

WDi=Di U

WTi=Ti W.

The first relation is fulfilled since U # [Ai]$. Since the representation i � %i

of the Toeplitz algebra is irreducible, the last relation implies that W has
the form

W=w�1F(Cn)

where w is unitary on D. Now, the second relation means

w$i=$i U.

But this means that w is uniquely defined on the sum of the ranges of the
$i 's by U, and since the sum of these ranges in D, it follows that w is
uniquely determined (in fact we computed earlier that w=UD). Thus the
extension U$ is unique, and Lemma 6.2 is proved.

Let us now continue the proof of Theorem 6.1 by establishing the
equivalence of the two statements

(ii) Pk # ?|(On)" and [Ai] is irreducible

and

(i) ?| is irreducible.

Clearly (i) O (ii), since Ai=Pk Si* Pk=S i* Pk . Conversely, assume (ii)
and let U be a unitary in ?|(On)$. Then UPk=PkU, and UPk # [Ai]$ thus
UPk=Pk U=Pk by irreducibility of [Ai]. But by the uniqueness part of
Lemma 6.2 it follows that U=1. This ends the proof of (i) � (ii).

347ENDOMORPHISMS OF B(H), II



File: 580J 303326 . By:DS . Date:14:04:97 . Time:08:44 LOP8M. V8.0. Page 01:01
Codes: 2470 Signs: 1437 . Length: 45 pic 0 pts, 190 mm

It remains to show that each of the conditions (iii)�(vi) are equivalent
to (i):

(i) � (iii): This follows from Theorem 5.3.

(iii) � (iv): Clearly (iv) O (iii). To prove the converse implication,
assume that

:
i

L i* xLi=x

for some x # Ak . Then

:
i

L i* x*Li=x*

and hence if x1= 1
2 (x+x*), x2=(1�2i)(x&x*) then x1 , x2 are eigen-

elements of eigenvalue 1, x=x1+ix2 and x1=x1* , x2=x2* . To show that
x is a scalar multiple of R, it therefore suffices to assume that x is self-
adjoint. But as PLi P=Li , it follows from x=�i L i* xLi that Px=xP=x,
and hence &x�*$P for some *$>0. But since P is the support projection
of R it follows from finite dimensionality of Ak that P�*"R, where *" is
the inverse of the smallest nonzero eigenvalue of R. Hence

&x�*$P�*$*"R=*R

where *>0. Thus *R+x�0, and since *R+x is an eigenelement of
y [ �i L i* yLi of eigenvalue 1, it follows from (iii) that *R+x is a scalar
multiple of R. Thus x is a scalar multiple of R, and (iv) is valid.

(v) � (vi): This is proved as (iii) � (iv), with P playing the role of R.

To finish the proof of Theorem 6.1 it remains to establish (iv) � (vi),
and this follows from the following lemma.

Lemma 6.3. Let A be a unital C*-algebra with a faithful trace state tr,
let L1 , ..., Ln be elements in A and let R, S be positive invertible elements in
A with

:
n

i=1

Li* RLi=R and :
n

i=1

Li SLi*=S.

For any x # A and any * # C with |*|=1, the following statements are
equivalent:

(i) �n
i=1 Li SxLi*=*Sx.

(ii) �n
i=1 Li*xRLi=*� xR.
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Proof. Let us first consider the case S=1, and define

8(x)= :
n

i=1

Li xL i*.

Then 8 is a completely positive map with 8(1)=1, and hence the
generalized Cauchy�Schwarz inequality is valid

8(x)* 8(x)�8(x*x),

[Br-Rob, pp. 229�230]. We may assume that R is normalized such that
tr(R)=1 and then we may define a state \ on A by

\(x)=tr(Rx).

Then

\(8(x))=:
i

tr(RLi xL i*)=:
i

tr(Li*RLix)=tr(Rx)=\(x).

So \ is 8-invariant, and then

\(8(x)* 8(x))�\(8(x*x))=\(x*x)

by Cauchy�Schwarz. If (?, H, 0) is the GNS-representation associated to
\, it follows that we may define a contraction W on H by

W?(x) 0=?(8(x)) 0.

Let us suppress the notation ? from now on, and show that

W*x0= :
n

i=1

Li*xRLi R&10

for all x # A:

(W*x0 | y0) =(x0 | Wy0) =(x0 | 8( y) 0)=\(x*8(x))

=:
i

tr(Rx*Li yL i*)=:
i

tr(Li*Rx*Liy)

=:
i

tr(R(R&1Li*R) x*Li y)

=:
i

(Li*xRLi R&10 | y0) ,

which shows the desired formula.
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Now, choose a specific x # A such that

8(x)=*x

where |*|=1, and put !=x0. Then W!=8(x) 0=*x0=*!. Now one
computes

&W*!&*� !&2=&W*!&2&|*| 2 &!&2

and as &W*&=&W&�1 and |*|=1 one deduces

W*!=*� !.

Using the explicit formula for W*, one thus has the equivalences

8(x)=*x

�-

Wx0=*x0

�-

W*x0=*� x0

�-

:
n

i=1

Li* xRLi R&10=*� x0

�-

:
n

i=1

Li*xRLi R&1=*� x

�-

:
n

i=1

Li* xRLi=*� xR

where the next to last equivalence follows from faithfulness of tr, and thus
of \. This proves Lemma 6.3 in the case S=1.

For a general S, introduce

li=S&1�2Li S1�2

and

R$=S 1�2RS1�2.
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Then

:
i

li l i*=1

and

:
i

l i*R$li=R$.

Using the lemma with S=1, we thus have the equivalence, for |*|=1;

:
i

li yl i*=*y

�-

:
i

l i*yS1�2RS1�2li=*� yS1�2RS 1�2

or

:
i

Li S1�2yS1�2Li*=*S 1�2yS 1�2

�-

:
i

Li*S &1�2yS1�2RLi=*� S &1�2yS1�2R.

Introducing x=S&1�2yS 1�2, this says

:
i

Li SxL i*=*Sx

�-

:
i

L i*xRLi=*� xR

and Lemma 6.3 is proved.
To prove the final equivalence (iv) � (vi) of Theorem 6.1 we just apply

Lemma 6.3 on A=PAk P and with S=P and *=1, to deduce that the
dimensions of the eigensubspaces of x [ �i L i*xLi and x [ �i Li xL i*
corresponding to eigenvalue 1 must be the same. This ends the proof of
Theorem 6.1.
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Remark. Let 8(x)=�n
i=1 Li xL i* , Wx0=8(x) 0, x # PAk P, be the

operators introduced in the proof of Lemma 6.3. From [Al-HK], we know
that

_(W ) & T=_(8) & T

is a subgroup of T, in the present case a finite group, called the Frobenius
Group G8 .

For the decomposition W=U�V on L2(\), with U unitary, and V
completely nonunitary (see [NaFo]), we have _(U )=G8 and the spec-
trum of V is contained in the interior of [* # C : |*|�1]. This means that
we have the following clustering iff G8=[1] : \m # N, \A # Mnm , \B # On :

lim
r � �

|(A_ m+r(B))=|(A) |(B)

and the convergence is exponential.
In [BJW] we will establish that a state | # Sk will actually define a state

in Pk if and only if (in addition to the properties (i)�(vi) of Theorem 6.1)
the peripheral spectrum of 8 consists of a 1 alone, i.e., G8=[1]. In
general, if G8 rZm , the state | |UHFn has a decomposition into pure states
``over Zm .'' We will illustrate this with an example in Example 6.2, where

| |UHFn=|� |UHFn= :
m

i=1

1
m

. b _ i |UHFn

and . is a pure state on Mn� which is periodic with period m under the
two-sided shift. The fact that | |UHFn=|� |UHFn is of course very special for
this example. We defer the general discussion to [BJW].

The following example is a preamble to the class of examples analyzed
in Section 7.

Example 6.1. We consider the setting in Theorem 5.2 and Corol-
lary 6.1 above. We have n # N, but set k=1. In [BJP, Theorem 8.1] we
gave a concrete example of a state | in P1 , i.e., a state | on On such that
| b _=| b _ 2, and the restriction | | UHFn is pure. The corresponding shift
on B(H) we showed was not conjugate to any shift defined from a product
state on UHFn . Note that the algebra A1 is now just a copy Mn of the n
by n complex matrices and the space V1 from (3.4) has dimension n. Using
Theorems 4.1 and 5.2 we note that the state |, and therefore, the corre-
sponding shift on B(H), may be calculated directly from the elements
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[Li]n
i=1 in A1 &Mn , and a simple calculation, using [BJP, Chapter 8]

yields the formula

Ai=n &1�2 :
n

j=1

(i, j ) eji (6.5)

where

(i, j ) :=exp(2? - &1 ij�n) for \i, j # [1, ..., n], (6.6)

and e (1)
ij denote the usual matrix units for Mn (see (2.12) above). As a

result, we note that there are vectors hi # Cn, &hi&=1 \i, such that

Li=|ei)(hi |,
(6.7)

hi ( j ) :=n &1�2(i, j ).

It is easy to check from (6.5) that

:
n

i=1

Li* Li= :
n

i=1

Li L i*=In

here In is the unit-matrix in Mn . Note also, in this case, that the set
[0, 01 , ..., 0n] is orthogonal, where 0i=Si*0.

For this example, it is also easy to check the minimality condition from
[FNW2, Definition 1.2]. It amounts to the assertion that there is no
proper subalgebra of A1 &Mn which contains the unit, and is invariant
under all the operators

A [ Li ALj* on A1 . (6.8)

Let us discuss this condition a bit further in the present context, where
we have normalization

:
i

L i*RLi=R

and strong asymptotic invariance

:
i

Li L i*=P.

By [FNW2, Theorem 1.5] minimality then means that the only eigenvalue
of the operator x [ �i Li xL i* of absolute value 1 is 1, and the corresponding
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eigenspace is one-dimensional, i.e., the only eigenvector in PAkP of this
operator with eigenvalue of modulus 1 is P. But then a simple argument
(see the proof of Lemma 7.8) shows that the only solutions of

:
i

L i* xLi=x

are the scalar multiples of R, and hence Theorem 5.3 implies that mini-
mality of the [Li] system implies purity of |.

It can be shown that minimality of the [Li]-system on PAk P is equiv-
alent with irreducibility of the corresponding system

[Lim
} } } Li1

L*j1 } } } L*jm
]

m=1, 2, ..., i1 , ..., jl=1, ..., n, on PCn k
, [FNW2].

Example 6.2. Let us end by exhibiting a state in S1 on O3 where [Li]
is irreducible, but not minimal. Here P=1, A1 &M3 and

0 0 1 0 0 0 0 0 0

L1=\0 0 0+ , L2=\1 0 0+ , L3=\0 0 0+ .

0 0 0 0 0 0 0 1 0

Then

:
i

Li L i*=:
i

L i*Li=1

and

Lim
} } } Li1

L*j1 } } } L*jm=$i1 j1
$i2 j2

} } } $im jm
eim&1, jm&1

so the linear span of these consists of all diagonal 3_3 matrices. Hence
[Li] is not minimal, albeit irreducible.

Now, if

x11 x12 x13

x=\x21 x22 x23+x31 x32 x33

one computes that

x22 0 0

:
i

Li*xLi=\ 0 x33 0 + .

0 0 x11
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Thus the operator x � �i L i* xLi has 0 as an eigenvalue of multiplicity 6,
and the three cube roots \m=1, \, \2 of 1 as simple eigenvalues with
corresponding eigenvectors

1 0 0

\0 \2m 0 + .

0 0 \m

In particular, the only possible choice of R is R= 1
31, and it follows from

Theorem 5.3 that the corresponding state | is pure, i.e., | # S1 .
Let us compute the restriction of | to UHF3. If

I=(i1 , i2 , ..., im)

where il # Z3 , put

$(I )={1
0

if ip+1=ip+1 mod 3, p=1, ..., m&1
otherwise.

Then a calculation using Li=ei, i&1 shows that

|(ekl �e (2)
i1 j1

� } } } �e (m+1)
im jm

)=3&1 $(I ) $(J ) $k, i1&1 $l, j1&1 $im jm

=3&1 $(I, J ) $(I )

where

$(I, J)={1
0

if I=J
otherwise.

Thus | restricted to UHF3 is a convex combination of three pure states

|= 1
3 (|1+|2+|3)

where |i is the pure product state on UHF3=}�
m=1 M3 defined by the

infinite product vector

ei �ei+1 �ei+2 � } } } (cyclic notation from Z3)

where [ei]i # Z3
is the canonical basis of C3. In particular, this shows that

if | # S1 , then | | UHF3
is not necessarily pure. Note that in the example

| |UHF3
is actually _-invariant, it is a convex combination of 3 pure states

of period 3 under _, which form an orbit of length 3 under the action of
_* on UHF3*. That the _-invariant state | is not pure then also follows
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from the fact that the peripheral spectrum of x [ �i Li xL i* consists of
more than the point 1, namely the three cube roots of 1.

7. U(n)-ORBITS AND A CROSS SECTION

Let n # N be fixed. From Proposition 3.1, we know that given states |
and |$ on UHFn , both in ��

k=0 Pk , determine conjugate shifts on B(H)
iff there is a g # U(n) such that |$�=|� b {g , where |� and |$� are the
associated translationally invariant pure states on }�

&� Mn . (For more
details on the state |� , see Section 1.) Each | (and |�) is associated with
elements L # L(Cn, Mnk) for some k. We will now show that these elements
L span a Hilbert space which in turn carries a unitary corepresentation of
U(n), g [ Lg, such that L g is associated with the state | b {g for g # U(n).
We thus get the conjugacy classes of shifts on B(H) labeled by orbits for
this unitary corepresentation. The examples we give below are a set of
shifts (for fixed Powers index n) which are labeled by functions

u : `
�

1

Zn � T (7.1)

depending only on a finite number of variables. When k>0, and u is a
nonconstant function, then the corresponding shift :u is not conjugate to
any of the shifts which correspond to a product state on UHFn , and which
were considered in [Lac1], [BJP].

We will show in Theorem 7.5 that generically our u-function examples
form a cross section for the U(n)-orbits in the L space in the sense that
each U(n)-orbit intersects the set of u-function examples in at most a
manifold homeomorphic to a disjoint union of n ! copies of Tn: that is,
when the conjugacy class is given then there is only at most this manifold
of functions u which represent the shifts from the conjugacy class.

Now to details: Let k, n # N, and let

u : Zn_ } } } _Zn

(k+1) times

� T

be a given function. Let X = >�
1 Zn with Haar measure, and let

H=L2(X ) be the corresponding Hilbert space. Then in [BJP] we have
considered the ? # Rep(On , H) given by

(?(si) !)(x1 , x2 , ...)=n 1�2u(x1 , ..., xk+1) !x1 i!(x2 , x3 , ...) (7.2)

(?(si*) !)(x1 , x2 , ...)=n &1�2u� (i, x1 , ..., xk) !(i, x1 , x2 , ...) (7.3)
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Now, let | be the state corresponding to the vector 0=1 # L2(X ). A cal-
culation, using the formula for ?(si*), now shows that

|(e (1)
i1 j1

�e (2)
i2 j2

� } } } �e (m)
im jm

)=|(si1
} } } sim

s*jm } } } s*jm)

=(S*im } } } S*i1 0 | S*jm } } } S*j1 0)

=n &k&mFk, m(i1 , ..., im ; j1 , ..., jm)

where

Fk, m(i1 , ..., im ; j1 , ..., jm)= :
x1, ..., xk

`k, m(i, x) `k, m( j, x) (7.4)

and

`k, m(i, x)=`k, m(i1 , ..., im , x1 , ..., xk)

=u(im , x1 , ..., xk) u(im&1 , im , x1 , ..., xk&1)

_ } } } u(im&k , ..., im , x1) u(im&k&1 , ..., im) } } } u(i1 , ..., ik+1).

This means that `k, m is given by the expression above if m�k+2, but if
m<k+1 the product defining `k, m just truncates after the factor

u(i1 , ..., im , x1 , ..., xk+1&m).

Using

_(e (1)
i1 j1

� } } } �e (m)
im jm

)= :
n

i=1

e (1)
ii �e (2)

i1 j1
� } } } �e (m+1)

im jm
,

and the formulae above, one now calculates (for m>k+1)

| b _(e (1)
i1 j1

� } } } �e (m)
im jm

)

=
1
n

:
n

i=1

u(i, i1 , ..., ik) u(i, j1 , ..., jk) |(e (1)
i1 j1

� } } } �e (m)
im jm

).

Thus if i1= j1 , ..., ik= jk , then | b _ is equal to |, i.e.,

| b _ |Ac
k
=_ |Ac

k
,

which amounts to the invariance | b _ k+1=| b _ k. To show | # Pk , we
must check that | is pure on UHFn .

We denote the state defined by 0 on On by |� when it becomes important
to distinguish it from the corresponding state | on UHFn .
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Proposition 7.1. The restricted state |� |UHFn is pure on UHFn .
The proof will be based on a lemma (below) and some calculations

which we proceed to describe.

Remark. It follows from [BJP, Lemma 5.2] that

:|(A) := :
n

i=1

?|� (si) A?|� (si)*

is a shift on B(H).

Proof. Set Si :=?|� (si) and 0i1 } } } ik
:=S*ik } } } S*i1 0. We then have

0i1 i2 } } } ik
(x1 , x2 , ...)=n &k�2`(i1 , i2 , ..., ik , x1 , x2 , ...)

and therefore

Sj*0i1, ..., ik
=n &1�2 u(i1 , i2 , ..., ik , j ) 0i2, ..., ik, j .

Let [Lj]n
j=1 be the associated elements in Ak &Mnk . Let ei1 } } } ik

:=
e(1)

i1
� } } } �e (k)

ik
denote the canonical basis vectors in Cnk

=Cn� } } } �Cn

k

.

The operators Lj may be expanded in the vectors ei1 } } } ik
as follows: Let

h(i1 } } } ik&1)
j # Cnk

be given by

h (i1 } } } ik&1)
j (:1 , ..., :k)=(e:1 } } } :k

| h (i1 } } } ik&1)
j ) Cn k

=$i1:2
$i2:3

} } } $ik&1:k
n &1�2u(:1 , i1 , ..., ik&1 , j ).

Then a small calculation, using the defining relation

0(Lix)=S j*0(x)

for Li , where x=x1 � } } } �xk # Cn k
, and the expansion

0(x)= :
i1 } } } ik

x� i1
1 } } } x� ik

k 0i1 } } } ik

and the formula for S j*0i1, ..., ik
, above, shows that

Lj= :
i1 } } } ik&1

|ei1 } } } ik&1 j)(h (i1 } } } ik&1)
j | (7.5)

where | )( | is the Dirac notation.
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In this example, the general formulas from Theorem 6.1 can be verified
directly:

Lemma 7.2. Let (Lj) and (hi1 } } } ik&1
j ) be as above and define

R= :
i1 } } } ik

|hi1 } } } ik&1
ik

)(hi1 } } } ik&1
ik

|

=n &1 :
i1 } } } ik

:
:1

:
;1

u(:1 , i1 , ..., ik) u� (;1 , i1 , ..., ik)

_e (1)
:1 ;1

�e (2)
i1 i1

� } } } �e (k)
ik&1 ik&1

.

We have

:
n

j=1

Lj Lj*=1

and

:
n

j=1

Lj*RLj=R

when 1 is the identity element in Ak &Mn k .

Proof. The adjoints of Lj # Ak are

Lj*= :
i1 } } } ik&1

|h (i1 } } } ik&1)
j )(ei1 } } } ik&1 j |

and it follows that

:
n

j=1

Lj L j*=:
j

( |ei1 } } } ik&1 j)(h (i } } } )
j | )( |h (i $ } } } )

j )(ei $1 } } } j | )

=:
i

:
i $

:
j

(hi1 } } }
j | hi1$ } } }

j ) $i1i $1
} } } $ik&1 i $k&1

e (1)
i1 i $1

� } } } �e (k&1)
ik&1 i $k&1

�e (k)
jj

=n &1 :
:1 i1 } } } ik&1 j

|u(:1 , i1 , ..., ik&1 , j )| 2 e (1)
i1 i1

� } } } �e (k&1)
ik&1 ik&1

�e (k)
jj

= :
i1 } } } ik&1 j

e (1)
i1 i1

� } } } �e (k)
jj =I.
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The two systems Lj and Lj* represent shift operators as follows:

Lj |i1 } } } ik) =n &1�2u(i1 , ..., ik , j) |i2 } } } ik j) (7.6)

and

Lj* |i1 } } } ik)=n &1�2 :
p

u� ( p, i1 , ..., ik&1 , ik) $ik , j | pi1 } } } ik&1) (7.7)

The density matrix R # Ak ,

R= :
i1 } } } ik

|h (i1 } } } ik&1)
ik

)(h (i1 } } } ik&1)
ik

|

then satisfies

:
j

L j*RLj=:
j

:
i1 } } } ik

:
:

:
;

( |h (:1 } } } :k&1)
j )(e:1 } } } :k&1 j | )

_( |h (i1 } } } ik&1)
ik

)(h (i1 } } } ik&1)
ik

| )( |e;1 } } } ;k&1 j)(h (;1 } } } ;k&1)
j | )

=: } } } : $:1 ;1
} } } $:k&1 ;k&1

$j:k
$j;k

h (i1 } } } ik&1
j )(:) h(i1 } } } ik&1)(;)

_|h:1 } } } :k&1
j )(h;1 } } } ;k&1

j |

= :
:1 } } } :k&1

:
j

|h:1 } } } :k&1
j )(h:1 } } } :k&1

j |=R.

It follows from Theorem 5.2 that the system (Lj , R) determines a state
| on On whose restriction to UHFn satisfies (5.2).

To finish the proof of Proposition 7.1, we need only check that the
representation (7.2)�(7.3) is irreducible on H=L2(X ) when restricted to
UHFn .

Let T # B(H) and assume T?(a)=?(a) T, \a # UHFn . Recall UHFn

contains the canonical m.a.s.a. generated by

e (1)
i1 i1

� } } } e (m)
im im

tsi1
} } } sim

s*im } } } s*i1

and the representation yields

?(si1
} } } sim

s*im } } } s*i1) !(x1 , x2 , ...)

=$i1 x1
$i2 x2

} } } $im xm
!(x1 , x2 , ...), \! # L2(X ).
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It follows that there exists f # L�(X ) such that T=mf , i.e., that T is a
multiplication operator on L2(X ), ! [ f!. But T also commutes with the
other operators in UHFn , and these act as:

?(si1
} } } sim

s*jm } } } s*j1 ) !(x1 , x2 , ...)

=?(e (1)
i1 j1

� } } } �e (m)
im jm

) !(x1 , x2 , ...)

=u(x1 , ...) u(x2 , ...) } } } u(xm , ...) u� ( jm , xm+1 , ...) } } }

_u� ( j1 , ..., jm , xm+1 , ...) $i1 x1
} } } $im xm

!( j1 , ..., jm , xm+1, ...)

=Fk, m(i, j, x) $i1 x1
} } } $im xm

!( j1 , ..., jm , xm+1 , ...)

(see (7.4) above).
Since T is a multiplication operator, it also commutes with

! [ $i1 x1
} } } $im xm

!( j1 , ..., jm , xm+1, ...).

This is because ?(si1
} } } sim

s*jm } } } s*j1) is the product of a unitary multiplica-
tion operator and the latter operator, and T commutes with the former,
and thus with the latter. A little computation then shows that the function
f in T=mf must satisfy

f (i1 , ..., im , xm+1 , ...)= f ( j1 , ..., jm , xm+1 , ...)

for all i, j multi-indices x # X, and therefore be constant on X. It follows
that the commutant of ?(UHFn) on L2(X ) is one dimensional, which is the
asserted irreducibility. This ends the proof of Proposition 7.1.

We showed that when u is given as in (7.8) and | is the corresponding
state, then ?| |UHFn is irreducible. Thus | defines a shift on B(H), and by
[BJP, Lemma 5.4] two shifts defined from | and |$ coincide iff there exists
g # U(n) such that |$=| b {g .

In conclusion, there is associated with every k, n # N and function

u : Zn_ } } } _Zn

(k+1) times

� T (7.8)

the following complementary data:

(i) |u # Pk .

(ii) ?|u # RepS(On, H)=[? # Rep(On , H), |?|UHFn is irreducible].

(iii) :u(A)=� ?|u(si) A?|u(si)* for all A # B(H), a shift on B(H).

(iv) Lu # L(Cn, Mn k), Ru # Mn k .
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For (iv), note that a system [Lj] # Mnk determines an L # L(Cn, Mnk) by
setting for y # Cn

L( y) := :
n

j=1

yj Lj .

Definition 7.1. We say that an element | in Pk is diagonal if it can be
represented by a function u as in (7.8).

Specifically, there is a function

u : Zn_ } } } _Zn

k+1 times

� T

and a basis for Cn such that, in the basis, L is represented as follows
L( | j ) )=Lj ( j # Zn) and

Lj |i1 } } } ik) =n &1�2u(i1 , ..., ik , j)_|i2 i3 } } } ik j)

and

R |i1 } } } ik)=n &1 :
:

u(:, i2 , ..., ik) u� (i1 , i2 , ..., ik) |:i1 } } } ik&1).

We showed in Proposition 3.1 that two diagonal (or arbitrary) states
|, |$ # ��

k=0 Pk determine conjugate shifts iff there is a g # U(n) such that
|$�=|� b {g . This means that conjugacy classes of shifts correspond to
U(n)-orbits with the group U(n) acting on the data in any one of the forms
(i) or (iv).

We now describe the diagonal elements in ��
0 Pk as a ``cross section'' for

the associated orbit space.

Theorem 7.3. Consider two diagonal elements in ��
0 Pk (relative to the

same basis in Cn) corresponding to functions u and u$. Then the corre-
sponding shifts are conjugate iff there exists a k such that u and u$ are both
functions of k+1 variables:

Zn_ } } } _Zn

k+1 times

� T
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and there exists a g # U(n) such that

u$(i0 , i1 , i2 , ..., ik) $i1 j1
$i2 j2

} } } $ik jk

=:
j0

:
p1

} } } :
pk

g( j0 , i0) g( p1, i1) g( p1 , j1) g( p2 , i2) g( p2 , j2) } } }

_g( pk , ik) g( pk , jk)_u( j0 , p1 , p2 , ..., pk)

for all (i0 , ..., ik) # Zn_ } } } _Zn

k+1

.

For the proof we need the following result which relates the state | and
the corresponding tensor L, and the transformation rule for the U(n)-coac-
tion.

Lemma 7.4. If a state | # Sk is given by the tensor L # L(Cn, Mn k) and
g # U(n), then the elements

L g(x) :=( g&1� } } } �g&1)

k

L( gx)( g� } } } �g) \x # Cn,

(7.10)

R g :=( g&1� } } } �g&1) R( g� } } } �g)

determines the state | b {g .

Proof. Let \ :=| |Mn k where Mnk is viewed as the subalgebra

Ak &Mnk /UHFn /On

and let Adk(g )=g� } } } �g

k

} g&1� } } } �g&1

k

. Then it follows that

(| b {g) | Mn k=\ b Adk(g).

We have for \x, y # Cn,

\(L(x) L( y)*)=: : xi y� j \(Li L j*)

=: : xi y� j (| b _ k)(eij)

=(| b _ k)(sx sy*)=| b _ k(exy)=|�(exy).

363ENDOMORPHISMS OF B(H), II



File: 580J 303342 . By:DS . Date:14:04:97 . Time:08:53 LOP8M. V8.0. Page 01:01
Codes: 2659 Signs: 1043 . Length: 45 pic 0 pts, 190 mm

If g # U(n), and Lg is as in (7.10), then

(\ b Adk(g))(L g(x) L g( y)*)=\(Adk(g)(Adk(g&1) L(gx)Adk(g&1) L(gy)*))

=\(L(gx) L(gy)*)

=(| b _ k)(sgx s*gy)

=(| b _ k)({g(sx sy*))

=(| b {g) b _ k(exy),

and this formula shows that | b {g is determined by the tensor L g as
specified.

The formula for R g is computed in a similar fashion.

Remark. We say that some L as in the lemma is in reduced form if
L(x) # PMnk P, \x # Cn, where P is the support projection for \ :=|| Mn k . If
L and L$ are in reduced form and | and |$ are the respective states, then
(for g # U(n)) we have L g=L$ iff |� b {g=|$� . When u#1 the elements
[L( y)]y # Cn /Mnk are represented on Cn k

=Cn� } } } �Cn

k

as follows, see

(2.10)�(2.11) above: Let w :=n&1�2(1, ..., 1)

n

# Cn. Then

L( y)(x1� } } } �xk)=(w | x1) x2� } } } �xk� y

and

L( y)* (x1 � } } } �xk)=( y | xk) w�x1 � } } } �xk&1.

When u : Zn_ } } } _Zn

k+1

� T is introduced, the formulas hold with the

following modification: The vector w=(wi)
n
i=1 becomes

wi :=n&1�2u(i, ...
k

)=: u0(i, ...)

and

u(i, i1 , i2 , ..., ik)

is viewed as a diagonal matrix for each (i1 , ..., ik)

Lu( y)(x1 � } } } �xk)=(u� 0( } } } ) | x1) x2 � } } } �xk � y
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with the variables } } }
1 to k

acting on the tensor x2� } } } �xk � y. Similarly

u(i0 , i1 , ..., ik) can be interpreted as the corresponding dual operator for
Lu( y)*.

Proof of Theorem 7.3. Elements in Cn will be denoted y, x1, ..., xk.
A basis [ |i )]n

i=1 for Cn will be fixed such that

x&=:
i

x&
i |i) , &=1, ..., k

with summation indices i ranging over Zn . If

u : Zn_ } } } _Zn

k+1

� T,

the contracted function: Zn_ } } } _Zn

k times

� C is defined by

(x� 1 | u( } , i2 , ..., ik+1)) :=:
i1

x1
i1

u(i1 , i2 , ..., ik+1).

Functions f on Zn will be identified with diagonal matrices

\
f (1)

0

. . .
0

f (n)+ , and similarly functions on Zn_ } } } _Zn

k

will be iden-

tified with diagonal elements in Mnk=Mn� } } } �Mn

k

. We then have

L( y)(x1 � } } } �xk)=:
j

:
i1

} } } :
ik

yjx1
i1

} } } xk
ik

_Lj |i1 } } } ik)

=n &1�2 :
j

:
i1

} } } :
ik

yj x1
i1

} } } xk
ik

_u(i1 , ..., ik , j) |i2 , ..., ik , j)

=n &1�2 (x� 1| u( } , . . .
k

)) |x2� } } } �xk�y) .
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Hence, for g # U(n), we have

L g(y ) |x1 � } } } �xk) =(g&1 � } } } �g&1)

k

L(gy) |gx1� } } } �gxk)

=n&1�2(g&1� } } } �g&1)

k

( gx1| u( } , ...
k

))

_(|gx2� } } } �gxk �gy) )

=n&1�2(gx1| Adk(g&1) u ( } , ...
k

))

_(|x2� } } } �xk �y) )

=n&1�2(x� 1| Adk(g&1) ug� ( } , ...
k

)

_( |x2� } } } �xk �y) )

where

ug� ( } , ...
k

)=:
j

g( j, i) u( j, ...
k

).

Recalling the formula

f1 0

Ad(g&1) \ . . . +=\ :
n

p=1

g( p, i) g( p, j) fp+ , (7.11)

0 fn

the desired formula (7.9) in the theorem follows.

Remark. When u is given as in (7.8), then it is only for a very special
subset in U(n) that | b {g is diagonal in the same basis.

Let k, n # N be fixed. The transformation rule from the expression on the
right hand side in (7.9) holds for general diagonal elements in Pk . The U(n)
coaction refers to the manifold L of all tensors subject to the conditions
in Theorem 6.1 above. We may define an inner product for elements L and
L$ in L as

(L | L$)=traceMn k \ :
n

j=1

Lj*L j$+
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and Lemma 7.4 then implies that the U(n)-coaction L [ L g extends to a
unitary coaction on the linearization, i.e., we have

(L g | L$ g) =(L | L$) for \L, L$ # L.

By a slight abuse of notation, we will use Tn_Sn to denote the subgroup
of U(n) with the property that g # Tn_Sn iff each row and each column of
g has only one nonzero element, and this element is then necessarily a
phase factor. Thus Tn_Sn identifies with the semidirect product of the
n-torus Tn by the permutation group Sn of n elements, acting on Tn by
permuting coordinates.

Theorem 7.5. For any u # C(Zk+1
n , T), the U(n)-orbit [L g

u | g # U(n)] in
Ln, k intersects the diagonal elements for g # Tn_Sn, and if g=(\1 , ..., \n)_
_ # Tn_Sn , we have

u g(i0 , i1 , ..., ik)=\_(i0) u(_(i0), _(i1), ..., _(ik)).

Conversely, for a dense open subset of C(Zk+1
n , T), the U(n)-orbit in Ln, k

intersects the diagonal elements only for g # Tn_Sn.

Remark 1. For a general u # C(Zk+1
n , T) the intersection could be

larger. For example, if u(x0 , x1 , ..., xk)=1 for all x0 , x1 , ..., xk , then the set
of g such that L g

u is diagonal is the set of all g # U(n) transforming

\
1
1
b
1+ into a vector of the form \

\1

b
\1
+

where |\i |=1 for i=1, ..., n.

Remark 2. For the dense open subset of C(Zk+1
n , T) we shall take the

set of u with the property that for any (i1 , ..., ik) # Zk
n there exists a pair

i, j # Zn such that

u(i, i1 , ..., ik){u( j, i1 , ..., ik),

but if k�2 this is not the optimal choice.

Proof. Fix the function u=u(x0 , ..., xk) and assume that g # U(n) is an
element such that |u b {g is diagonal. This means that the u$ defined by
formula (7.9) is a function of k+1 variables such that

|u$(x0 , ..., xk)|=1

for all x0 , ..., xk # Zn . Now, identify u with the finite sequence

U� (i0)=[u(i0 , i1 , ..., ik) $i1 j1
} } } $ik jk

]
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of n k_n k unitary diagonal matrices, i.e., i0 labels the n matrices, and
(i1 , ..., ik , ; j1 } } } jk) labels the matrix entries. Formula (7.9) in conjunction
with formula (7.11) then says that g # U(n) is such that |u b {g is diagonal
if and only if

U� $(i0)=:
j0

g( j0 , i0)(g&1� } } } �g&1)

k factors

U� ( j0)(g� } } } �g)

k factors

is a new family of n k_n k unitary diagonal matrices.
From this formula we first see that if g # Tn_Sn then U� $(i0) is diagonal

since U� ( j0) is so, and the first part of the theorem follows. Next note that
g=(\0 , ..., \n)__ corresponds to the matrix

g(i, j)=\i $i, _( j)

in U(n), and, inserting this into the formula (7.9), the formula for u g follows.
Now, multiply (7.12) by g(k0 , i0) and sum over i0 to obtain

:
i0

g(k0 , i0) U� $(i0)=(g&1� } } } �g&1)

k factors

U� (k0)(g� } } } �g)

k factors

for all k0 # Zn . But by Stone-Weierstrass's theorem, if u has the property in
Remark 2, the V-algebra generated by U� (1), ..., U� (n) is the V-algebra D of
all diagonal operators in Mn k . Since U� $(1), ..., U� $(n) are assumed to be
diagonal, it thus follows from the relation above that

(g&1) �kDg �k�D.

From a standard result of Weyl, [Hel], it follows that g �k # Tnk
_Snk , and

hence g # Tn_Sn . This ends the proof of Theorem 7.5.

Theorem 7.6. Let k, n # N be given, and let

u : Zn_ } } } _Zn

k+1

� T

be a function and let the system Lj=Lu
j depending on u be given as in (7.6).

Then the elements

1, Li L j*, ..., Lip
} } } Li1

L*j1 } } } L*jp , ...

span all of Mnk , i.e., the system is minimal in the sense of [FNW2].
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Proof. The result follows from a brute force calculation, or from the
clustering for |� , which in turn follows from (7.13), below, and [FNW2,
Theorem 1.5]. When applied to the present example, [FNW2] yields the
asserted minimality property for [Li]n

i=1 if we check that, for \p # N, \A #
Ap &Mn p and \B # UHFn /On , limj � � |�(A_ p+ j (B))=|�(A) |�(B).
Recall, since |=|u satisfies |�=| b _ k, the desired clustering property is
implied by the following:

Lemma 7.7. Let u : X � T be given and suppose it is a function of k+1
variables, and let |=|u be the corresponding state. Then for all p # N, all
A # Ap , and all B # UHFn /On , we have

|(A_ p+2k(B))=|(A)(| b _ k)(B). (7.13)

Proof. Let m>2k. Then

|(e (1)
i1 j1

� } } } �e (m)
im jm

)=n &m |
X

`
�

h=0

u(_ h(i, x)) u(_ h( j, x)) d+(x) (7.14)

where d+(x) is the Haar measure on X which here involves only a finite
number of summations, and where u is viewed as a function on X=>�

1 Zn

but depending only on the first k+1 variables;

(i, x) :=(i1 , i2 , ..., im , x1 , x2 , ...) # X ;

and

_( y1 , y2 , ...) :=( y2 , y3 , ...) for \y # X.

The ``infinite'' product is really finite, i.e., the last factors u(_ h(i, x)){1 are

u(im&k+1 , ..., im , x1) } } } u(im , x1 , x2 , ..., xk).

For the evaluation of the left hand side in (7.13) we may restrict to terms
e(1)

i1 j1
� } } } �e (m)

im jm
with m>2k, and the subindices of the form

(i1 } } } ip rp+1 } } } r2p+2ki2p+2k+1 } } } im)

and

( j1 } } } jp rp+1 } } } r2p+2k j2p+2k+1 } } } jm).

We take A=e (1)
i1 j1

� } } } �e ( p)
ip jp

and similarly for B. Then the result follows
where the factors are written out in |(A_ p+2k(B)) and terms of the
form u(rq } } } rq+k) u� (rq } } } rq+k) are cancelled. (Recall u maps into T so
u(x) u� (x)=|u(x)| 2=1 for \x # X.)
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8. DENSITY OF STRONGLY ASYMPTOTICALLY SHIFT
INVARIANT STATES IN THE ASYMPTOTICALLY

SHIFT INVARIANT STATES

Let us use the terminology that a pure state | of UHFn is asymptotically
shift invariant if it is in P, i.e., if

lim
m � �

&(| b _&|) |Ac
m
&=0

or
lim

m � �
&| b _ m+1&| b _ m&=0.

We say that | is strongly asymptotically shift invariant if there is a k # N
such that | # Pk , i.e.,

| b _ k+1=| b _ k.

We will now address the question how large �k Pk is in P. The answer is
that it is less than norm dense:

Proposition 8.1. There is a state | # P such that if . # �k Pk , then

&(|&.) |Ac
m
&=1

for all m # N.

Proof. Let |m be a sequence of pure states on Mn such that

:
�

m=1

&|m&|m+1&2<+�

but [|m | m�M] is dense in the pure state space of Mn for all M # N
(so in particular ��

m=1 &|m&|m+1&=+�). (Such a sequence may
be constructed as follows: Let .m be any dense sequence in the
pure state space of Mn . The .m are vector states given by unit vectors
in Cn, and we may assume (!m , !m+1)�0 where !m is a unit vector
corresponding to .m . By rotating !m into !m+1 through a sequence of m2

equal angles, we obtain m2+1 pure states .m, 0=.m , .m, 2 , ..., .m, m2=
.m+1 such that &.m, k&.m, k+1&�?�m2 for k=0, ..., m2&1, and thus
�m2&1

k=0 &.m, k & .m, k+1&2 � m2(?�m2)2 = ?2�m2. Now let |m be the
sequence .1 , .2, 0 , ..., .2, 4=.3, 0 , ..., .3, 9=.4, 0 , ... . Then [|m] is dense,
and �m &|m&|m+1&2��m ?2�m2<+�.)

Let | be the corresponding infinite product state on UHFn=
}�

m=1 Mn ,

|= }
�

m=1

|m .

By [BJP, Example 5.5], | # P. Let =>0 and choose . # Pk such that
&(.&|) |Al

c&�= for some l # N. But this would imply &|m1
&|m2

&�2= for
all m1 , m2�l, and as [|m | m�M] is dense, it follows that 2=�2. The
proposition follows.
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Remark. By a simple argument, one may replace 1 by 2 in Propo-
sition 8.1.
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Note added in proof. Since the completion of the present paper, the following related
preprints have appeared:

[BJ(a)] O. Bratteli and P. E. T. Jorgensen, Iterated function systems and permutation
representations of the Cuntz algebra, Oslo preprint, UiO Pure Mathematics, No. 12,
June 1996.

[BJ(b)] O. Bratteli and P. E. T. Jorgensen, Isometries, shifts, Cuntz algebras and multi-
resolution wavelet analysis of scale N, Oslo preprint, UiO Pure Mathematics,
No. 25, November 1996.

[BJ(c)] O. Bratteli and P. E. T. Jorgensen, A connection between multiresolution wavelet
theory of scale N and representations of the Cuntz algebra ON , preprint, November
1996; to appear in ``Proceedings of the Rome Conference on Operator Algebras and
Quantum Field Theory'' (J. Roberts, Ed.).

[J(a)] P. E. T. Jorgensen, A duality for endomorphisms of von Neumann algebras, J. Math.
Phys. 37 (1996), 1521�1538.

[J(b)] P. E. T. Jorgensen, Harmonic analysis of fractal processes via C*-algebras, Math.
Nachr., to appear.

[DP] K. R. Davidson and D. R. Pitts, Free semigroup algebras, preprint, 1996.

These papers continue the study of classes of representations described by (7.2)�(7.3) in the
present paper. In [DP], the representations go under the name ``atomic representations,'' and
they are studied (independently) and classified up to equivalence of irreducibles, but the
framework is different. The papers [BJ(a)�(c), J(a), J(b)] are concerned with decomposition
series of representations of ON , a geometric model for estimating multiplicities, and applica-
tions to the theory of tilings (with fractal boundaries) and wavelet multiresolutions.
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