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ABSTRACT

Objectives: To compare benefit-risk assessment (BRA) methods for
determining whether and when sufficient evidence exists to indicate
that one drug is favorable over another in prospective monitoring.
Methods: We simulated prospective monitoring of a new drug (A)
versus an alternative drug (B) with respect to two beneficial and three
harmful outcomes. We generated data for 1000 iterations of six
scenarios and applied four BRA metrics: number needed to treat and
number needed to harm (NNTINNH), incremental net benefit (INB) with
maximum acceptable risk, INB with relative-value-adjusted life-years,
and INB with quality-adjusted life-years. We determined the proportion
of iterations in which the 99% confidence interval for each metric
included and excluded the null and we calculated mean time to
alerting. Results: With no true difference in any outcome between
drugs A and B, the proportion of iterations including the null was lowest
for INB with relative-value-adjusted life-years (64%) and highest for INB

with quality-adjusted life-years (76%). When drug A was more effective
and the drugs were equally safe, all metrics indicated net favorability of
A in more than 70% of the iterations. When drug A was safer than drug
B, NNTINNH had the highest proportion of iterations indicating net
favorability of drug A (65%). Mean time to alerting was similar among
methods across the six scenarios. Conclusions: BRA metrics can be
useful for identifying net favorability when applied to prospective
monitoring of a new drug versus an alternative drug. INB-based
approaches similarly outperform unweighted NNTINNH approaches.
Time to alerting was similar across approaches.

Keywords: benefit-risk assessment, comparative effectiveness, net
benefit, safety.
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Introduction

New drugs usually enter the market on the basis of evidence from
relatively small, short, placebo-controlled randomized trials [1].
The information required for market approval is not necessarily
sufficient for coverage and treatment decisions, where fully
informed decisions might consider the longer-term comparative
safety and effectiveness of a new medication versus existing
alternatives [2]. To fill this evidence gap, stakeholders—including

payers themselves—are beginning to use routinely collected
electronic health care data to conduct prospective, active mon-
itoring of new drugs [3].

To date, approaches for prospective, active drug monitoring
have focused primarily on drug safety and very little on com-
parative effectiveness [4]. Coverage and treatment decisions
require considerations of both harms and benefits; yet, to our
knowledge, combined benefit-risk assessment (BRA) has not been
evaluated in the context of prospective drug monitoring.
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Simultaneously incorporating benefits and risks into the same
active monitoring framework can aid decision makers in deter-
mining whether and when sufficient evidence exists to indicate
that one drug is favorable over another [5]. The consequences of
decision making about a new drug without all relevant data
available can be substantial. On the one hand, delayed adoption
of a drug with a net favorable benefit-risk profile compared with
existing alternatives can result in worse health outcomes for
patients and potentially greater total health care costs as a result
of those outcomes. On the other hand, prospective BRA monitor-
ing could reveal unfavorable benefit-risk balances that were not
evident on the basis of premarketing data alone.

We conducted a simulation study to compare the perform-
ance of BRA metrics for calculating the net benefits and risks of
medications in a prospective monitoring framework, with the
objective of determining which approaches identify net favor-
ability most quickly and accurately.

Methods

Selection of BRA Techniques

We previously reviewed BRA techniques and proposed a unified
framework for classifying these methods [6]. In brief, existing BRA
methods share substantial commonality and many can be gen-
eralized using a single formula. Metrics differ primarily in
whether they consider the duration of impact of health outcomes
and in the ways in which they weight outcomes, such as by using
patient-derived preference weights (e.g., stated preferences and
utilities), weights obtained from other perspectives, or no
weights. Using this framework, we selected metrics that are
amenable to quantitative prospective benefit-risk monitoring.
Criteria included the ability to accommodate multiple beneficial
and multiple harmful outcomes and that the metric result in a
single numeric index that quantitatively summarizes the relative
benefits and risks of one product versus another.

Metrics that met our criteria were the number needed to treat
and the number needed to harm (NNTINNH) and three methods
that rely on the incremental net benefit (INB) framework: INB
with maximum acceptable risk (MAR), INB with relative-value-
adjusted life-years (RVALYs), and INB with quality-adjusted life-
years (QALYs). NNTINNH is an unweighted metric that compares
the number of patients who need to be treated in order for one of
those patients to benefit from treatment to the number of
patients who need to be treated for one to be harmed. INB-
MAR, INB-RVALYSs, and INB-QALYs are all weighted metrics that
differ slightly with respect to the types of weights that they use
and whether they consider the duration of impact of the out-
comes. MAR weights indicate patients’ willingness to trade-off
harmful and beneficial outcomes of a treatment and are based on
stated preference methods such as discrete choice experiments
(DCEs). INB-MAR does not explicitly incorporate the duration of
impact of the outcomes. Stated preferences can also be used to
calculate INB in terms of RVALYs, which also accommodates
inclusion of duration of impact of the outcomes. As with INB-
RVALYs, INB-QALYs can account for the duration of impact of
different outcomes but use utility weights for given health states
rather than stated preferences. Utility weights can be obtained
from standard gamble or time trade-off methods.

Simulated Prospective Monitoring Framework

We simulated a setting in which a new drug enters the market,
and we are interested in using prospectively collected longitudi-
nal electronic health care data to determine as quickly as possible
whether the new drug has a favorable benefit-risk profile, with

respect to multiple beneficial and harmful outcomes, as compared
to an existing alternative. We simulated periodic updating of the
electronic health care database over time after approval of the
new drug by generating data for 20 sequential cohorts of drug A
and B initiators, which, with quarterly data updating, would be
equal to prospective monitoring for 5 years [7].

We generated data for simulated patients exposed to the new
drug and patients exposed to the comparator in a 1:1 ratio on the
basis of hypothetical propensity score (PS) matching. The PS-
matched design enables simultaneous monitoring of multiple
outcomes within the same PS-matched cohorts without the need
for further confounding adjustment [8]. Note that although we
assumed a 1:1 matched cohort design, we did not actually
simulate covariates, confounding, and PSs. Rather, we simulated
cohorts of the same size and devoid of confounding by measured
factors, as would be expected in a 1:1 PS-matched design. We
have used this approach to monitor the safety and comparative
effectiveness of several drugs [7,9-12], including rofecoxib versus
nonselective nonsteroidal anti-inflammatory drugs with respect
to gastrointestinal bleed and myocardial infarction (MI) outcome.

Base-Case Example

We modeled our simulation study on a hypothetical comparison
of two antiplatelet agents (drugs A and B) for which we were
interested in comparing two beneficial outcomes—MI reduction
and ischemic stroke reduction—and three harmful outcomes—
hemorrhagic stroke, other major bleeding, and minor bleeding.
We used estimates from the literature to develop a base-case
scenario, in which we modeled a cumulative incidence of 7% for
M, 1% for ischemic stroke, 0.4% for hemorrhagic stroke, 2.4% for
other major bleeding, and 2.4% for minor bleeding [13-17]. We
derived MAR and RVALY weights for these outcomes from a
previously conducted DCE [18], and we calculated QALYs from
previously published EuroQol five-dimensional questionnaire
utilities [19-22]. Weights for each INB metric and assumed
durations of impact of each outcome are listed in Table 1.

Scenarios

We simulated data under six scenarios (Table 2). In scenario 1
(“null scenario”), we set the average true underlying relative risk
(RRerue) of each outcome to 1 (i.e., In[RRyrye] = 0.00), representing a
case in which there is no true difference in any outcome between
the two drugs of interest. In each additional scenario, we simu-
lated different combinations of drug A being less, equally, or more
effective than drug B plus drug A being safer, equally safe, or less
safe than drug B. For scenarios in which drug A was more effective,
we selected RR estimates for the two beneficial outcomes from
distributions in which the mean RR indicated an approximately
18% benefit of drug A versus drug B (i.e., In[RRyye] = -0.20). Note
that although we refer to these as beneficial outcomes, they are
beneficial in the sense that the drugs are intended to reduce their
incidence (i.e.,, prevent MI or stroke) such that a reduction is
favorable. When drug A was safer than drug B, we used the same
18% reduction in all three harmful outcomes. When drug A was
less effective than drug B, we simulated an approximately 18%
increase in the occurrence of each beneficial outcome (ie., In
[RRrue] = 0.17). We used the same 18% increase in all three harmful
outcomes when drug A was less safe than drug B. In scenarios 2, 3,
and 6, drug A dominates drug B regardless of the weights used. In
scenarios 4 and 5, there is no single truth because the relative
favorability of drugs A and B depends on the weights used.

For simplicity, we omitted scenarios that are mirror images of
scenarios 2 to 6 because the results would be redundant. For
example, the mirror image of scenario 6 would be one in which
drug A is both less effective and less safe than drug B.
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Table 1 - Weights and durations of impact for each simulated outcome.

Outcome Outcome Utility weights from Preference weights from Duration of
type EQ-5D (INB-QALY) DCE (INB-MAR and INB-RVALY)' outcome impact
Myocardial infarction Beneficial 0.84 0.09 20y
Ischemic stroke Beneficial 0.60 0.07 20y
Hemorrhagic stroke Harmful 0.60 0.07 20y
Major bleeding Harmful 0.46 -0.03 1 mo
Minor bleeding Harmful 0.80 -0.01 1 mo

DCE, discrete choice experiment; EQ-5D, EuroQol five-dimensional questionnaire; INB, incremental net benefit; QALY, quality-adjusted life-
year; MAR, maximum acceptable risk; RVALY, relative-value-adjusted life-year.
*Numbers represent preference weights for a 1% increase in probability of each outcome derived from a previous DCE study.

Data Generation

For each of the six scenarios, we generated data for 1000 sets of
20 sequential cohorts. In each of the 6000 iterations, we randomly
sampled a baseline outcome incidence for each of the five
outcomes among drug B initiators (R0) from a log-normal dis-
tribution to yield the base-case cumulative incidences described
above. We used a log-normal distribution to ensure that the
baseline cumulative incidence was always positive and nonzero.
We then selected a true underlying log risk ratio (In[RRre]) from
a normal distribution with mean parameters described above,
which permits both negative and positive log risk ratios and
therefore risk ratios bound by zero and infinity. We exponenti-
ated the In(RRyye) to obtain the true underlying risk ratio (RRirye)
and multiplied this by RO to obtain the underlying event inci-
dence among drug A patients (R1).

In each of the 20 sequential cohorts in each iteration, we
generated the observed number of events among drug B initiators
using a binomial distribution, with probability RO for the outcome
and number of trials N, which was the number of matched drug A
and B initiators in the given cohort. We used a separate binomial
distribution, with probability R1 and number of trials N, to
generate the number of events among drug A initiators in each
cohort. We set the number of matched pairs (N) to 500 in the first
sequential cohort and increased N linearly across the 20 cohorts
(to 10,000 in period 20) to simulate the uptake of drug A over time.
Additional details of the simulation framework can be found in
other published work [7].

BRA Analysis

We cumulated the number of events for each outcome among
drug A and B initiators prospectively across the sequential
cohorts. At each simulated data update, we used the cumulative
number of events and the relevant weights to calculate each of
the four BRA metrics of interest. We bootstrapped 99% confidence
intervals (CIs) for each of the 20 sequential estimates in each of
the 6000 iterations by regenerating the observed events across
the 20 sequential cohorts 1000 times on the basis of the selected

RO and R1 parameter values. We used 99% CIs as a more
conservative approach than nominal 95% CIs given the sequen-
tial design.

In each scenario, we determined the proportion of iterations
in which the 99% CI for each metric included the null (indicating
no net favorability of either method), was entirely above the null
(indicating net favorability of drug A over drug B), and was
entirely below the null (indicating net favorability of drug B over
drug A). In scenarios 2 to 6, we calculated the mean time to
alerting, which we defined as the number of sequential cohorts
accrued when the CI first excluded the null.

Results

Null Scenario (Scenario 1)

In the null scenario, in which the underlying RO and R1 distribu-
tions were the same for each of the five outcomes, the 99% Cls for
all four metrics included the null in at least 60% of the iterations
(Fig. 1). The proportion of iterations including the null was lowest
for INB-RVALYs (64%) and INB-MAR (65%) and highest for INB-
QALYs (76%). The proportion of iterations favoring A versus B was
approximately balanced for each metric.

Drug A More Effective, Equally Safe (Scenario 2)

When drug A was more effective than drug B and the drugs were
equally safe, all four metrics indicated net favorability of A in
more than 70% of the iterations (Fig. 1). NNTINNH had the lowest
proportion of iterations indicating net favorability of drug A
(72%). Proportions of iterations indicating net favorability of drug
A were near 80% for the three INB-based approaches: 81% for INB-
QALYs and 79% for INB-MAR and INB-RVALYs. Among iterations
in which the metrics indicated net favorability of drug A, INB-
MAR and INB-RVALYs had the fastest time to alerting, which, on
average, occurred in the fifth period (Fig. 2). NNTINNH and INB-
QALYs had average alert times in the sixth period.

Table 2 - Description of six simulated scenarios.

Scenario no. Description

Risk ratio for each benefit Risk ratio for each harm

Null scenario

Dug A more effective, equally safe
Dug A safer, equally effective
Drug A less safe, more effective
Drug A less effective, safer

Drug A more effective, safer

O U1 WN

1.00 1.00
0.82 1.00
1.00 0.82
0.82 1.18
1.18 0.82
0.82 0.82
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INB-QALY
INB-RVALY
INB-MAR
NNT | NNH
INB-QALY
INB-RVALY
INB-MAR
NNT | NNH
INB-QALY
INB-RVALY
INB-MAR
NNT | NNH
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Scenario 3 | Scenario4 | Scenario5 | Scenario 6

Scenario 2

Scenario 1

0% 10% 20% 30% 40%

50% 60% 70% 80% 90% 100%

Proportion of Scenarios

M Favors A ENull = Favors B

Scenario 1, Null scenario; Scenario 2, Drug A more effective, equally safe; Scenario 3,
Drug A safer, equally effective; Scenario 4, Drug A more effective, less safe; Scenario
5, Drug A safer, less effective; Scenario 6, Drug A more effective, safer

NNT|NNH, number needed to treat and number needed to harm; INB-MAR, incremental
net benefit with maximum acceptable risk; INB-RVALY, INB with relative-value adjusted
life years; INB-QALY, INB with quality-adjusted life years

Fig 1 - Proportion of iterations indicating favorability of drug A, drug B, or no net favorability (null) for each of four benefit-risk
assessment methods in six scenarios. INB, incremental net benefit; QALY, quality-adjusted life-year; MAR, maximum
acceptable risk; RVALY, relative-value-adjusted life-year. (Color version of figure available online).

Drug A Safer, Equally Effective (Scenario 3)

When drug A was safer and drugs A and B were equally effective,
NNTINNH had the highest proportion of iterations indicating net
favorability of drug A (65%), followed by INB-MAR (50%; Fig. 1).
When indicating net favorability of drug A, NNTINNH, INB-MAR,
and INB-RVALYs all had mean alerting times in the seventh
period and INB-QALYs had a mean alerting time in the eight
period (Fig. 2).

Drug A More Effective, Less Safe (Scenario 4)

When drug A was more effective but less safe than drug B, the
three INB-based methods indicated net favorability of drug A in
more than 70% of the iterations: 71% for INB-MAR, 77% for INB-
RVALYs, and 78% for INB-QALYs (Fig. 1). NNTINNH indicated net
favorability of drug A in 46% of the iterations, net favorability of
drug B in 33% of the iterations, and no net favorability of either
drug in 21% of the iterations. When metrics indicated net favor-
ability of drug B, mean alert times were either eight or nine periods
(Fig. 2). Mean time to alerting of net favorability of drug A varied
from five periods for INB-RVALYs to eight periods for NNTINNH.

Drug A Safer, Less Effective (Scenario 5)

When drug A was safer but less effective than drug B, NNTINNH
indicated net favorability of drug A in 26% of the iterations and of
drug B in 53% of the iterations (Fig. 1). INB-MAR indicated net
favorability of drug A in 15% of the iterations and of drug B in 70%

of the iterations. INB-RVALYs indicated net favorability of drug A
in 12% of the iterations and of drug B in 74% of the iterations. INB-
QALYs indicated net favorability of drug A in 9% of the iterations
and of drug B in 77% of the iterations. Mean time to alerting of net
favorability of drug A ranged from eight periods for NNTINNH to
10 periods for INB-QALYs (Fig. 2). Mean time to alerting of net
favorability of drug B ranged from five periods for INB-MAR and
INB-RVALYS to seven periods for NNTINNH.

Drug A More Effective, Safer (Scenario 6)

When drug A was both more effective and safer than drug B, all
metrics indicated net favorability of drug A in more than 80% of
the iterations: 82% for INB-RVALYS, 85% for INB-MAR and INB-
QALYs, and 92% for NNTINNH (Fig. 1). On average, all metrics
indicated net favorability of drug A versus B by the fifth period

(Fig. 2).

Discussion

Our simulation study demonstrates the feasibility of using BRA
metrics for simultaneous prospective monitoring of the compa-
rative effectiveness and safety of new drugs. Consistent with
previous theoretical work [6], our results suggest that existing
BRA methods share substantial similarity. Overall, the four
metrics that we examined produced similar results, both with
respect to whether and when they generate alerts indicating net
favorability of one drug over another.
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INB-RVALY

Scenario 6

INB-MAR

NNT | NNH
INB-QALY
INB-RVALY

INB-MAR

Scenario 5
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INB-QALY

INB-RVALY
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INB-QALY

INB-RVALY

INB-MAR

Scenario 3
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INB-QALY
INB-RVALY
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Mean alert period

Favors B

Scenario 2, Drug A more effective, equally safe; Scenario 3, Drug A safer, equally
effective; Scenario 4, Drug A more effective, less safe; Scenario 5, Drug A safer, less
effective; Scenario 6, Drug A more effective, safer

NNTINNH, number needed to treat and number needed to harm; INB-MAR, incremental
net benefit with maximum acceptable risk; INB-RVALY, INB with relative-value adjusted
life years; INB-QALY, INB with quality-adjusted life years

Note: mean time to alerting is not presented for either drug in Scenario 1 (Null scenario)
and for drug B in scenarios 2, 3, and 6 because alerting in these instances would

indicate false positive alerting

Fig. 2 - Mean time to alerting for each of four benefit-risk assessment methods in five scenarios. (Color version of figure available

online).

As expected, in certain situations, NNTINNH tended to perform
less well than did metrics that incorporate weights for different
outcomes. For example, when drug A dominated drug B by being
more effective and equally safe, the INB-based metrics indicated
net favorability of drug A in approximately 80% of the iterations as
compared with 72% for NNTINNH. In scenarios in which drug A
dominated drug B by being safer, NNTINNH had the highest
proportions of iterations indicating net favorability of drug A
versus drug B when compared with the other metrics. This is
because the NNTINNH implicitly assumes equal weights among
all outcomes and equal durations of impact of all outcomes. The
beneficial outcomes, however, were generally more common (e.g.,
MI incidence of 7%) and had longer-lasting impacts (e.g., 20 years
for MI and stroke vs. 1 month for major and minor bleeding).
Thus, although NNTINNH correctly identified net favorability of
drug A in these situations, it likely exaggerated the net benefit.

INB-MAR and INB-RVALYs, which use similarly derived
weights but differ with respect to whether they consider the
duration of impact of the outcomes, performed similarly to each
other. These INB approaches also performed similarly to INB-
QALY, which considers the duration of impact of the outcomes
but uses utility weights to calculate QALY rather than preference
weights derived from DCEs. In general, our results suggest that

given the choice, stakeholders should opt for metrics that
incorporate weights and account for the duration of outcome
impact. We observed little difference between INB-RVALYs and
INB-QALYs, which both account for the duration of outcome
impact but use different types of weights. Although additional
work is needed to examine correlations between stated prefer-
ences and utilities, we expect that these approaches result in
similar rankings of outcomes. Thus, the decision to use INB-
RVALYs or INB-QALYs may be best based on practical consid-
erations, such as whether DCE results or utilities exist for a set of
outcomes of interest or the practicability of obtaining these.

In general, time to alerting did not differ substantially across
metrics. This is likely because the calculation of each metric is
based on the same number of events for each outcome and it is
the number of events that drives the CI estimation. Thus, the
selection of BRA metrics for prospective benefit-risk monitoring
should be based on the most appropriate weighting scheme for a
particular monitoring activity.

Our simulation study has several limitations. First, we simu-
lated data under the assumptions of no residual confounding and
no misclassification of study variables. Although these assump-
tions are generally not tenable in real-world data studies, we
do not expect confounding or misclassification biases to
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differentially affect certain metrics and not others. As with any
simulation study, the results of our study depend on the scenar-
ios that we modeled. We created six scenarios. In one scenario
(no. 1), we simulated no true difference between drugs A and B. In
three scenarios (nos. 2, 3, and 6), we simulated situations in
which drug A dominates drug B regardless of the outcome
incidences and weights used. These scenarios allowed us to
compare the performance of the four BRA metrics in situations
in which the ground truth is known. Scenarios 4 and 5, however,
represent situations in which either drug A or drug B could be
considered net favorable, depending on one’s preference for the
given outcomes. Although we cannot make statements about
which metrics perform best in these scenarios, they do highlight
situations in which different methods could yield different
results. In addition, in an attempt to compare the BRA metrics
in scenarios with parameters reflective of a real-world example,
the magnitudes of simulated benefits and risks were rather
modest and may not resemble effects observed in other exam-
ples. Although we expect the overall discriminative ability of the
metrics to improve in situations with more extreme effects,
whether this changes the relative performance of the metrics
should be investigated. Furthermore, the outcome-generating
model used log-normal distributions to ensure that baseline
cumulative incidences were greater than zero. Although this
approach has been used in other studies using a similar simu-
lation approach [7], it is possible that the results could be
sensitive to the use of other distributions (e.g., gamma), which
should be investigated in subsequent studies.

To make clear comparisons across the four methods without
introducing substantial variation, we limited the scope of the
simulation study to a base-case example with two beneficial
outcomes, three harmful outcomes, fixed weights for these out-
comes for each metric, and a fixed number of patients across 20
sequential cohorts in each iteration. We also used a single
threshold based on a 99% CI for determining favorability.
Although we based our model on realistic estimates and
literature-derived weights and we varied the underlying inciden-
ces for each outcome and RRs for each outcome between drug A
and drug B initiators across 1000 iterations for each scenario,
future work should explore the effects of additional variation on
the performance of BRA metrics for prospective drug monitoring.

Finally, although the prospective BRA monitoring framework
is particularly suited for use by stakeholders who capture data on
their own population, the results of these activities can be used to
inform decision making in other settings, such as pharmacy and
therapeutics or formulary committees. Because the analyses and
data underlying the conduct of prospective monitoring can be
complex, future efforts are needed to demonstrate the use of
these analyses in clinical practice and the utility of the results of
prospective BRA for informing health technology assessments.

In conclusion, we found that BRA metrics can be useful for
identifying net favorability when applied to prospective monitor-
ing of a newly marketed drug versus an existing alternative.
When selecting a BRA metric for prospective monitoring, stake-
holders should consider those that incorporate weights for out-
comes of interest and the duration of impact of those outcomes.
Prospective BRA monitoring may help stakeholders identify
whether and when sufficient evidence has accrued to determine
that a new drug has a benefit-risk profile that is better or worse
than that of an alternative, which may support timely decision
making in the postapproval setting.

Source of financial support: This study was funded by an
unrestricted research grant from Novartis Pharmaceuticals Cor-
poration to the Brigham and Women'’s Hospital.
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