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Let A be a Hopf algebra and H a coalgebra. We shall describe and
classify up to an isomorphism all Hopf algebras E that factorize
through A and H: that is E is a Hopf algebra such that A is a Hopf
subalgebra of E , H is a subcoalgebra in E with 1E ∈ H and the
multiplication map A ⊗ H → E is bijective. The tool we use is a
new product, we call it the unified product, in the construction
of which A and H are connected by three coalgebra maps: two
actions and a generalized cocycle. Both the crossed product of an
Hopf algebra acting on an algebra and the bicrossed product of
two Hopf algebras are special cases of the unified product. A Hopf
algebra E factorizes through A and H if and only if E is isomorphic
to a unified product of A and H . All such Hopf algebras E are
classified up to an isomorphism that stabilizes A and H by a
Schreier type classification theorem. A coalgebra version of lazy 1-
cocycles as defined by Bichon and Kassel plays the key role in the
classification theorem.
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Introduction

Let C be a category whose objects are sets endowed with various algebraic structures (S) and D
be a category such that there exists a forgetful functor F : C → D, i.e. a functor that forgets some of
the structures (S). To illustrate, the following are forgetful functors:

F : Gr → S et, F : Lie → V ec, F : Hopf → Co Alg, F : Hopf → Alg
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where Gr, S et , Lie, V ec, Hopf , Co Alg , Alg are the categories of all groups, sets, Lie algebras, vector
spaces, Hopf algebras, coalgebras and respectively algebras. In this context we formulate a general
problem which may be of interest for many areas of mathematics:

Extending structures problem (ES). Let F : C → D be a forgetful functor and consider two objects C ∈ C ,
D ∈ D such that F (C) is a subobject of D in D. Describe and classify all mathematical structures (S) that
can be defined on D such that D becomes an object of C and C is a subobject of D in the category C (the
classification is up to an isomorphism that stabilizes C and a certain type of fixed quotient D/C ).

The classification part of the ES-problem is a challenge for the introduction of new types of coho-
mology. The ES-problem generalizes and unifies two famous and still open problems in the theory of
groups: the extension problem of Hölder [9] and the factorization problem of Ore [14]. Let us explain
this. In [1] we formulated the ES-problem at the level of groups, corresponding to the forgetful func-
tor F : Gr → S et: if A is a group and E a set such that A ⊆ E [1, Corollary 2.10], describe all group
structures (E, ·) that can be defined on the set E such that A is a subgroup of (E, ·). In order to do
that we have introduced a new product for groups, called the unified product [1, Theorem 2.6], such
that both the crossed product (the tool for the extension problem) and the bicrossed product (the tool
for the factorization problem) of two groups are special cases of it. The unified product for groups is
associated to a group A and a new hidden algebraic structure (H,∗), connected by two actions and a
generalized cocycle satisfying some compatibility conditions.

We now take a step forward and formulate the ES-problem at the level of Hopf algebras corre-
sponding to the forgetful functor F : Hopf → Co Alg:

(H-C) Extending structures problem. Let A be a Hopf algebra and E a coalgebra such that A is a subcoal-
gebra of E. Describe and classify all Hopf algebra structures that can be defined on E such that A is a Hopf
subalgebra of E.

There is of course a dual version of the ES-problem corresponding to the forgetful functor
F : Hopf → Alg to be addressed somewhere else. If at the level of groups the ES-problem is ele-
mentary, for Hopf algebras the problem is more difficult. Indeed, let A be a group and E a set such
that A ⊆ E . For a field k we look at the extension k[A] ⊆ k[E], where k[A] is the group algebra that
is a Hopf algebra and a subcoalgebra in the group-like coalgebra k[E]. Assume now that (E, ·) is a
group structure on the set E such that A is a subgroup of (E, ·). Thus, we obtain an extension of
Hopf algebras k[A] ⊆ k[E]. This extension of Hopf algebras has a remarkable property: let H ⊆ E be a
system of representatives for the right cosets of the subgroup A in the group (E, ·) such that 1E ∈ H .
Since the map u : A × H → E , u(a,h) = a · h is bijective, we obtain that the multiplication map

k[A] ⊗ k[H] → k[E], a ⊗ h �→ a · h

is bijective, i.e. the Hopf algebra k[E] factorizes through the Hopf subalgebra k[A] and the subcoalgebra
k[H]. This is not valid for arbitrary extensions of Hopf algebras. Therefore, we have to restrict the
(H-C) extending structures problem to those Hopf algebras E that factorize through a given Hopf
subalgebra A and a given subcoalgebra H : we called this the restricted (H-C) ES-problem and we
shall give a complete answer to it in the present paper. It turns out that H is not only a subcoalgebra
of E but will be endowed additionally with a hidden algebraic structure that will play the role of the
system of representatives for congruence in the theory of groups.

The paper is organized as follows: In the first section we recall the classical constructions of the
crossed product of a Hopf algebra H acting on an algebra A and of the bicrossed product (double cross
product in Majid’s terminology) of two Hopf algebras H and A, as the product that we define will
generalize both of them. In Section 2 we define the concept of an extending structure of a bialgebra
A consisting of a system Ω(A) = (H,�, 	, f ), where H is a coalgebra and an unitary not necessar-
ily associative algebra such that A and H are connected by three coalgebra maps � : H ⊗ A → H ,
	 : H ⊗ A → A, f : H ⊗ H → A satisfying some natural normalization conditions (Definition 2.1). For
a bialgebra extending structure Ω(A) = (H,�, 	, f ) of A we define a product A �Ω(A) H = A � H
and call it the unified product: both the crossed product of an Hopf algebra acting on an algebra and
the bicrossed product (double cross product in Majid’s terminology) of two Hopf algebras are special
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cases of the unified product. Theorem 2.4 gives necessary and sufficient conditions for A � H to be a
bialgebra, which is precisely the Hopf algebra version of [1, Theorem 2.6] proven for the group case
that served as a model for us. The seven compatibility conditions in Theorem 2.4 are very natural
and, mutatis–mutandis, are the ones (with two reasonable deformations via the right action �) that
appear in the construction of the crossed product and the bicrossed product of two Hopf algebras.
Theorem 2.7 proves that a Hopf algebra E factorizes through a Hopf subalgebra A and a subcoalgebra
H if and only if E is isomorphic to a unified product of A and H and gives the answer for the first
part of the restricted (H-C) ES-problem.

Section 3 is devoted to the classification part of the restricted (H-C) ES-problem. Our view point
descends from the classical classification theorem of Schreier at the level of groups: all extensions
of an abelian group K by a group Q are classified by the second cohomology group H2(Q , K ) [15,
Theorem 7.34]. Let A be a Hopf algebra. Two Hopf algebra extending structures Ω(A) = (H,�, 	, f )
and Ω ′(A) = (H,�′, 	′, f ′) are called equivalent if there exists ϕ : A �

′ H → A � H a left A-module,
a right H-comodule and a Hopf algebra map. As in group extension theory we shall prove that any
such morphism ϕ : A �

′ H → A � H is an isomorphism and the following diagram

A
i A

IdA

A 	� H
πH

ϕ

H

IdH

A
i A

A 	�′ H
πH

H

is commutative. Theorem 3.4 shows that any such morphism ϕ : A �
′ H → A � H is uniquely deter-

mined by a coalgebra lazy 1-cocycle: i.e. a unitary coalgebra map u : H → A such that:

h(1) ⊗ u(h(2)) = h(2) ⊗ u(h(1))

for all h ∈ H . Corollary 3.6 is the Schreier type classification theorem for unified products: the part of
the second cohomology group from the theory of groups will be played now by a special quotient set
H2

l,c(H, A,�). Also, a classification result for bicrossed product of two Hopf algebras is derived from
Theorem 3.4.

1. Preliminaries

Throughout this paper, k will be a field. Unless specified otherwise, all algebras, coalgebras, bial-
gebras, tensor products and homomorphisms are over k. For a coalgebra C , we use Sweedler’s Σ-
notation: �(c) = c(1) ⊗ c(2) , (I ⊗ �)�(c) = c(1) ⊗ c(2) ⊗ c(3) , etc. (summation understood). Let A be
a bialgebra and H a coalgebra. H is called a right A-module coalgebra if there exists � : H ⊗ A → H
a morphism of coalgebras such that (H,�) is a right A-module. For a k-linear map f : H ⊗ H → A we
denote f (g,h) = f (g ⊗ h); f is the trivial map if f (g,h) = εH (g)εH (h)1A , for all g , h ∈ H . Similarly,
the k-linear maps � : H ⊗ A → H , 	 : H ⊗ A → A are the trivial actions if h � a = εA(a)h and respec-
tively h 	 a = εH (h)a, for all a ∈ A and h ∈ H . For further computations, the fact that � : H ⊗ A → H ,
	 : H ⊗ A → A and f : H ⊗ H → A are coalgebra maps can be written explicitly as follows:

�H (h � a) = h(1) � a(1) ⊗ h(2) � a(2), εA(h � a) = εH (h)εA(a) (1)

�A(h 	 a) = h(1) 	 a(1) ⊗ h(2) 	 a(2), εA(h 	 a) = εH (h)εA(a) (2)

�A
(

f (g,h)
) = f (g(1),h(1)) ⊗ f (g(2),h(2)), εA

(
f (g,h)

) = εH (g)εH (h) (3)

for all g,h ∈ H , a ∈ A.
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Crossed product of Hopf algebras. The crossed product of a Hopf algebra H acting on a k-algebra
A was introduced independently in [5] and [8] as a generalization of the crossed product of groups
acting on k-algebras. Let H be a Hopf algebra, A a k-algebra and two k-linear maps 	 : H ⊗ A → A,
f : H ⊗ H → A such that

h 	 1A = εH (h)1A, 1H � a = a

h � (ab) = (h(1) � a)(h(2) � b), f (h,1H ) = f (1H ,h) = εH (h)1A

for all h ∈ H , a, b ∈ A. The crossed product A# f H of A with H is the k-module A ⊗ H with the
multiplication given by

(a#h)(c#g) := a(h(1) 	 c) f (h(2), g(1)) # h(3)g(2) (4)

for all a, c ∈ A, h, g ∈ H , where we denoted a ⊗ h by a#h. It can be proved [13, Lemma 7.1.2] that
A# f H is an associative algebra with identity element 1A#1H if and only if the following two com-
patibility conditions hold:

[
g(1) 	 (h(1) 	 a)

]
f (g(2),h(2)) = f (g(1),h(1))

(
(g(2)h(2)) 	 a

)
(5)

(
g(1) 	 f (h(1), l(1))

)
f (g(2),h(2)l(2)) = f (g(1),h(1)) f (g(2)h(2), l) (6)

for all a ∈ A, g,h, l ∈ H . The first compatibility is called the twisted module condition while (6) is
called the cocycle condition. The crossed product A# f H was studied only as an algebra extension
of A, being an essential tool in Hopf-Galois extensions theory. If, in addition, we suppose that A is
also a Hopf algebra, a natural question arises: when does the crossed product A# f H have a Hopf algebra
structure with the coalgebra structure given by the tensor product of coalgebras? In case that � and f are
coalgebra maps, as a consequence of Theorem 2.4, we will show in Example 2.5 that A# f H is a Hopf
algebra if and only if the following two compatibility conditions hold:

g(1) ⊗ g(2) 	 a = g(2) ⊗ g(1) 	 a

g(1)h(1) ⊗ f (g(2),h(2)) = g(2)h(2) ⊗ f (g(1),h(1))

for all g,h ∈ H and a,b ∈ A.

Bicrossed product of Hopf algebras. The bicrossed product of Hopf algebras was introduced by Majid
in [11, Proposition 3.12] under the name of double cross product. We shall adopt the name of bi-
crossed product from [10, Theorem 2.3]. A matched pair of bialgebras is a system (A, H,�,�), where
A and H are bialgebras, � : H ⊗ A → H , 	 : H ⊗ A → A are coalgebra maps such that (A,�) is a left
H-module coalgebra, (H,�) is a right A-module coalgebra and the following compatibility conditions
hold:

1H � a = εA(a)1H ,h 	 1A = εH (h)1A (7)

g 	 (ab) = (g(1) 	 a(1))
(
(g(2) � a(2)) 	 b

)
(8)

(gh) � a = (
g � (h(1) 	 a(1))

)
(h(2) � a(2)) (9)

g(1) � a(1) ⊗ g(2) 	 a(2) = g(2) � a(2) ⊗ g(1) 	 a(1) (10)



A.L. Agore, G. Militaru / Journal of Algebra 336 (2011) 321–341 325
for all a,b ∈ A, g,h ∈ H . Let (A, H,�,�) be a matched pair of bialgebras; the bicrossed product A 	� H
of A with H is the k-module A ⊗ H with the multiplication given by

(a 	� h) · (c 	� g) := a(h(1) 	 c(1)) 	� (h(2) � c(2))g (11)

for all a, c ∈ A, h, g ∈ H , where we denoted a ⊗ h by a 	� h. A 	� H is a bialgebra with the coalgebra
structure given by the tensor product of coalgebras and moreover, if A and H are Hopf algebras, then
A 	� H has an antipode given by the formula:

S(a 	� h) := (
1A 	� S H (h)

) · (S A(a) 	� 1H
)

(12)

for all a ∈ A and h ∈ H [12, Theorem 7.2.2].

2. Bialgebra extending structures and unified products

In this section we shall introduce the unified product for bialgebras; this will be the tool for
answering the restricted (H-C) ES-problem. First we need the following:

Definition 2.1. Let A be a bialgebra. An extending datum of A is a system Ω(A) = (H,�,	, f ) where:

(i) H = (H,�H , εH ,1H , ·) is a k-module such that (H,�H , εH ) is a coalgebra, (H,1H , ·) is an unitary,
not necessarily associative k-algebra, such that

�H (1H ) = 1H ⊗ 1H (13)

(ii) The k-linear maps � : H ⊗ A → H , 	 : H ⊗ A → A, f : H ⊗ H → A are morphisms of coalgebras
such that the following normalization conditions hold:

h 	 1A = εH (h)1A, 1H 	 a = a, 1H � a = εA(a)1H , h � 1A = h (14)

f (h,1H ) = f (1H ,h) = εH (h)1A (15)

for all h ∈ H , a ∈ A.

Let A be a bialgebra and Ω(A) = (H,�,	, f ) an extending datum of A. We denote by A �Ω(A) H =
A � H the k-module A ⊗ H together with the multiplication:

(a � h) • (c � g) := a(h(1) 	 c(1)) f (h(2) � c(2), g(1)) � (h(3) � c(3)) · g(2) (16)

for all a, c ∈ A and h, g ∈ H , where we denoted a ⊗ h ∈ A ⊗ H by a � h.

Definition 2.2. Let A be a bialgebra and Ω(A) = (H,�,	, f ) be an extending datum of A. The object
A � H introduced above is called the unified product of A and Ω(A) if A � H is a bialgebra with the
multiplication given by (16), the unit 1A � 1H and the coalgebra structure given by the tensor product
of coalgebras, i.e.:

�A�H (a � h) = a(1) � h(1) ⊗ a(2) � h(2) (17)

εA�H (a � h) = εA(a)εH (h) (18)

for all h ∈ H , a ∈ A. In this case the extending datum Ω(A) = (H,�,	, f ) is called a bialgebra extending
structure of A. The maps � and � are called the actions of Ω(A) and f is called the (�,�)-cocycle
of Ω(A). A bialgebra extending structure Ω(A) = (H,�,	, f ) is called a Hopf algebra extending structure
of A if A � H has an antipode.
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The multiplication given by (16) has a rather complicated formula; however, for some specific
elements we obtain easier forms which will be useful for future computations.

Lemma 2.3. Let A be a bialgebra and Ω(A) = (H,�,	, f ) an extending datum of A. The following cross-
relations hold:

(a � 1H ) • (c � g) = ac � g (19)

(a � g) • (1A � h) = af (g(1),h(1)) � g(2) · h(2) (20)

(a � g) • (b � 1H ) = a(g(1) 	 b(1)) � g(2) � b(2) (21)

Proof. Straightforward using the normalization conditions (13)–(15). �
It follows from (19) that the map i A : A → A � H , i A(a) := a � 1H , for all a ∈ A, is a k-algebra map

and

(a � 1H ) • (1A � g) = a � g (22)

for all a ∈ A and g ∈ H . Hence the set T := {a � 1H | a ∈ A}∪ {1A � g | g ∈ H} is a system of generators
as an algebra for A � H and this observation will turn out to be essential in proving the next theorem
which provides necessary and sufficient conditions for A � H to be a bialgebra: it is the Hopf algebra
version of [1, Theorem 2.6] where the unified product for groups is constructed.

Theorem 2.4. Let A be a bialgebra and Ω(A) = (H,�,	, f ) an extending datum of A. The following state-
ments are equivalent:

(1) A � H is an unified product;
(2) The following compatibilities hold:

(2a) �H : H → H ⊗ H and εH : H → k are k-algebra maps;
(2b) (H,�) is a right A-module structure;
(2c) (g · h) · l = (g � f (h(1), l(1))) · (h(2) · l(2));
(2d) g 	 (ab) = (g(1) 	 a(1))[(g(2) � a(2)) 	 b];
(2e) (g · h) � a = [g � (h(1) 	 a(1))] · (h(2) � a(2));
(2f) [g(1) 	 (h(1) 	 a(1))] f (g(2) � (h(2) 	 a(2)),h(3) � a(3)) = f (g(1),h(1))[(g(2) · h(2)) 	 a];
(2g) (g(1) 	 f (h(1), l(1))) f (g(2) � f (h(2), l(2)),h(3) · l(3)) = f (g(1),h(1)) f (g(2) · h(2), l);
(2h) g(1) � a(1) ⊗ g(2) 	 a(2) = g(2) � a(2) ⊗ g(1) 	 a(1);
(2i) g(1) · h(1) ⊗ f (g(2),h(2)) = g(2) · h(2) ⊗ f (g(1),h(1))

for all g,h, l ∈ H and a,b ∈ A.

Before going into the proof of the theorem, we have a few observations on the relations (2a)–(2i)
in Theorem 2.4. Although they look rather complicated at first sight, they are in fact quite natural
and can be interpreted as follows: (2a) and (2b) show that (H,�H , εH ,1H , ·) is a non-associative
bialgebra and a right A-module coalgebra via �. (2c) measures how far (H,1H , ·) is from being an
associative algebra. (2d), (2e) and (2h) are exactly, mutatis–mutandis, the compatibility conditions
(7)–(10) appearing in the definition of a matched pair of bialgebras. (2f) and (2g) are deformations via
the action � of the twisted module condition (5) and respectively of the cocycle condition (6) which
appears in the definition of the crossed product for Hopf algebras. (2i) is a symmetry condition for
the cocycle f similar to (2h). Both relations are trivially fulfilled if, for example, H is cocommutative
or f is the trivial cocycle.

Proof. We prove Theorem 2.4 in several steps. From (19) and (21) it is straightforward that 1A � 1H
is a unit for the algebra (A � H,•). Next, we prove that εA�H given by (18) is an algebra map if and
only if εH : H → k is an algebra map. For h, g ∈ H we have:
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εA�H
(
(1A � h) • (1A � g)

) (20)= εA�H
(

f (h(1), g(1)) � g(2) · h(2)

)

(3)= εH (h(1))εH (g(1))εH (g(2) · h(2))

= εH (g · h)

and ε(1A � h)ε(1A � g) = εH (h)εH (g). Thus, if εA�H is a k-algebra map then εH is a k-algebra map.
Conversely, suppose that εH is a k-algebra map. Then, we have:

εA�H
(
(a � h) • (c � g)

) = εA(a)εH (h(1))εA(c(1))εH (h(2))εA(c(2))εH (g(1))εH (h(3))

× εA(c(3))εH (g(2))

= εA(a)εH (h)εA(c)εH (g)

= εA�H (a � h)εA�H (c � g)

for all a, c ∈ A and h ∈ H i.e. εA�H is an algebra map.
The next step is to prove that �A�H is a k-algebra map if and only if �H : H → H ⊗ H is a k-

algebra map and the relations (2h), (2i) hold. Observe that �A�H (1A � 1H )
(13)= 1A � 1H ⊗ 1A � 1H .

Since T = {a � 1H | a ∈ A} ∪ {1A � g | g ∈ H} generates A � H as an algebra, �A�H is a k-algebra map
if and only if �A�H (xy) = �A�H (x)�A�H (y) for all x, y ∈ T . First, observe that:

�A�H
(
(a � 1H ) • (b � 1H )

) = �A�H (ab � 1H )

= a(1)b(1) � 1H ⊗ a(2)b(2) � 1H

= (a(1) � 1H ⊗ a(2) � 1H )(b(1) � 1H ⊗ b(2) � 1H )

= �A�H (a � 1H )�A�H (b � 1H )

and

�A�H
(
(a � 1H ) • (1A � g)

) = �A�H (a � g)

= a(1) � g(1) ⊗ a(2) � g(2)

= (a(1) � 1H ⊗ a(2) � 1H )(1A � g(1) ⊗ 1A � g(2))

= �A�H (a � 1H )�A�H (1A � g)

for all a,b ∈ A, g ∈ H . There are two more relations to consider; for g,h ∈ H we have:

�A�H
(
(1A � g) • (1A � h)

) (20)= �A�H
(

f (g(1),h(1)) � g(2) · h(2)

)

(3)= f (g(1)(1),h(1)(1)) � (g(2) · h(2))(1)

⊗ f (g(1)(2),h(1)(2)) � (g(2) · h(2))(2)

= f (g(1),h(1)) � (g(3) · h(3))(1)

⊗ f (g(2),h(2)) � (g(3) · h(3))(2)

and
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�A�H (1A � g)�A�H (1A � h) = (1A � g(1) ⊗ 1A � g(2))(1A � h(1) ⊗ 1A � h(2))

(20)= f (g(1),h(1)) � g(2) · h(2) ⊗ f (g(3),h(3)) � g(4) · h(4)

Thus �A�H ((1A � g) • (1A � h) = �A�H (1A � g)�A�H (1A � h) if and only if

f (g(1),h(1)) � (g(3) · h(3))(1) ⊗ f (g(2),h(2)) � (g(3) · h(3))(2)

= f (g(1),h(1)) � g(2) · h(2) ⊗ f (g(3),h(3)) � g(4) · h(4)

We show now that this relation holds if and only if �H : H → H ⊗ H is a k-algebra map and (2i)
holds. Indeed, suppose first that the above relation holds. By applying εA ⊗ Id⊗εA ⊗ Id to it we obtain
�H (g ·h) = g(1) ·h(1) ⊗ g(2) ·h(2) , i.e. �H is a k-algebra map. Furthermore, if we apply εA ⊗ Id⊗ Id⊗εH

to it we obtain g(1) · h(1) ⊗ f (g(2),h(2)) = g(2) · h(2) ⊗ f (g(1),h(1)), i.e. (2i). Conversely, suppose that
�H is a k-algebra map and (2i) holds. We then have:

f (g(1),h(1)) � (g(3) · h(3))(1) ⊗ f (g(2),h(2)) � (g(3) · h(3))(2)

= f (g(1),h(1)) � g(3) · h(3) ⊗ f (g(2),h(2)) � g(4) · h(4)

= f (g(1),h(1)) � g(2)(2) · h(2)(2) ⊗ f (g(2)(1),h(2)(1)) � g(3) · h(3)

(2i)= f (g(1),h(1)) � g(2)(1) · h(2)(1) ⊗ f (g(2)(2),h(2)(2)) � g(3) · h(3)

= f (g(1),h(1)) � g(2) · h(2) ⊗ f (g(3),h(3)) � g(4) · h(4)

as needed. To end with, for the last family of generators we have:

�A�H
(
(1A � g) • (a � 1H )

) (21)= �A�H (g(1) 	 a(1) � g(2) � a(2))

(1), (2)= g(1) 	 a(1) � g(3) � a(3) ⊗ g(2) 	 a(2) � g(4) � a(4)

and

�A�H (1A � g)�A�H (a � 1H ) = (1A � g(1) ⊗ 1A � g(2))(a(1) � 1H ⊗ a(2) � 1H )

(21)= g(1) 	 a(1) � g(2) � a(2) ⊗ g(3) 	 a(3) � g(4) � a(4)

Thus �A�H ((1A � g) • (a � 1H )) = �A�H (1A � g)�A�H (a � 1H ) if and only if

g(1) 	 a(1) � g(3) � a(3) ⊗ g(2) 	 a(2) � g(4) � a(4)

= g(1) 	 a(1) � g(2) � a(2) ⊗ g(3) 	 a(3) � g(4) � a(4)

This relation is equivalent to the compatibility condition (2h): indeed, by applying εA ⊗ Id ⊗ Id ⊗ εH

to it we obtain (2h). Conversely suppose that (2h) holds. Then:

g(1) 	 a(1) � g(3) � a(3)⊗g(2) 	 a(2) � g(4) � a(4)

(2h)= g(1) 	 a(1) � g(2) � a(2) ⊗ g(3) 	 a(3) � g(4) � a(4)

as needed.
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To resume, we proved until now that �A�H and εA�H are k-algebra maps if and only if the
relations (2a), (2h), (2i) hold. In what follows we shall prove, in the hypothesis that �A�H and εA�H

are k-algebra maps, that the multiplication given by (16) is associative if and only if the compatibility
conditions (2b)–(2g) hold. This will end the proof. We make use again of the fact that T generates
A � H as an algebra. Thus • is associative if and only if x • (y • z) = (x • y) • z, for all x, y, z ∈ T . To
start with, we will prove that:

(a � 1H ) • (y • z) = [
(a � 1H ) • y

] • z

for all a ∈ A and y, z ∈ T . Indeed, we have:

(a � 1H ) • (
(1A � g) • (b � 1H )

) (21)= (a � 1H ) • (g(1) 	 b(1) � g(2) � b(2))

(19)= a(g(1) 	 b(1)) � (g(2) � b(2)))

(21)= (a � g) • (b � 1H )

= (
(a � 1H ) • (1A � g)

) • (b � 1H )

and

(a � 1H ) • (
(1A � g) • (1A � h)

) (20)= (a � 1H ) • (
f (g(1),h(1)) � g(2) · h(2)

)

(19)= af (g(1),h(1)) � g(2) · h(2)

(20)= (a � g) • (1A � h)

(19)= (
(a � 1H ) • (1A � g)

) • (1A � h)

The other two possibilities for choosing the elements of T can also be proven by a straightforward
computation. Thus • is associative if and only if (1A � g) • (y • z) = [(1A � g) • y] • z, for all g ∈ H , y,
z ∈ T . First we note that:

(1A � g) • (
(a � 1H ) • (1A � h)

) = (1A � g) • (a � h)

= (g(1) 	 a(1)) f (g(2) � a(2),h(1)) � (g(3) � a(3)) · h(2)

(20)= (g(1) 	 a(1) � g(2) � a(2)) • (1A � h)

(21)= (
(1A � g) • (a � 1H )

) • (1A � h)

On the other hand:

(1A � g) • (
(b � 1H ) • (c � 1H )

) = (1A � g) • (bc � 1H )

(21)= g(1) 	 (b(1)c(1)) � g(2) � (b(2)c(2))

and

(
(1A � g) • (b � 1H )

) • (c � 1H )
(21)= (g(1) 	 b(1) � g(2) � b(2)) • (c � 1H )

(21)= (g(1) 	 b(1))
(
(g(2) � b(2)) 	 c(1)

)
� (g(3) � b(3)) � c(2)
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Hence (1A � g) • ((b � 1H ) • (c � 1H )) = ((1A � g) • (b � 1H )) • (c � 1H ) if and only if

g(1) 	 (b(1)c(1)) � g(2) � (b(2)c(2)) = (g(1) 	 b(1))
(
(g(2) � b(2)) 	 c(1)

)
� (g(3) � b(3)) � c(2) (23)

for all b, c ∈ A and g ∈ H . We show now that the relation (23) is equivalent to the compatibility
conditions (2b) and (2d). Indeed, by applying εA ⊗ Id and respectively Id ⊗ εH in (23) we obtain
relations (2b) respectively (2d). Conversely, suppose that relations (2b) and (2d) hold. We then have:

(g(1) 	 b(1))
(
(g(2) � b(2)) 	 c(1)

)
� (g(3) � b(3)) � c(2)

= (g(1)(1) 	 b(1)(1))
(
(g(1)(2) � b(1)(2)) 	 c(1)

)
� (g(2) � b(2)) � c(2)

(2d)= g(1) 	 (b(1)c(1)) ⊗ (g(2) � b(2)) � c(2)

(2b)= g(1) 	 (b(1)c(1)) ⊗ g(2) � (b(2)c(2))

i.e. (23) holds. Now we deal with the last two cases. Since 	 is a coalgebra map we obtain:

(1A � g) • (
(1A � h) • (a � 1H )

) (21)= (1A � g) • (h(1) 	 a(1) � h(2) � a(2))

(2)= (
g(1) 	 (h(1) 	 a(1))

)
f
(

g(2) � (h(2) 	 a(2)),h(4) � a(4)

)

�

[
g(3) � (h(3) 	 a(3))

] · (h(5) � a(5))

and

(
(1A � g) • (1A � h)

) • (a � 1H )
(20)= (

f (g(1),h(1)) � g(2) · h(2)

) • (a � 1H )

(21)= f (g(1),h(1))
[
(g(2) · h(2)) 	 a(1)

]
� (g(3) · h(3)) � a(2)

Thus (1A � g) • ((1A � h) • (a � 1H )) = ((1A � g) • (1A � h)) • (a � 1H ) if and only if

(
g(1) 	 (h(1) 	 a(1))

)
f
(

g(2) � (h(2) 	 a(2)),h(4) � a(4)

)
�

[
g(3) � (h(3) 	 a(3))

] · (h(5) � a(5))

= f (g(1),h(1))
[
(g(2) · h(2)) 	 a(1)

]
� (g(3) · h(3)) � a(2)

We shall prove, using (2h), that this relation is equivalent to the compatibility conditions (2e) and (2f).
Indeed, by applying Id ⊗ εH and respectively εA ⊗ Id to it we obtain (2e) and respectively (2f). Con-
versely, suppose that relations (2e) respectively (2f) hold. We denote LHS the left-hand side of the
above

LHS = (
g(1) 	 (h(1) 	 a(1))

)
f
(

g(2) � (h(2) 	 a(2)),h(3)(2) � a(3)(2)

)

�

[
g(3) � (h(3)(1) 	 a(3)(1))

] · (h(4) � a(4))

(2h)= (
g(1) 	 (h(1) 	 a(1))

)
f
(

g(2) � (h(2) 	 a(2)),h(3) � a(3)

)

�

[
g(3) � (h(4) 	 a(4))

] · (h(5) � a(5))

(2f)= f (g(1),h(1))
[
(g(2) · h(2)) 	 a(1)

] ⊗ [
g(3) � (h(3) 	 a(2))

] · (h(4) � a(3))

(2e)= f (g(1),h(1))
[
(g(2) · h(2)) 	 a(1)

] ⊗ (g(3) · h(3)) � a(2)
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as needed. Only one associativity relation remains to be verified:

(1A � g) • (
(1A � h) • (1A � l)

) (20)= (1A � g) • (
f (h(1), l(1)) � h(2) · l(2)

)

(3)= (
g(1) 	 f (h(1), l(1))

)
f
(

g(2) � f (h(2), l(2)),h(4) · l(4)

)

�

(
g(3) � f (h(3), l(3))

) · (h(5) · l(5))

and

(
(1A � g) • (1A � h)

) • (1A � l)
(20)= (

f (g(1),h(1)) � g(2) · h(2)

) • (1A � l)

(20)= f (g(1),h(1)) f (g(2) · h(2), l(1)) � (g(3) · h(3)) · l(2)

Hence (1A � g) • ((1A � h) • (1A � l)) = ((1A � g) • (1A � h)) • (1A � l) if and only if

(
g(1) 	 f (h(1), l(1))

)
f
(

g(2) � f (h(2), l(2)),h(4) · l(4)

) ⊗ (
g(3) � f (h(3), l(3))

) · (h(5) · l(5))

= f (g(1),h(1)) f (g(2) · h(2), l(1)) ⊗ (g(3) · h(3)) · l(2)

for all g,h, l ∈ H . We shall prove, using (2i), that this relation is equivalent to the compatibility con-
ditions (2c) and (2g). Indeed, by applying Id ⊗ εH and respectively εA ⊗ Id to it we obtain (2c) and
respectively (2g). Conversely, suppose that relations (2c) and (2g) hold and denote LHS′ the left-hand
side of the above relation. Then:

LHS′ = (
g(1) 	 f (h(1), l(1))

)
f
(

g(2) � f (h(2), l(2)),h(3)(2) · l(3)(2)

)

⊗ (
g(3) � f (h(3)(1), l(3)(1))

) · (h(4) · l(4))

(2i)= (
g(1) 	 f (h(1), l(1))

)
f
(

g(2) � f (h(2), l(2)),h(3) · l(3)

)

⊗ (
g(3) � f (h(4), l(4))

) · (h(5) · l(5))

(2g)= f (g(1),h(1)) f (g(2) · h(2), l(1)) ⊗ (
g(3) � f (h(3), l(2))

) · (h(4) · l(3))

= f (g(1),h(1)) f (g(2) · h(2), l(1)) ⊗ (
g(3) � f (h(3)(1), l(2)(1))

) · (h(3)(2) · l(2)(2))

(2c)= f (g(1),h(1)) f (g(2) · h(2), l(1)) ⊗ (g(3) · h(3)) · l(2)

as needed and the proof is now finished. �
Examples 2.5. 1. Let A be a bialgebra and Ω(A) = (H,�,	, f ) an extending datum of A such that the
cocycle f is trivial, that is f (g,h) = εH (g)εH (h)1A , for all g , h ∈ H .

Then Ω(A) = (H,�,	, f ) is a bialgebra extending structure of A if and only if H is a bialgebra and
(A, H,�,	) is a matched pair of bialgebras. In this case, the associated unified product A � H = A 	� H
is the bicrossed product of bialgebras constructed in (11).

Conversely, a matched pair of bialgebras can be deformed using a coalgebra lazy cocycle in order to
obtain a bialgebra extending structure as follows. Let (A, H,�,	) be a matched pair of bialgebras such
that A has antipode S A and u : H → A a coalgebra lazy 1-cocycle in the sense of Definition 3.3 such
that h � u(g) = hεH (g), for all h ∈ H and g ∈ G . Then Ω(A) = (H,�,	′, f ′) is a bialgebra extending
structure of A, where 	′ and f ′ are given by
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h 	′ c = u(h(1))(h(2) 	 c(1))S A
(
u(h(3) � c(2))

)

f ′(h, g) = u(h(1))
(
h(2) 	 u(g(1))

)
S A

(
u(h(3)g(2))

)

for all h, g ∈ H and c ∈ A.
2. Let A be a bialgebra and Ω(A) = (H,�,	, f ) an extending datum of A such that the action �

is trivial, that is h � a = εA(a)h, for all h ∈ H and a ∈ A.
Then Ω(A) = (H,�,	, f ) is a bialgebra extending structure of A if and only if H is an usual

bialgebra and the following compatibility conditions are fulfilled:

(a) The twisted module condition (5) and the cocycle condition (6) hold;
(b) g 	 (ab) = (g(1) 	 a)(g(2) 	 b);
(c) g(1) ⊗ g(2) 	 a = g(2) ⊗ g(1) 	 a;
(d) g(1)h(1) ⊗ f (g(2),h(2)) = g(2)h(2) ⊗ f (g(1),h(1))

for all g , h ∈ H and a, b ∈ A.
In this case, the associated unified product A � H = A# f H is the crossed product constructed

in (4). In particular, if A is a bialgebra, the crossed product A# f H is a bialgebra with the coalgebra
structure given by the tensor product of coalgebras if and only if the compatibility conditions (c) and
(d) above hold.

Let A be a bialgebra and Ω(A) = (H,�,	, f ) a bialgebra extending structure of A. Then i A : A →
A � H , i A(a) = a � 1H , for all a ∈ A is an injective bialgebra map, iH : H → A � H , iH (h) = 1A ⊗ h, for
all h ∈ H is an injective coalgebra map and

u : A ⊗ H → A � H, u(a ⊗ h) = i A(a) • iH (h) = (a � 1H ) • (1A � h) = a � h

for all a ∈ A and h ∈ H is bijective, i.e. the unified product A � H factorizes through A and H . The
next theorem shows the converse of this remark: any bialgebra E that factorizes through a subbial-
gebra of A and a subcoalgebra H is isomorphic to a unified product. In order to avoid complicated
computations we use the following elementary remark:

Lemma 2.6. Let E be a bialgebra, L a coalgebra and u : L → E an isomorphism of coalgebras. Then there exists
a unique algebra structure on L such that u : L → E is an isomorphism of bialgebras given by:

l · l′ := u−1(u(l)u
(
l′
))

, 1L := u−1(1E)

for all l, l′ ∈ L. Furthermore, if E has an antipode S E , then L is a Hopf algebra with the antipode S L :=
u−1 ◦ S E ◦ u.

Proof. Straightforward: the algebra structure on L is obtained by transferring the algebra structure
from E via the isomorphism of coalgebras u. The multiplication on L is a coalgebra map since it is
a composition of coalgebra maps. �
Theorem 2.7. Let E be a bialgebra, A ⊆ E a subbialgebra, H ⊆ E a subcoalgebra such that 1E ∈ H and the
multiplication map u : A ⊗ H → E, u(a ⊗ h) = ah, for all a ∈ A, h ∈ H is bijective.

Then, there exists Ω(A) = (H,�,	, f ) a bialgebra extending structure of A such that u : A � H → E,
u(a � h) = ah is an isomorphism of bialgebras. Furthermore, if E is a Hopf algebra then A � H is a Hopf
algebra.
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Proof. Since E is a bialgebra, the multiplication mE : E ⊗ E → E is a coalgebra map. Thus
u : A ⊗ H → E is in fact an isomorphism of coalgebras, with its inverse u−1 : E → A ⊗ H which is
also a coalgebra map. The k-linear map

μ : H ⊗ A → A ⊗ H, μ(h ⊗ a) := u−1(ha)

for all h ∈ H and a ∈ A is a coalgebra map as a composition of coalgebra maps. We define the actions
	, � by the formulas:

	 : H ⊗ A → A, 	 := (Id ⊗ εH ) ◦ μ (24)

� : H ⊗ A → H, � := (εA ⊗ Id) ◦ μ (25)

They are coalgebra maps as compositions of coalgebra maps. Moreover, the normalization conditions
(14) and (15) are trivially fulfilled. More explicitly, 	 and � are given as follows: let h ∈ H and c ∈ A.
Since u is a bijective map, there exists an unique element

∑
j α j ⊗ l j ∈ A ⊗ H such that hc = ∑

j α jl j .
Then:

h 	 c =
∑

j

α jεH (l j), h � c =
∑

j

εA(α j)l j

Next we construct the coalgebra maps f : H ⊗ H → A and · : H ⊗ H → H . The k-linear map

ν : H ⊗ H → A ⊗ H, ν(h ⊗ g) := u−1(hg)

for all h, g ∈ H is a coalgebra map as a composition of coalgebra maps. We define:

f : H ⊗ H → A, f := (Id ⊗ εH ) ◦ ν (26)

· : H ⊗ H → H, · := (εA ⊗ Id) ◦ ν (27)

They are coalgebra maps as compositions of coalgebra maps. The normalization conditions 1E · h =
h · 1E = h and f (h,1E ) = f (1E ,h) = εH (h)1A , for all h ∈ H are trivially fulfilled.

In order to prove that Ω(A) = (H,�,	, f , ·) is a bialgebra extending structure of A we use
Lemma 2.6 and then Theorem 2.4: the unique algebra structure that can be defined on A ⊗ H such
that u becomes an isomorphism of bialgebras is given by:

(a ⊗ h) • (c ⊗ g) = u−1(u(a ⊗ h)u(c ⊗ g)
)

= u−1(ahcg)

This algebra structure on A ⊗ H coincides with the one given by (16) on a unified product if and only
if

u−1(ahcg) = a(h(1) 	 c(1)) f (h(2) � c(2), g(1)) ⊗ (h(3) � c(3)) · g(2)

Since u is a bijective map the above formula holds if and only if:

hcg = (h(1) 	 c(1)) f (h(2) � c(2), g(1))
(
(h(3) � c(3)) · g(2)

)
(28)
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holds for all c ∈ A and h, g ∈ H . Therefore, the proof is finished if we prove that the relation (28) holds
in the bialgebra E . Let c ∈ A and h, g ∈ H . Then there exists an unique element

∑n
j=1 α j ⊗ l j ∈ A ⊗ H

such that:

hc =
n∑

j=1

α jl j (29)

Hence h 	 c = ∑n
j=1 εH (l j)α j and h � c = ∑n

j=1 εA(α j)l j . Moreover, for any j = 1, . . . ,n there exists an
unique element

∑m
i=1 A ji ⊗ Zi ∈ A ⊗ H such that:

l j g =
m∑

i=1

A ji Zi (30)

Using relations (26) and (27) we obtain:

f (l j, g) =
m∑

i=1

εH (Zi)A ji, l j · g =
m∑

i=1

εA(A ji)Zi (31)

and

hcg =
m,n∑

i, j=1

α j A ji Zi (32)

In what follows we use the fact that mE , 	 and � are coalgebra maps. For example, by applying � to
the relation (29) we obtain:

h(1) 	 c(1) ⊗ h(2) � c(2) ⊗ h(3) � c(3) =
n∑

j=1

εH (l j(1))α j(1) ⊗ εA(α j(2))l j(2) ⊗ εA(α j(3))l j(3)

=
n∑

j=1

εH (l j(1))α j ⊗ l j(2) ⊗ l j(3)

=
n∑

j=1

α j ⊗ l j(1) ⊗ l j(2)

Thus, we have:

h(1) 	 c(1) ⊗ h(2) � c(2) ⊗ h(3) � c(3) =
n∑

j=1

α j ⊗ l j(1) ⊗ l j(2) (33)

Moreover, by applying � to the relation (30) and using the relation (31) we obtain:

f (l j(1), g(1)) ⊗ l j(1) · g(2) =
m∑

i=1

εH (Zi(1)
)A ji(1)

⊗ εA(A ji(2)
)Zi(2)

=
m∑

i=1

A ji ⊗ Zi (34)

We denote by RHS the right-hand side of (28). Then:
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RHS
(33)=

n∑

j=1

α j f (l j(1), g(1))l j(2) · g(2)

(34)=
m,n∑

i, j=1

α j A ji Zi

(32)= hcg

Thus the relation (28) holds true and the proof is now finished since u−1(1E ) = 1A ⊗ 1E . We use
Theorem 2.4 in order to obtain that Ω(A) = (H,�,	, f , ·) is a bialgebra extending structure of A.
Moreover, if E is a Hopf algebra then A � H is also a Hopf algebra with the antipode given by
S A�H = u−1 ◦ S E ◦ u according to Lemma 2.6. �
Remark. A special case of Theorem 2.7 above in which A is a normal Hopf subalgebra of E is given
in [3]. Moreover, in [6] is proved that if both A and H are Hopf subalgebras of E and A is normal
then E is a semi-direct product.

Next we construct an antipode for the unified product A � H .

Proposition 2.8. Let A be a Hopf algebra with an antipode S A and Ω(A) = (H,�,	, f ) a bialgebra extending
structure of A such that there exists an antimorphism of coalgebras S H : H → H such that

h(1) · S H (h(2)) = S H (h(1)) · h(2) = εH (h)1H (35)

for all h ∈ H. Then the unified product A � H is a Hopf algebra with the antipode S : A � H → A � H given
by:

S(a � g) := (
S A

[
f
(

S H (g(2)), g(3)

)]
� S H (g(1))

) • (
S A(a) � 1H

)
(36)

for all a ∈ A and g ∈ H.

Proof. Let a � g ∈ A � H . Since the multiplication • on A � H is associative we have:

S(a(1) � g(1)) • (a(2) � g(2))

= (
S A

[
f
(

S H (g(2)), g(3)

)]
� S H (g(1))

) • (
S A(a(1)) � 1H

) • (a(2) � g(4))

(19)= (
S A

[
f
(

S H (g(2)), g(3)

)]
� S H (g(1))

) • (
S A(a(1))a(2) � g(4)

)

= εA(a)
(

S A
[

f
(

S H (g(2)), g(3)

)]
� S H (g(1))

) • (1A � g(4))

(20)= εA(a)S A
(

f
(

S H (g(2)), g(3)

))
f
(

S H (g(1))(1), g(4)(1)

)
� S H (g(1))(2) · g(4)(2)

= εA(a)S A
(

f
(

S H (g(1)(2)), g(2)

))
f
(

S H (g(1)(1))(1), g(3)(1)

)
� S H (g(1)(1))(2) · g(3)(2)

= εA(a)S A
(

f
(

S H (g(1))(1), g(2)

))
f
(

S H (g(1))(2)(1), g(3)(1)

)
� S H (g(1))(2)(2) · g(3)(2)

= εA(a)S A
(

f
(

S H (g(1))(1), g(2)

))
f
(

S H (g(1))(2), g(3)(1)

)
� S H (g(1))(3) · g(3)(2)

= εA(a)S A
(

f
(

S H (g(1))(1), g(2)(1)

))
f
(

S H (g(1))(2), g(2)(2)(1)

)
� S H (g(1))(3) · g(2)(2)(2)

= εA(a)S A
(

f
(

S H (g(1))(1), g(2)(1)

))
f
(

S H (g(1))(2), g(2)(2)

)
� S H (g(1))(3) · g(2)(3)

= εA(a)S A
(

f
(

S H (g(1))(1)(1), g(2)(1)(1)

))
f
(

S H (g(1))(1)(2), g(2)(1)(2)

)

� S H (g(1))(2) · g(2)(2)
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(3)= εA(a)S A
(

f
(

S H (g(1))(1), g(2)(1)

)
(1)

)
f
(

S H (g(1))(1), g(2)(1)

)
(2)

� S H (g(1))(2) · g(2)(2)

= εA(a)εA
(

f
(

S H (g(1))(1), g(2)(1)

))
1A � S H (g(1))(2) · g(2)(2)

(3)= εA(a)εH
(

S H (g(1))(1)

)
εH (g(2)(1)) � S H (g(1))(2) · g(2)(2)

= εA(a)1A � S H (g(1)) · g(2)

= εA(a)εH (g)1A � 1H

Thus S is a left inverse of the identity in the convolution algebra Hom(A � H, A � H). By similar com-
putations one can show that S is also a right inverse of the identity, thus is an antipode of A � H . �

In Proposition 2.8 we imposed the condition for S H to be a coalgebra antimorphism because the
algebra structure on H is not an associative one and for this reason a k-linear map S H which satisfies
the antipode condition (35) is not necessarily a coalgebra antimorphism as in the classical case of
Hopf algebras.

3. The classification of unified products

In this section we prove the classification theorem for unified products: as a special case, a clas-
sification theorem for bicrossed products of Hopf algebras is obtained. Our view point is inspired
from Schreier’s classification theorem for extensions of an abelian group K by a group Q [15, The-
orem 7.34]: they are classified by the second cohomology group H2(Q , K ). Let ϕ : G → G ′ be a
morphism between two extensions of a group K by a group Q , i.e. ϕ is a morphism of groups such
that the diagram

k[K ] i

Id

k[G] π

ϕ

k[Q ]
Id

k[K ] i′
k[G ′] π ′

k[Q ]

is commutative (we wrote the diagram for the induced morphism for group algebras). Then ϕ is an
isomorphism [15, Theorem 7.32]. Now, the left-hand square of the diagram is commutative if and only
if ϕ is a left k[K ]-module map while the right-hand square of the diagram is commutative if and only
if ϕ is a morphism of right k[Q ]-comodules. This motivates the way of considering the classification
of unified products up to an isomorphism of Hopf algebras that is also a left A-module map and a
right H-comodule map.

Let Ω(A) = (H,�,	, f ) be a bialgebra extending structure of A. The unified product A � H is a
right H-comodule via the coaction a �h �→ a �h(1) ⊗h(2) , for all a ∈ A and h ∈ H and a left A-module
via the restriction of scalars map i A : A → A � H .

From now on the Hopf algebra structure on A and the coalgebra structure on H will be set. First,
we need the following.

Lemma 3.1. Let A be a Hopf algebra, Ω(A) = (H,�,	, f ) and Ω ′(A) = (H,�′,	′, f ′) two Hopf algebra
extending structures of A. Then a k-linear map ϕ : A � H → A �

′ H is a left A-module, a right H-comodule
and a coalgebra morphism if and only if there exists a unique morphism of coalgebras u : H → A such that

h(1) ⊗ u(h(2)) = h(2) ⊗ u(h(1)) (37)

for all h ∈ H and ϕ is given by

ϕ(a � h) = au(h(1)) �
′ h(2) (38)
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for all a ∈ A and h ∈ H. Furthermore, any such a morphism ϕ : A � H → A �
′ H is an isomorphism with the

inverse given by

ψ : A �
′ H → A � H, ψ

(
a �

′ h
) = aS A

(
u(h(1))

)
� h(2)

for all a ∈ A and h ∈ H.

Proof. Let ϕ : A � H → A �
′ H be a left A-module, a right H-comodule and a coalgebra morphism.

We shall adopt the notation ϕ(1A � h) = ∑
hA ⊗ hH ∈ A ⊗ H , for all h ∈ H . Since ϕ is a left A-module

map we have

ϕ(a � h) = aϕ(1A � h) = a
∑

hA ⊗ hH

for all a ∈ A and h ∈ H . As ϕ is also a right H-comodule map we have:

∑
ahA ⊗ (

hH)
(1)

⊗ (
hH)

(2)
= ϕ(a � h(1)) ⊗ h(2)

By applying εH on the second position of the above identity we obtain:

ϕ(a � h) =
∑

a(h(1))
AεH

(
(h(1))

H) ⊗ h(2)

for all a ∈ A and h ∈ H . Now, if we define u : H → A by:

u(h) = (Id ⊗ εH ) ◦ ϕ(1A � h) =
∑

hAεH
(
hH)

for all h ∈ H , it follows that (38) holds. We shall prove now that ϕ given by (38) is a coalgebra map if
and only if u is a coalgebra map and (37) holds. First we observe that εA�

′ H ◦ ϕ = εA�H if and only
if εA ◦ u = εH . Now, the fact that ϕ is comultiplicative is equivalent to:

u(h(1))(1) ⊗ h(2) ⊗ u(h(1))(2) ⊗ h(3) = u(h(1)) ⊗ h(2) ⊗ u(h(3)) ⊗ h(4) (39)

for all h ∈ H . By applying Id ⊗ εH ⊗ Id ⊗ εH to this relation we obtain that u is a coalgebra map; using
this fact and then applying εA ⊗ Id⊗ Id⊗εH in relation (39) we obtain relation (37). Conversely, if u is
a coalgebra map such that relation (37) holds, then (39) follows straightforward, i.e. ϕ is a coalgebra
map. The fact that ψ is an inverse for φ is also straightforward. �
Remark 3.2. At this point we should remark the perfect similarity with the theory of extensions from
the groups case. If ϕ : A � H → A �

′ H is a left A-module, a right H-comodule and a coalgebra
morphism between two unified products then the following diagram

A
i A

IdA

A 	� H
πH

ϕ

H

IdH

A
i A

A 	�′ H
πH

H

is commutative and ϕ is an isomorphism.

For A = k and a Hopf algebra H the group H1
l (H,k) of all unitary algebra maps u : H → k satisfying

the compatibility condition (40) below was called in [4, Definition 1.1] the first lazy cohomology group
of H with coefficients in k. We shall now define the coalgebra version of lazy 1-cocycles.
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Definition 3.3. Let A be a Hopf algebra and H a coalgebra, unitary not necessarily associative alge-
bra. A morphism of coalgebras u : H → A is called a coalgebra lazy 1-cocycle if u(1H ) = 1A and the
following compatibility holds:

h(1) ⊗ u(h(2)) = h(2) ⊗ u(h(1)) (40)

for all h ∈ H . We denote by H1
l,c(H, A) the group of all coalgebra lazy 1-cocycles of H with coefficients

in A.

H1
l,c(H, A) is a group with respect to the convolution product. We have to prove that if u and

v ∈ H1
l,c(H, A), then u ∗ v ∈ H1

l,c(H, A). Indeed, is straightforward to prove that u ∗ v satisfy (40). Let
us show that u ∗ v is a morphism of coalgebras. First, if we apply v on the first position in (40) we
obtain v(h(1)) ⊗ u(h(2)) = v(h(2)) ⊗ u(h(1)), for all h ∈ H . Using this relation we obtain:

�A
(
u(h(1))v(h(2))

) = u(h(1))v(h(3)) ⊗ u(h(2))v(h(4))

= u(h(1))v(h(2)) ⊗ u(h(3))v(h(4))

= u ∗ v(h(1)) ⊗ u ∗ v(h(2))

for all h ∈ H , hence u ∗ v is also a coalgebra map.
The main theorem of this section now follows:

Theorem 3.4. Let A be a Hopf algebra, Ω(A) = (H,�,	, f ) and Ω ′(A) = (H,�′,	′, f ′) two Hopf algebra
extending structures of A. Then there exists ϕ : A �

′ H → A � H a left A-module, a right H-comodule and
a Hopf algebra map if and only if �′ = � and there exists a coalgebra lazy 1-cocycle u ∈ H1

l,c(H, A) such that:

h 	′ c = u(h(1))(h(2) 	 c(1))S A
(
u(h(3) � c(2))

)
(41)

f ′(h, g) = u(h(1))
(
h(2) 	 u(g(1))

)
f
(
h(3) � u(g(2)), g(3)

)
S A

(
u
(
h(4) ·′ g(4)

))
(42)

h ·′ g = (
h � u(g(1))

) · g(2) (43)

for all h, g ∈ H and c ∈ A. In this case ϕ is given by (38) and it is an isomorphism.

Proof. We already proved in Lemma 3.1 that ϕ : A �
′ H → A � H is a left A-module, a right H-

comodule and a coalgebra map if and only if ϕ(a �
′ h) = au(h(1)) � h(2) , for all a ∈ A, h ∈ H and for

a unique coalgebra map u : H → A such that the (40) holds. Of course, ϕ(1A �
′ 1H ) = 1A � 1H if and

only if u is unitary. Moreover, as u is a morphism of coalgebras it is invertible in convolution with
the inverse u−1 = S A ◦ u.

In what follows we shall prove, in the hypothesis that ϕ is a coalgebra map and u is unitary, that
ϕ is an algebra map (thus a map of bialgebras) if and only if �′ = � and the compatibility conditions
(41)–(43) hold. By a straightforward computation we can show that ϕ is an algebra map if and only
if

(C)
(
h(1) 	′ c(1)

)
f ′(h(2) �′ c(2), g(1)

)
u
((

h(3) �′ c(3)

) ·′ g(2)

)
�

(
h(4) �′ c(4)

) ·′ g(3)

= u(h(1))
(
h(2) 	 c(1)u(g(1))

)
f
(
h(3) � c(2)u(g(2)), g(4)

)
�

(
h(4) � c(3)u(g(3))

) · g(5)

for all h, g ∈ H and c ∈ A. We shall prove that the compatibility (C) is equivalent to (41)–(43).
Indeed, by considering g = 1H in (C) and then by applying εA ⊗ Id we obtain h �′ c = h � c, for

all h ∈ H and c ∈ A. If we consider again g = 1H we obtain, after applying first Id ⊗ εH and then
inverting u, that (41) holds. Relation (43) is obtained by considering c = 1A in (C), applying Id ⊗ εH
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and finally inverting u. To end with, relation (43) follows by considering c = 1A and by applying
εA ⊗ Id in (C).

Conversely, suppose that h �′ c = h � c, for all h ∈ H and c ∈ A and there exists a coalgebra lazy
1-cocycle u such that relations (41)–(43) are fulfilled. We then have (we denote by LHS the left-hand
side of (C)):

LHS
(41)-(43)= u(h(1)(1))(h(1)(2) 	 c(1)(1))S A

(
u(h(1)(3) � c(1)(2))

)
u(h(2)(1) � c(2)(1))

× (
(h(2)(2) � c(2)(2)) 	 u(g(1)(1))

)
f
(
(h(2)(3) � c(2)(3)) � u(g(1)(2)), g(1)(3)

)

× S A
(
u(h(2)(4) � c(2)(4)) ·′ g(1)(4)

)
u
(
(h(3) � c(3)) ·′ g(2)

)
� (h(4) � c(4)) ·′ g(3)

= u(h(1))(h(2) 	 c(1))S A
(
u(h(3) � c(2))

)
u(h(4) � c(3))

(
(h(5) � c(4)) 	 u(g(1))

)

× f
(
(h(6) � c(5)) � u(g(2)), g(3)

)
S A

(
u(h(7) � c(6)) ·′ g(4)

)
u
(
(h(8) � c(7)) ·′ g(5)

)

� (h(9) � c(8)) ·′ g(6)

= u(h(1))(h(2) 	 c(1))
(
(h(3) � c(2)) 	 u(g(1))

)
f
(
(h(4) � c(3)) � u(g(2)), g(3)

)

� (h(5) � c(4)) ·′ g(4)

(2d)= u(h(1))
(
h(2) 	 (

c(1)u(g(1))
))

f
(
(h(3) � c(2)) � u(g(2)), g(3)

)

� (h(4) � c(3)) ·′ g(4)

(43)= u(h(1))
(
h(2) 	 (

c(1)u(g(1))
))

f
(
(h(3) � c(2)) � u(g(2)), g(3)

)

�

(
h(4) � c(3)u(g(4))

) · g(5)

(40)= u(h(1))
(
h(2) 	 (

c(1)u(g(1))
))

f
(
(h(3) � c(2)) � u(g(2)), g(4)

)

�

(
h(4) � c(3)u(g(3))

) · g(5)

where the third equality holds by using the antipode conditions and the fact that u is a coalgebra
map. Thus (C) holds and the proof is now finished. �

Even if for the classification problem we only set the Hopf algebra structure of A and the coalgebra
structure of H , Theorem 3.4 tells us that we can set also the coalgebra map � : H ⊗ A → H . We shall
phrase Theorem 3.4 as a description of the skeleton for the category C(A, H,�) defined below.

Let A be a Hopf algebra, H a coalgebra with a fixed group-like element 1H ∈ H and � : H ⊗ A → H
a morphism of coalgebras. Let E S(A, H,�) be the set of all triples (·,	, f ) such that ((H,1X , ·),�,	, f )
is a Hopf algebra extending structure of A. The next definition is the Hopf algebra version for unified
product [15, Definition 7.31] given for extensions of groups.

Definition 3.5. Two elements (·,	, f ), (·′,	′, f ′) of E S(A, H,�) are called cohomologous and we denote
this by (·,	, f ) ≈ (·′,	′, f ′) if there exists a coalgebra lazy 1-cocycle u ∈ H1

l,c(H, A) such that the
compatibility conditions (41)–(43) are fulfilled.

It follows from Theorem 3.4 that (·,	, f ) ≈ (·′,	′, f ′) if and only if there exists ϕ : A �
′ H → A � H

a left A-module, a right H-comodule and a Hopf algebra map. Moreover, from Lemma 3.1 we obtain
that any such map ϕ : A �

′ H → A � H is an isomorphism, thus ≈ is an equivalence relation on the
set E S(A, H,�). We denote by H2

l,c(H, A,�) the quotient set E S(A, H,�)/ ≈.
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Let C(A, H,�) be the category whose class of objects is the set E S(A, H,�). A morphism
ϕ : (·,	, f ) → (·,	′, f ′) in C(A, H,�) is a Hopf algebra morphism ϕ : A � H → A �

′ H that is a left
A-module and a right H-comodule map. Thus we obtain the categorical version of Theorem 3.4:

Corollary 3.6 (Schreier theorem for unified products). Let A be a Hopf algebra, H a coalgebra with a group-like
element 1H and � : H ⊗ A → H a morphism of coalgebras. There exists a bijection between the set of objects
of the skeleton of the category C(A, H,�) and the quotient set H2

l,c(H, A,�).

H2
l,c(H, A,�) is for the classification of the unified products the counterpart of the second coho-

mology group for the classification of an extension of an abelian group by a group [15, Theorem 7.34].
We can apply Theorem 3.4 to obtain classification theorems for various special cases of the unified

products: for instance, Doi’s results on the classification of crossed products [7] is obtain as a special
case if we let �′ = � be the trivial actions. Now, we shall indicate the classification of bicrossed
product of Hopf algebras.

Corollary 3.7 (Schreier theorem for bicrossed products). Let A and H be two Hopf algebras and (A, H,�,	),
(A, H,�′,	′) two matched pairs of Hopf algebras. Then A 	� H ∼= A 	�′ H (isomorphism of Hopf algebras,
left A-modules and right H-comodules) if and only if �′ = � and there exists a coalgebra lazy 1-cocycle u ∈
H1

l,c(H, A) such that:

h 	′ c = u(h(1))(h(2) 	 c(1))S A
(
u(h(3) � c(2))

)

u(h(1))
(
h(2) 	 u(g(1))

)
S A

(
u(h(3)g(2))

) = εH (g)εH (h)1A

h � u(g) = hεH (g)

for all h, g ∈ H and c ∈ A.

Proof. We apply Theorem 3.4 for the case when f and f ′ are the trivial cocycles. As the multiplica-
tion on the algebra H is the same (i.e. · = ·′), the condition (43) in Theorem 3.4 takes the equivalent
form h � u(g) = hεH (g), for all h, g ∈ H . �

The construction of unified products is a challenging problem considering the number of compat-
ibilities that need to be fulfilled. In particular, an example of an unified product which is neither a
crossed product nor a bicrossed product is interesting in the picture. We provide such an example
below: it is a Hopf algebra k[A4] � k[S] ∼= k[A6], where An is the alternating group on a set with n
elements and S is a set with thirty elements.

Example 3.8. Let G be a group and (X,1X ) a pointed set. We consider the group Hopf algebra
A := k[G] and the group-like coalgebra H := k[X]. We note that coalgebra morphisms between two
group-like coalgebras are in one to one correspondence with the maps between the corresponding
sets. Thus, any bialgebra extending structure (k[X],�,�, f ) of the Hopf algebra k[G] is induced by an
extending structure (X,�′,�′, f ′) of the group G in the sense of [1, Definition 2.3]. Moreover there
exists a canonical isomorphism of bialgebras

k[G] � k[X] ∼= k[G � X]
where G � X is the unified product at the level of groups (see [1] for further details). This generalizes
the fact that a bicrossed product of two group Hopf algebras is isomorphic to the group Hopf algebra
of the bicrossed product of the corresponding groups [10, Example 1, p. 207]. The same type of
isomorphism holds also for crossed products of Hopf algebras between two group Hopf algebras.

Now, let A6 be the alternating group on a set with six elements. A6 is the simple group of smallest
order that cannot be written as a bicrossed product of two proper subgroups [16]. Being a simple
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group it can not be written neither as a crossed product of two proper subgroups. On the other hand,
A6 can be written as an unified product between any of its subgroups and an extending structure.
For instance, we can write

A6 ∼= A4 � S

for an extending structure (S,1S ,α,β, f ,∗, i) of A4, where S is a set of representatives for the right
cosets of A4 in A6 with 30 elements such that 1 ∈ S . Thus there exists an example of an unified
product for Hopf algebras k[A4] � k[S] ∼= k[A6] which is neither a crossed product nor a bicrossed
product of two Hopf algebras.

Two general methods for constructing unified products are proposed in [2]. One of them constructs
an unified product starting with a minimal set of data: a Hopf algebra A, a unitary not necessarily
associative bialgebra H which is a right A-module coalgebra and a unitary coalgebra map γ : H → A
satisfying four technical compatibility conditions [2, Theorem 2.9].
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