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Abstract 

In this paper, we study the distribution e~t~k6 where O* is introduced and named as the Diamond operator iterated 
k-times (k = 0, 1,2,. . .) and is definded by 

-~  + N + " " " + 8tz J - ~ + z~T- + " " " p+ 2 8~p+q J J ' 

where t=(h , t2 , . . . , t . )  is a variable and ~=(~1,~2 . . . .  ,~.)  is a constant and both are the points in the n-dimensional 
Euclidean space R", $ is the Dirac-delta distribution with 0 ° 6 -  - 6 and p + q = n  (the dimension of R") 

At first, the properties of C '0~6 are studied and later we study the application of c t ok 6  for solving the solutions of 
the convolution equation 

m 

* u(t) = e ~' E cr~r(~. 

r=O 

We found that its solutions related to the Diamond Kernel of Marcel Riesz and moreover, the type of solutions such as, 
the classical solution (the ordinary function) or the tempered distributions depending on m, k and ct. (~) 1998 Elsevier 
Science B.V, All rights reserved. 
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1. Introduction 

From [2, Theorem 3.1], the equation ~*u(t)= 5 has ( - 1  )kS2,(t), R2k(t) as an elementary solution 
and is called the Diamond Kernel of Marcel Riesz where S2,(t) and R2k(t) are defined by (2.1) and 
(2.2), respectively, with y = 2k where y is nonnegative. 
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Consider the convolution equation 

m 

(e=tQk6) * u(t) = e ~t ~ Cr~>ra. (1.1) 
r = 0  

In finding the type of  solutions u(t) of Eq. (1.1), we use the method of  convolution of the 
tempered distribution. Before going to that point, some definitions and basic concepts are 
needed. 

2. Preliminaries 

Definition 2.1. Let the function X( t )  be defined by 

S., = 2-;'re-n/2/' ( ~ ) I t l ~ ' - "  (2.1) 
' 

where 7 is a complex parameter, n is the dimension of R", t = ( t l , t 2 , . . . , t n ) E R  n and 

It l= ; ( t ~  + . . .  +t2) .  Now S~, is an ordinary function if Re(7)>~n and is a distribution of 7 if 

Re(~) < n. 

Definition 2.2. Let t = (6, t2,..., tn) be the point of  R" and write v = t~ + t 2 + . . .  -4- t~ - 2 2 tp+ 1 -- tp+ 2 -- 
2 . . . .  t p + q ,  p + q = n. Denote by F+ = {t E R": tl > 0 and v > 0} the set of  an interior of  the forward 

cone and F is the closure of  F. 

For any complex number y, define 

VlT_nl,2 

Rr(t ) = K,(~,) if  t E F+, 

0 if t~F+, 

where Kn(7) is given by the formula 

) = r (  ) r (  ) 

The function RT(t ) was introduced by Nozaki [3, p.72]. It is well known that Rr(t ) is an ordinary 
function if Re(y)>~n and is a distribution of  ~ if Re(y)<n.  Let suppRz,(t ) denote the support of  
R;,(t) and suppose that suppRT(t ) C F+. 

Lemma 2.1. S.;(t) and R,,(t) are homogeneous distributions o f  order ~ - n. Moreover they are 
tempered distribution. 
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Proof. Since Sr(t) and R;,(t) satisfy the Euler equation 

~-~ ti dR~(t) = (~ - n)R;,(t), 
i=1 ~ti 

n 

Z t, a&(t )  _ (~ _ n)S;(O, 
i=1 Oti 

then they are homogeneous distribution of order ~ - n by Donoghue [1, pp. 154,155] that proved 
that every homogeneous distribution is a tempered distribution. [] 

Lemma 2.2 (The convolution of tempered distribution). The convolution S;,(t),Rr(t ) exists and is 
a tempered distribution. 

Proof. Choose suppRr(t ) = K  C F+ where K is a compact set. Then &.(t) is a tempered distribution 
with compact support and by Donoghue [1, pp. 156-159], ST(t ) ,&(t  ) exists and is a tempered 
distribution. [] 

3. The properties of e~t~6 

Lemma 3.1. 

e~'Ok6 =Lk6, 

where L is the partial differential operator of  Diamond type and is defined by 

L =- (> + ccr[] - 2 ~r~,-7-dT-, OtiOt 2 O~ i - -  
~, &i & + r = l  r = l  i=1 

P+q ) 
+ 2 ~  ~ (0~r~(~3 03  

r=l j=p+l \ ~t~atr q- O ~ j ~  

P (~2 P+q 

c~ti&r c~tjdt~ ] 
r = l  = r = l  j = p + l  

- 2 Z c ~ 2  ~ ' - - -  Z ' &i 
r = l  j = p + l  

+ 
i=1 j = p + l  

p+q ) 
+ 

i=1 j = p + l  

I p p+q ~ n 
A - 2  y ' ~ 2  i -  Z ° ~ 2 1 ~  ar O 

i=1 j = p + l  , ]  r = l  Otr 

n 

r = l  

(3.1) 

(3.2) 
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i~2 ~...,p+q ?:2 D" 
where []= ~P=l c( ~ =  V ,  A = ~=~ ?7, p + q = n .  Actually O=[]A and e~tOk 6 is a tempered P j 

distribution o f  order 4k. 

Proof. For k = 1, we have 

(e~t(>b, q~(t)) = (b, (>e~tq~(t)), 

where q0(t)E 5g the Schwartz space. By computing directly we obtain 

(>e=' qg( t ) = e~t gq~( t ), (3.3) 

where M is the partial differential operator of the form (3.2) whose the coefficients of the third term, 
the fourth term, the sixth term and the eighth term of the right-hand side of Eq. (3.2) have opposite 
signs. 

Thus (b, ~e~tqg(t)) = (b, e~tMqg(t)) =gq~(0).  
By the properties of b and its partial derivatives with the linear differential operator M, we obtain 

Mq~(0) = (Lb, ~o) where L defined by Eq. (3.2). It follows that e~'(>b =Lb.  Now 

~e~t~b)* (e='~b)* . .-  • (e~t<>b)= { L b ) , ( L b ) ,  . . .  , ( L b ) ,  

k -times k-t~mes 

we have e~t(6. (>~6)= b .  (Lkb). Thus e~t~kb =Lkb. It follows that, for any k, we obtain Eq. (3.1). 
Since b has a compact support, hence by Schwartz [4], b and Lk6 are tempered distributions and 
L~6 has order 4k. It follows that e~t(>kb is a tempered distribution of order 4k. [] 

Lemma 3.2 (Boundedness property). I(e~'~kb, q~(t))[ <<. K where K is a constant and q9 E 5 a. 

Proof. 

(e~t~kb, ~o(t)) = ( ~ 6 ,  e~t~o(t)) 

=(~k- lb ,  ~e='(p(t)) 

= (Ok-I 6, e='M(p(t)), 

where M is defined by Eq. (3.3). By keeping on operate Ok - 1 times we obtain 

(e~t~k 6, ~ot)= (b, e~tMkqgt) 

=Mkq~(0). 

Since ~o(0) is bounded and also Mk~p(0) is bounded. It follows that ](e~'Okb, qg(t)[=lM k 
 o(0)1 [] 

4. The application of e~tOk6 

Given u(t) is an distribution and by Lemma 3.1, we have 

(e~t~k b) * u(t) = (Lk b) • u(t) ---- L~u(t), 

where L is defined by (3.2). 
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Theorem 4.1. Given the linear partial differential equation o f  the form 

(e~'(>k r) * u(t ) = Lku(t ) = 3. (4.1) 

Then u(t)=e~t(--1)kS2k(t)*R2k(t) is an elementary solution of  (4.1) or The Diamond Kernel o f  
Marcel Riesz o f  (4.1) where S2k(t) and R2k(t) are defined by (2.1) and (2.2) respectively with 
? = 2k. 

Proof. By Kananthai [2, Lemma 2.4], (-1)kS2k(t) is an elementary solution of the Laplace operator 
A k iterated k-times and also by Trione [5], R2k(t) is an elementary solution of the ultra-hyperbolic 
operator []k iterated k-times (that is Ak(--1)~S2k(t) = 6 and E2kR2k(t) = 3). 

Now ~k = []~A k, consider e~t(E2kAkr) • R2k(t) = 6 By Lemma 2.2 with ? = 2k, ( -  1 )~S2k(t) * Rzk(t) 
exists and is a tempered distribution. 

Convolving both sides of the above equation by eat[( - 1)kS2~(t)* R2k(t)] we obtain 

e~t[Ak( - 1 )kS2k(t) * DkR2k(t) * u(t)] = [e~'( - 1 )kS2k(t) * R2k(t)] * 6 

(e~tr) * u(t) = e~'(-  1 )kS2k(t) * R2k(t). 

It follows that u(t) = e~t(--1)kS2k(t)*R2k(t). [] 

Theorem 4.2. Given the convolution equation 

(e~t~kr) • u(t) = e a' ~ Cr~rr, (4.2) 
r = 0  

then the type o f  solutions o f  (4.2) depend on the relationship between k,m and ~ are as the 
following cases. 
(1) I f  m < k  and m = 0 then (4.2) has the solution u(t) = e a t [ c 0 (  - 1 ) k S 2 k ( t  )* R2k(t)] and u(t) is an 

ordinary function for  2k >~ n with any ~ and is a tempered distribution for 2k <n and for some 
a=(~1,72 . . . .  ,a,,) with 7 i<0  ( i =  1,2, . . . ,n) .  

(2) I f  O<m<k ,  then the solution of  (4.2) is 

u(t)=e~'[~=lCr(--1)k-rs2k-Zr(t)*R2k-2r(t) ] 

which is an ordinary function for 2k - 2r >1 n with any ~ and is a tempered distribution if  
2 k -  2r <n for some ~ with ~i<0  ( i =  1,2, . . . ,n) .  

(3) I f  m >>. k and for any ~ and suppose that k <. m <~ M, then (4.2) has u(t ) =  e ~' ~ff_~ erOr-k 6 as 
a solution which is the singular distribution. 

Proof. (1) For m < k  and m = 0 ,  then (4.2) becomes (eatOkr) ,u( t)=e"'Cob=Coe~'3=Cor.  By 
Theorem 4.1 we obtain 

u(t) = C0e~t((- 1 )kS2k(t ) * R2k(t)). 

Now, by (2.1) and (2.2), S2k(t) and R2k(t) are ordinary functions respectively for 2k ~> n. It follows 
that u(t) is an ordinary function for any constant ~. If 2k<n  then S2k(t) and R2k(t) are the analytic 
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functions except at the origin and by Lemma 2.1 S2k(t) and R2k(t) are tempered distributions and 
by Lemma 2.2, ( -1)kS2k( t ) ,R2k( t )  exists and is a tempered distribution. 

Now, for some c~ = (~ ,  ~2,... ,  ~,) with OC i < 0 (i = 1 , 2 , . . . ,  g/) we have e ~t is a slow growth function 
and also its partial derivative is a slow growth. It follows that e~t[(-1)kS2~(t),R2k(t)] is also a 
tempered distribution. 

(2) For 0 < r e < k ,  we have 

(e~' (>k r ) • u( t ) = e~'[cl ~ 6  + c2~2~ -%-. .  -% Cm ~m (~]. 

Convolving both sides by e~t[(--1)kS2k(t)* R2k(t)], we obtain 

u(t) = e~t[cl 0 ( ( -  1 )~S2k(t) * R2k(t)) + c20Z(( - 1 )kS2k(t) * R2k(t)) 

-%'"  -% Cm(~k((--1)kS2k(t) * R2k(t))] 

= e~t[cl ( -  1 )k-lS2k_2(t) * R2k-2(t) + c2(-- 1 )k--2S2k_4(t ) * R2k-4(t) 

-%'"  -% Cm(-- 1 )k-mS2k_2m(t ) * R2k_2m(t)] 

[# '1 = e ~t -- 1 )k-~S2k_2~(t) * R2k-2r(t 

by Theorem 4.1 and by Kananthai [2, Theorem 3.2] for r <k .  Similarly, as in the case (1) e ~' 
m 1 [ ~ r = l ( -  )k-rS2k-z~(t)*R2*-2r(t)] is the ordinary function if 2 k -  2r ~>n and for any 0~, and is a 

tempered distribution if  2k - 2 r < n  and for some ~ with 0ci<0 ( i - -  1 ,2 , . . . ,n) .  
(3) For m/> k and for any ~, suppose that k ~< m ~<M we have 

(e~t Qk r) • u( t ) = cke~t ~k 6 + cMe~t  {)~+16 + . . .  + cMe~t Ok r. 

Convoluing both sides by e~t(( - 1 )kSzk(t) * Rzk(t)) and by Kananthai [2, Theorem 3.2] for k ~< m ~< M, 
we obtain 

u(t) = cke~t6 + c~+~e~t(>6 + ¢k+2e~t~2~ -% . . .  -% cMe~tOM-k 6 

or u(t) = =~Tt~"~MZ.~r=k c Ar--k V • Since e~t Or-k f = Lr-k for k <<. r <<. M and L is defined by ( 3.2 ). Thus L r-k 
is a singular distribution. It follows that u(t) is a singular distribution. That completes 
the proof. [] 
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