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Recrystallization inhibition in ice due to ice binding protein activity
detected by nuclear magnetic resonance
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A B S T R A C T

Liquid water present in polycrystalline ice at the interstices between ice crystals results in a network of
liquid-filled veins and nodes within a solid ice matrix, making ice a low porosity porous media. Here we
used nuclear magnetic resonance (NMR) relaxation and time dependent self-diffusion measurements
developed for porous media applications to monitor three dimensional changes to the vein network in
ices with and without a bacterial ice binding protein (IBP). Shorter effective diffusion distances were
detected as a function of increased irreversible ice binding activity, indicating inhibition of ice
recrystallization and persistent small crystal structure. The modification of ice structure by the IBP
demonstrates a potential mechanism for the microorganism to enhance survivability in ice. These results
highlight the potential of NMR techniques in evaluation of the impact of IBPs on vein network structure
and recrystallization processes; information useful for continued development of ice-interacting
proteins for biotechnology applications.
ã 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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1. Introduction

Proteins with ice-interacting activity have been identified in
fish, cold hardy plants and insects [1–3], and certain cold-adapted
bacteria, diatoms, and algae [4]. The properties of ice-interacting
proteins are useful in many areas of biotechnology, including cell
line cryopreservation [5] and food manufacturing [6]. Understand-
ing their affect on ice and recrystallization processes is critical for
further development in both applied and basic applications. The
cold tolerant bacterium 3519-10 (Flavobacteriaceae family),
isolated from basal ice recovered from the Vostok 5G ice core
[7], secretes an extracellular ice binding protein (IBP) that binds to
the ice crystal prism face and inhibits growth along the a-axis [8].
The 3519-10 IBP has been shown to increase bacterial viability
during freeze and thaw cycling [9]; however, its mechanism of
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action and impact on the internal pore structure of unfrozen water
in ice is not well understood.

Within polycrystalline ice, liquid unfrozen water is located at
interfaces between two or three hexagonal ice crystals due to the
presence of impurities [10,11]. At triple grain junctions, veins form
that may be approximated as cylinders with diameters, dveinwhich
can be related to ice crystal diameters d via liquid water fraction
f ¼ 6p

ffiffiffi

2
p

1=2dveinð Þ=dð Þ2 [12]. Where two grains meet, a planar
junction of thickness d plane forms on the octahedra faces. As ice
ages, it undergoes a thermodynamically driven coarsening, termed
recrystallization, whereby larger ice crystals grow at the expense of
smaller ones, altering vein dimensions [13,14]. Ice is therefore a
complex and dynamic low porosity porous media, where ice
crystals compose the solid matrix and liquid veins the pore space.
With non-invasive and non-destructive nuclear magnetic reso-
nance (NMR) techniques, the vein network can be directly
characterized. With respect to biotechnology applications, Kirse-
bom et al. have shown the utility of NMR to monitor the
composition of the unfrozen water phase during the formation
of cryogels in situ [15,16]. We utilize NMR magnetic relaxation time
and molecular diffusion measurements, which are proven robust
in probing pore structure in porous media [17] and sensitive to vein
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dimensions [18], to provide a novel method for monitoring ice
structure and its evolution with time. This provides a new
analytical method for quantitative characterization of ice structure
during biotechnological freezing processes.

Here we have applied advanced NMR techniques to ice samples,
establishing them as methods to physically characterize ice vein
network structure. These techniques were then used to examine
the impact of IBP on bulk liquid vein network structure in order to
improve our understanding of the impact of this ice-interacting
protein on recrystallization processes. Our findings have implica-
tions for geophysical modelling of frozen systems [4] and in
development of IBPs for biotechnology applications [6]. Also, with
advances in design of portable NMR systems including Earth's field
systems [19], low field permanent magnets [20] and surface NMR
[21], our research highlights the potential for using these methods
in biotechnology process monitoring.

2. Materials and methods

2.1. Extracellular protein (ECP) and rIBP preparation

Extra cellular proteins (ECP) and the recombinant IBP (rIBP)
from isolate V3519 for use in the ice experiments were prepared as
follows. For ECP, the V3519-10 bacteria were grown in R2 liquid
media at 4 �C until the culture reached an optical density OD595 of
0.22 at which time it was centrifuged at 5000 g for 30 min at 4 �C to
pellet the cells and recover the supernatant. The supernatant
containing the IBP was filtered using Amicon Ultra-15 centrifugal
filters with a nominal threshold of 30 kDa to obtain a crude extract
of V3519-10's extracellular proteins. Protein concentrations were
determined with the Bradford assay using the Coomassie Plus
reagent. For the rIBP, the cDNA encoding IBP without the signal
peptide but with a 6� His tag added to the C-terminus was cloned
into the pET-21a expression vector (Novagen) and transformed
into BL21 cells. The BL 21 cells were cultured in LB medium at 37 �C
to an optical density of 0.8, when isopropyl b-D-1-thiogalactopyr-
anoside was added to give a final concentration of 1 mM and the
temperature was reduced to 18 �C. Proteins were extracted from
the cell culture after incubating overnight and the rIBP was
purified as described previously [22]. The purified protein size
(�52 kDa) was determined via sodium dodecyl sulfate polyacryl-
amide gel electrophoresis (SDS-PAGE) and its concentration was
measured using spectrophotometry (NanoDrop ND-1000).

2.2. Ice sample preparation

Five ice samples were prepared. All samples contained a 7 g/l
NaCl solution, which is a salt concentration comparable with
measurements in Antarctic basal ice [23]. IBPs were added to three
samples to monitor concentration effects and the difference
between naturally secreted extracellular protein (ECP) and purified
recombinant IBP (rIBP). The ice sample containing a crude
preparation of the IBP consisted of 7 g/l NaCl solution with
10 mg/ml of 3519-10 ECP (>30 kDa with an unknown IBP fraction)
and will hereafter be referred to as ice with ECP. The two samples
containing 7 g/l NaCl and 2 and 4 mg/ml recombinant IBP will be
referred to as ice with rIBP(2) and ice with rIBP(4) respectively.
Two control samples were also prepared: (i) the ice control, a 7 g/l
NaCl solution without protein and (ii) ice with bovine serum
albumin (BSA), a 7 g/l NaCl solution with 10 mg/ml BSA. The second
control was used to examine ice binding activity from colligative
effects due to the presence of a similar macromolecule, since BSA is
of similar size (�64 kDa) to the 3519-10 IBP (�52 kDa), but does not
exhibit ice binding activity. All samples were prepared by filling
13 mm OD (11.7 mm ID) standard NMR tubes with solution, placing
them in a polystyrene sample holder, insulated on the sides and
bottom, and freezing them in a Revco ULT-750 chest freezer at
�13.5 �C. To ensure hexagonal ice crystal structure consistent
between sample types, multiple samples of each concentration
were frozen and inspected by eye and those with cloudiness and/or
air bubbles which would indicate supercooling and subsequent
rapid freezing were discarded. Samples were transferred from the
chest freezer in a cooler filled with gel freezer packs stored in the
same freezer. Transfer time of the ice from the cooler to being in
the RF coil with cold nitrogen gas flow was minimized to �3 min.
The MR magnet electronics were always pre-cooled at the set
temperature before sample insertion and the set temperature
equilibrized within �5 min. The samples were allowed to
equilibrate at the set temperature for 45 min before measurements
were performed. Samples were analysed via NMR at multiple time
points over 1800 h, and stored in the freezer at �13.5 �C in between
NMR measurements.

2.3. NMR methods

NMR measurements were performed on a Bruker DRX250
spectrometer with a 5.8 T superconducting vertical wide bore
magnet and Micro2.5 gradient imaging probe capable of producing
maximum gradients of 1 T m�1. Temperature was controlled via
flow of cooled nitrogen gas along the vertical axis of the NMR
sample tube using a Bruker variable temperature control unit. The
13 mm OD (11.7 mm ID) frozen ice samples were centred in a
20 mm diameter radiofrequency coil using polyether ether ketone
(PEEK) spacers to allow for constant and consistent air flow around
the sample. The set point temperature was �15 �C at the base of the
coil and the temperature increase of the cooled nitrogen gas was
�7� C across the full coil length. Unfrozen water content was
calculated from the NMR signal magnitude after calibration with a
known volume of water at the same receiver gain as a function of
temperature. Signal from the solid ice crystals was not detectable.
The FID decay was single exponential, i.e. from liquid water only,
no solid state Gaussian signal from the ice phase was detected due
to the rf excitation and signal acquisition digitization time scales.
Cross-relaxation between the solid ice crystal phase and liquid
water in veins can be neglected based on this and the large
difference between the water diffusivity �10�10m2 s�1 and the
spin diffusion �10�15m2 s�1 [24]. T2 relaxation time distributions
were obtained using a standard Carr–Purcell–Meiboom–Gill
(CPMG) echo train with echo time tE = 403 ms. A standard pulsed
gradient stimulated echo (PGSTE) sequence was used to measure
diffusion for displacement observation times D ranging from
10–1000 ms at a constant echo time tE of 8 ms and gradient
duration d = 2 ms. Gradients were applied in the horizontal
y-direction, perpendicular to the tube walls, in order to eliminate
the impact of any anisotropy on the measurements from crystal
elongation in the z-direction due to the top-down freezing process.
Diffusion coefficients were calculated from a standard Stejskal–
Tanner plot and the fit was linear with no indication of
multiexponential decay. The mono-exponential decay was also
confirmed by performing an inverse Laplace transform which
resulted in a single diffusion coefficient. Images were obtained
with a standard 2D multi-slice spin echo sequence and had a
spatial resolution of 55 � 55 mm (256 � 256 matrix size and
14 �14 mm field of view) over a 0.5 mm slice centred in the
middle of the rf coil.

3. Results

Fig. 1, top row, shows cross-sectional magnetic resonance
images acquired for ice with BSA at various time intervals after
freezing. Definitive ice crystal growth during recrystallization was
observed over 1800 h, with crystal diameters growing from



Fig. 1. Cross-sectional MR images of vein networks in ice samples at �13.5 �C for aging to 1730 h after initial freezing. Spatial resolution is 55 � 55 mm over a 14 �14 mm FOV
and 0.5 mm slice. Top: Ice with BSA (10 mg/ml). Left to right (a)–(c): t = 39, 578 and 1705 h. Ice crystal growth from �200 mm to 1 mm clearly occurs over this time period.
Bottom: Ice with ECP (�10 mg/ml extracellular protein extract containing an unknown fraction of IBP). Left to right (d)–(f): t = 102, 651 and 1730 h. Inhibition of ice crystal
growth is clear over this time period.

Fig. 2. Evolution of T2 relaxation times with aging for five ice samples: ice control
(filled diamonds), ice with BSA (open circles), ice with ECP (filled circles), ice with
rIBP(2) (filled triangles) and ice with rIBP(4) (filled squares). Larger T2 magnetic
relaxation values in the ice control and ice with BSA indicate a larger pore length
scale, while shorter T2 values in the ice with IBP samples and lack of change in
relaxation with aging is evidence that IBP inhibits growth of liquid vein size.
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�200 mm to �1 mm. The ice control showed identical behaviour. In
contrast, ice with ECP, bottom row, exhibited static crystal
structure, ostensibly due to IBP binding to the ice crystal surface
inhibiting crystal growth [8].

In the ice with rIBP(2) and rIBP(4), ice crystals were smaller, an
indication of increased activity of purified IBP over ECP. Vein
diameters in the ice with rIBP samples were below the 55 mm
spatial resolution of the Fig. 1 images, the lowest practically
achievable with MRI on these samples due to signal to noise and
experiment time limitations [25]. These data clearly demonstrate
that the 3519-10 IBP alters the ice crystal structure and therefore
the unfrozen vein network, or interstitial habitat for microbial
cells, in ice.

NMR measurements of spin–spin magnetic relaxation time (T2)
and molecular diffusion are alternatives to MRI visualization and
provide quantitative information about the vein network struc-
ture. T2 times are measured from signal arising from the entire
volume of the ice sample and therefore represent an average over
the three dimensional pore space. They also have the advantage of
rapid acquisition. A liquid phase confined within a solid matrix
exhibits spin–spin relaxation times shortened in a manner
dependent on pore size [17,25]. T2 amplitude is proportional to
a pore length scale lp, scaling as 1/T2� rS/Vp�1/lp [26], where S is
pore surface area, Vp pore volume and the constant of proportion-
ality r is the surface relaxivity. This proportionality theoretically
only holds in the regime where diffusional mixing of the surface
and bulk fractions is faster than the difference in intrinsic
relaxation rates. With a liquid phase diffusion of 5.6 � 10�10m2 s�1,
the diffusional mixing is on the order of 10–100 ms which is indeed
faster than the relaxation rate difference. For ice, the rate of change
of T2 is related to recrystallization kinetics. Therefore, relative
changes in T2 relaxation during ice aging indicate changes in vein
dimensions due to microstructural rearrangement during recrys-
tallization.

Purified rIBP clearly inhibited growth in the liquid vein size. T2
values, and therefore the pore lengthscale lp, were shortened by a
factor of 10 and remained unchanged over time (Fig. 2). T2 values
for the ice control lacking protein and ice with BSA exhibit similar
magnitudes and rates of change, indicating that BSA did not inhibit
liquid vein growth. Ice with ECP exhibited an increase in T2 at early
times (<200 h) and a plateau to smaller T2 values than the ice
control. This suggests that recrystallization occurs in the ice with
ECP until coarsening reduces overall crystal numbers to the point



Fig. 4. Pore lengthscale lp calculated from T2 relaxation times as a function of ice
aging for the ice control (filled diamonds), ice with rIBP(2) (filled triangles) and ice
with rIBP(4) (filled squares). Surface relaxivity r was found using S/Vp values
obtained from the short time fit to the time dependent diffusion data (Fig. 3). A
larger pore length scale is observed in the ice control due to ice crystal growth from
recrystallization creating larger liquid veins, while shorter lengthscales are evident
in the ice with IBP samples where crystal sizes remain small. Lack of change in the
lengthscale with aging is evidence that IBP inhibits growth of liquid vein size.
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where targets on the ice crystal prism face are saturated by IBP.
This is consistent with a lower IBP concentration in the ice with
crude preparation containing ECP relative to the ice with the
purified rIBP.

The geometry of porous media can be probed via measurement
with pulsed gradient spin echo (PGSE) NMR [25] of an effective
time dependent diffusion coefficient D (D) of the restricted liquid
[27]. Variation of D (D) with changes in displacement observation
time D reveal pore space structural characteristics [27,28]. In the
short displacement time, D < lp

2/Do, the time dependent diffusion
coefficient normalized by molecular diffusion D (D)/Do is
proportional to S/Vp due to interaction of liquid molecules in the
pore space with boundaries of the solid matrix [28]. Hence, the
pore length scale lp can be estimated as S/Vp� 1/lp. Modeling the
veins as a cylinder [12], the S/Vp can be calculated as 4/dvein,
resulting in lp = dvein/4. The two grain planar junctions have a S/Vp

of 1/dplane and therefore a lengthscale lp = dplane. The measured S/Vp

represents an average of water confined within the triple and two
grain junctions. In the long displacement time, D � lp

2/Do,
D (D)/Do asymptotes to 1/a, where a is geometric tortuosity.
Tortuosity is the ratio of the path length a molecule travels in a
porous media to the geometric length traversed a = lpath/lgeom and
is a measure of inter-connectivity of the pore space [28]. Here we
are limited to observing the approach to asymptotic diffusion, out
to D � 1000 ms due to NMR signal loss via T1 magnetic relaxation ,
and therefore measure an effective a.

Fig. 3 shows displacement time dependent diffusion evolution
with ice aging for the ice control lacking protein, ice with ECP, ice
with rIBP(2) and ice with rIBP(4). The short time slope of the
D (D)/Do curve for the ice control yields an effective diffusion
distance lp that increases from 2.5 � 0.1 mm at t = 25 h to
4.2 � 0.1 mm at 790 h, consistent with ice crystal growth and
subsequent larger elongated liquid veins (lp = dvein/4) and planar
junction thicknesses (lp = dplane). D (D)/Do of the ice control at
t = 790 h approaches a larger asymptotic value, or smaller effective
tortuosity a. A Padé approximation can be used to interpolate
between the short and long time [29,30], resulting in an estimation
of tortuosity [29,31]. The Padé fit includes a fitting parameter u
with units of time that represents the time for a particle to diffuse
the distance needed to reach the tortuosity limit. For the ice control
at t = 25 h, a is 4.2, while at t = 790 h it decreases to 3.7, consistent
with ice crystal coarsening. Ice with BSA (not shown) exhibited
similar behaviour to the control sample that lacked protein.
Fig. 3. Displacement time D dependent diffusion data with ice aging: ice control
(open diamonds, t = 25 h; closed diamonds, t = 1922 h), ice with ECP (open circles,
t = 92 h; closed circles, t = 1909 h), ice with rIBP(2) (open triangles, t = 189 h; closed
triangles, t = 1922 h) and ice with rIBP(4) (open squares, t = 20 h; closed squares,
t = 1914 h). Dashed lines are the early time fits of S/Vp while solid lines are the Padé
approximation fits. Steeper initial slopes indicate larger S/Vp and smaller asymptotic
diffusion coefficients imply more restricted motion, consistent with smaller ice
crystals and narrower liquid veins.
The D (D)/Do behaviour for the ice with rIBP(4) remained
stationary over 1000 h. This lack of ice microstructural evolution is
evidence of irreversible IBP binding [32], and the longevity of the
effect indicates microbial activity is potentially a factor for
consideration in ice rheology models where ice structure is a
parameter. Ice with rIBP(4) also had the smallest effective diffusion
length, lp = 1.0 � 0.5 mm, and largest tortuosity, a = 47.0, at t = 819 h,
therefore providing direct experimental evidence of smaller ice
crystal structure and smaller liquid veins. Ice with rIBP(2) had
lp = 1.5 � 0.5 mm and a = 12.2 at long times (t = 810), while ice with
ECP had lp = 3.0 � 0.5 mm and a = 8.9 at long times (t = 933 h). This
trend suggests that larger overall crystal sizes and diffusion lengths
correlate with decreasing IBP concentration. The D (D)/Do data
asymptotes to larger diffusion values (a smaller tortuosity) with
decreased IBP concentration, again indicative of larger ice crystals
and larger more elongated liquid veins.

Despite microstructural differences due to IBP, water content
measured from the liquid state 1H NMR signal [33] was stable
between 2 and 2.5% for all samples over 1800 h, in reasonable
agreement with the 3% predicted from the equilibrium thermody-
namic model FREZCHEM [34]. Bulk water content is therefore an
inadequate predictor of ice structure and vein size.

Time dependent diffusion measurements have the advantage of
providing quantitative values for physical microstructural param-
eters (S/Vp and a) relevant to liquid water vein dimensions and
corresponding ice crystal sizes. However, experimental acquisition
times can be long (�8 h). T2 relaxation time measurements on the
other hand have the advantage of short (�2 min) acquisition times
and can provide quantitative values of S/Vp given the surface
relaxivity r [35]. Surface relaxivity is not an easy parameter to
measure. Here, we utilize the quantitative S/Vp obtained from the
time dependent diffusion data in Fig. 3 and measured T2 values to
calculate r via the relationship 1/T2� rS/V p. This is possible,
despite the inherent relaxation weighting in PGSE NMR measure-
ments of diffusion that is not present in T2 relaxation measure-
ments [35], due to the low susceptibility between solid ice and
liquid water [18]. Further, the value of r was found at both short
and long aging times (Fig. 3) and is independent of aging time. As
such, the surface relaxivity can be used to calculate S/Vp from T2
values acquired at aging times where D (t) data was not available.

The surface relaxivity for the ice control sample was found to be
1.5 �10�5m s�1. Interestingly, r for the rIBP(2) and rIBP(4) samples
were 2.6 � 10�5 and 1.6 � 10�5m s�1 respectively, indicating that
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the IBP attached to the ice crystal surface may change the
measured surface relaxivity. Fig. 4 shows lp(�Vp/S) calculated from
the T2 measurements (Fig. 2) as a function of aging for the ice
control and rIBP samples. As was inferred from Fig. 2, the ice
control lacking protein showed increasing pore lengthscales with
aging, consistent with crystal growth and subsequent increases in
vein dimensions. With increasing concentrations of IBP, smaller lp
was observed due to the presence smaller crystal sizes, indicating
increased inhibition of recrystallization processes.

4. Conclusions

These results demonstrate the ability of non-destructive NMR
relaxation and time dependent diffusion measurements to charac-
terize the unfrozen vein network structure and crystal growth
processes in ice, as well as its evolution with time. This provides a
new quantitative analytical method to assess the impact of
biomolecules on ice structure during freezing processes relevant
to biotechnological applications. Microbial extracellular IBPs were
found to inhibit recrystallization and modify the three dimensional
ice structure, resulting in persistent small size ice crystals (observed
up to 70 days) and shorter diffusion distances along veins.

These findings have implications to biogeophysical applications
examining microbial habitability in ice [9] and also indicate that it
is plausible for microbial processes to contribute to persistent
small crystal structure in basal ice, which could affect ice rheology
[36,37]. Such processes are typically attributed to physicochemical
mechanisms [38,39], but microorganisms and their products could
have significant but as yet overlooked roles in ice rheology.

Microbial products are increasingly of interest in applications
where manipulation of ice crystals is desired, due to their potential
for scalability to industrial production [4]. The range of methods,
applicable to investigation of ice, make NMR a valuable tool for
understanding how ice-interacting proteins impact the three
dimensional vein network and recrystallization processes, critical
for exploiting the full potential of these proteins in biotechnology
applications.
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