
J. Differential Equations 253 (2012) 2593–2615
Contents lists available at SciVerse ScienceDirect

Journal of Differential Equations

www.elsevier.com/locate/jde

Comparison and regularity results for the fractional
Laplacian via symmetrization methods

Giuseppina Di Blasio a, Bruno Volzone b,∗
a Dipartimento di Matematica, Seconda Università degli Studi di Napoli, via Vivaldi, Caserta, Italy
b Università degli Studi di Napoli “Parthenope”, Facoltà di Ingegneria, Dipartimento per le Tecnologie,
Centro Direzionale Isola C/4, 80143 Napoli, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 June 2011
Revised 21 June 2012
Available online 31 July 2012

MSC:
35R11
35B45
15A15

Keywords:
Fractional Laplacian
Symmetrization
Comparison results
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metrization for solutions to some boundary value problems involv-
ing the fractional Laplacian. This allows to get sharp estimates for
the solutions, obtained by comparing them with solutions of suit-
able radial problems. Furthermore, we use such result to prove
a priori estimates for solutions in terms of the data, providing sev-
eral regularity results which extend the well-known ones for the
classical Laplacian.
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1. Introduction and main results

The final goal of this paper is to obtain a comparison principle using symmetrization techniques
in order to get sharp estimates for solutions to some elliptic boundary value problems involving the
fractional Laplacian operator. If u : RN → R is a function in the Schwartz space of rapidly decaying
functions, the fractional Laplacian (−�)α/2 of u, with α ∈ (0,2), is defined in a standard sense, that
is either by the Riesz potential

(−�)α/2u(x) := CN,α P.V.
∫
RN

u(x) − u(ξ)

|x − ξ |N+α
dξ,
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where P.V. denotes the principal value and CN,α is a suitable normalization constant, or as a pseudo
differential operator through the Fourier transform on the Schwartz class

F
[
(−�)α/2u

]
(ξ) := |ξ |αF[u](ξ),

where F [g] denotes the Fourier transform of a function g . As for the equivalence between these two
notions, as well as a detailed description and properties concerning more general integro-differential
operators, we refer to the book of Landkof [29] and the paper [38].

It is well known (see for instance [17]) that to any function u smooth enough on R
N we

can associate its α-harmonic extension, namely a function w defined on the upper half-space
R

N+1+ := R
N × (0,+∞) which is a solution to the local (degenerate or singular) elliptic problem

{
−div

(
y1−α∇w

) = 0 in R
N+1+ ,

w(x,0) = u(x) in R
N .

(1)

Moreover, Caffarelli and Silvestre give in [17] an interpretation of the fractional Laplacian (−�)α/2 as
a Dirichlet to Neumann map:

(−�)α/2u(x) = − 1

kα
lim

y→0+ y1−α ∂ w

∂ y
(x, y), (2)

where kα is a suitable constant, whose exact value is

κα = 21−αΓ (1 − α
2 )

Γ (α
2 )

. (3)

In order to define the fractional Laplacian in bounded domains Ω the above characterization has to be
suitably adapted. This has been done in the papers [13] and [15], where formula (2) allows to define
the fractional Laplacian (−�)α/2 over a proper function space on Ω , as we shall see in Section 2.

The fractional Laplacian appears in several contexts. For instance, it arises in the study of various
physical phenomena, where long-range or anomalous diffusions occur. Just to give few examples, this
kind of operator can be found in combustion theory (see [19]), in dislocations processes of mechanical
systems (see [25]) or in crystals (see [22]). Moreover, as it is well known in the theory of probability,
the fractional Laplacian is the infinitesimal generator of a Lévy process (see for instance [37]). Due
to all of that, lots of authors devoted their interest to the subject. We just mention [38,20,16,19]
dedicated to the obstacle problem and the free boundaries for the fractional Laplacian, the papers
[15,14] regarding some aspects of nonlinear equations involving fractional powers of the Laplacian,
the convex–concave problem for the fractional Laplacian described in [13], the work [27] in which
a critical exponent problem for the half-Laplacian in an annulus is investigated, the study [41] of a
nonlocal energy variational problem, and the papers [8,11,12,9]. Obviously this list is very far from
being exhaustive.

In order to describe our main result let us consider the nonlocal Dirichlet problem with homoge-
neous boundary condition

{
(−�)α/2u = f (x) in Ω,

u = 0 on ∂Ω,
(4)

where Ω is an open bounded set of RN and f is a smooth function on Ω . Roughly speaking, following
for instance [13], a solution to problem (4) is defined as the trace of a suitable Dirichlet–Neumann
problem. Namely, if w is a weak solution to the local problem
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−div
(

y1−α∇w
) = 0 in CΩ,

w = 0 on ∂LCΩ,

− 1

κα
lim

y→0+ y1−α ∂ w

∂ y
= f (x) in Ω,

(5)

where CΩ := Ω × (0,+∞) is the cylinder of basis Ω and ∂LCΩ := ∂Ω × [0,+∞) is its lateral bound-
ary, then its trace on Ω , trΩ(w) = w(·,0) =: u is a solution to problem (4) (see also Section 3 for
precise definitions).

Following [39], the idea is to get sharp estimates for the solution u to (4) by comparing it with a
solution φ to the radial problem

{
(−�)α/2φ = f #(x) in Ω#,

φ = 0 on ∂Ω#,
(6)

where Ω# is the ball centered at 0, having the same measure as Ω and f # is the Schwarz rearrange-
ment of f . Since φ is the trace on Ω# of a solution v to the problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−div
(

y1−α∇v
) = 0 in C#

Ω,

v = 0 on ∂LC#
Ω,

− 1

κα
lim

y→0+ y1−α ∂v

∂ y
= f #(x) in Ω#,

(7)

where C#
Ω := Ω# × (0,+∞), ∂LCΩ# := ∂Ω# × [0,+∞), it makes sense to look for a comparison be-

tween concentrations of the functions w and v through their Schwarz rearrangements (see Section 2
for definitions). More precisely, we prove that

s∫
0

w∗(σ , y)dσ �
s∫

0

v∗(σ , y)dσ ∀s ∈ [
0, |Ω|], (8)

where w∗(·, y), v∗(·, y) are the one dimensional rearrangements of w , v respectively, for any fixed
y ∈ [0,+∞). The achievement of such result looks reasonable because of the nature of problem (5),
for which a symmetrization with respect to x keeping the y variable fixed (i.e. Steiner symmetrization
with respect to the line x = 0) is available. The key role in this framework is played by a second order
derivation formula for functions defined by integrals, obtained in [1] for the smooth case and in [21]
for less regular functions.

We point out that through inequality (8) we easily get a comparison result between the traces on
Ω × {0} of w and v , namely an integral comparison between u and φ:

Theorem 1.1. Let u and φ be the weak solutions to problems (4) and (6), respectively, and f ∈ L
2N

N+α (Ω), with
α ∈ (0,2). Then we have:

s∫
0

u∗(σ )dσ �
s∫

0

φ∗(σ )dσ ∀s ∈ [
0, |Ω|].

We emphasize that since for α = 2 the fractional Laplacian coincides with the classical Laplacian,
for which comparison and regularity results via symmetrization methods are well known (see e.g.
[39,40,2]), in the following we consider only the case 0 < α < 2.
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In this setting the comparison result proved in Theorem 1.1 allows us to prove a priori estimates
for solutions of problem (4) in terms of the data f , providing several regularity results which extend
the well-known ones for the classical Laplacian (see Section 4).

We also want to remark that the application of symmetrization techniques to general Lévy pro-
cesses is not new, as it is shown for example in [6] and [4] where several isoperimetric-type issues
are investigated. Moreover, our approach is completely “PDE oriented” and it is not based on a prob-
abilistic setting.

This paper is organized as follows. In Section 2 we give some basic definitions and properties con-
cerning the functional setting we are going to work with. In particular, in Subsection 2.1 we recall
some fundamental definitions concerning the fractional Laplacian in bounded domains and properties
of weak solutions to the related Dirichlet problem. Subsections 2.2 and 2.3 introduce the notion of
Schwarz rearrangement and Lorentz space, together with some related properties. In Subsection 2.4
we define the Green function for the fractional Laplacian, an essential tool to write down an explicit
integral representation of the solution φ to the radial problem (6). In Section 3 we prove the compar-
ison results stated above. Furthermore, in Section 4 we exhibit some regularity results of the solution
u in terms of the source data f . Finally in Section 5 we give some comments about the best constant
in the L∞ estimate. In particular, the optimal constant is computed on the unit ball, considering only
the case α = 1 and N = 3.

2. Preliminaries

2.1. Function spaces and definitions

As we pointed out in the introduction, formula (2) given in [17] connects the nonlocal character
of (−�)α/2 to local problems of the form (1). This interpretation can be extended to the case of
bounded domains. To this aim, it is convenient to introduce here a suitable functional setting and
basic definitions. For all the details and proofs of the following definitions and properties, we refer to
the papers [15,13,14,28].

If Ω is a bounded open subset of RN , the half-cylinder with base Ω and its lateral boundary will
be respectively denoted by

CΩ := Ω × (0,+∞) and ∂LCΩ := ∂Ω × [0,+∞).

We introduce then the weighted energy space

Xα
0 (CΩ) :=

{
w ∈ H1(CΩ), w = 0 on ∂LCΩ :

∫
CΩ

y1−α
∣∣∇w(x, y)

∣∣2
dx dy < ∞

}

equipped with the norm

‖w‖Xα
0

:=
( ∫
CΩ

y1−α
∣∣∇w(x, y)

∣∣2
dx dy

)1/2

.

Thus we define the trace space by

Vα(Ω) = {
u = trΩ w := w(·,0): w ∈ Xα

0 (CΩ)
}
, (9)

where trΩ is the trace operator on the space w ∈ Xα
0 (CΩ). Then the fractional Laplacian in Ω is

well defined for function in Vα(Ω). Indeed it is well known (see e.g. [15,13]) that for any function
u ∈ Vα(Ω) there exists a unique minimizer w to the problem
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inf

{ ∫
CΩ

y1−α
∣∣∇w(x, y)

∣∣2
dx dy: w ∈ Xα

0 (CΩ), w(·,0) = u in Ω

}
.

By standard elliptic theory such minimizer w is smooth for y > 0 and satisfies

⎧⎪⎨
⎪⎩

−div
(

y1−α∇w
) = 0 in CΩ,

w = 0 on ∂LCΩ,

w(·,0) = u in Ω.

(10)

This yields to consider an extension operator in the following sense:

Definition 2.1. Given a function u ∈ Vα(Ω), the solution w to problem (10) will be said the α-
harmonic extension of u on the cylinder CΩ and will be denoted by Extα u.

Then the fractional Laplacian operator can be defined through the Dirichlet to Neumann map as
follows (see e.g. [15,13]):

Definition 2.2. For any u ∈ Vα(Ω) we define the fractional Laplacian (−�)α/2 acting on u as the
following limit (in the distributional sense)

(−�)α/2u(x) := − 1

κα
lim
y→0

y1−α ∂ w

∂ y
(x, y),

where w = Extα(u) and κα is given by (3).

Let {ϕk} be an orthonormal basis of L2(Ω) made by eigenfunctions of −� in Ω with zero Dirichlet
boundary conditions and {λk} the corresponding Dirichlet eigenvalues. It is classical that the powers
of a positive operator in a bounded domain, evaluated on a certain function u, are defined through
the spectral decomposition of u using the powers of the eigenvalues of the original operator. So in
the case of the fractional Laplacian (−�)α/2, if

u =
∞∑

k=1

akϕk

we must have

(−�)α/2u =
∞∑

k=1

akλ
α/2
k ϕk. (11)

This definition is coherent with Definition 2.2, since it is possible to give the following characterization
of the trace space Vα(Ω):

Proposition 2.1. The space Vα(Ω) defined in (9) coincides with the space

H :=
{

u ∈ L2(Ω)

∣∣∣ u =
∞∑

k=1

akϕk satisfying
∞∑

k=1

a2
kλ

α/2
k < ∞

}
. (12)

Moreover if u ∈ Vα(Ω) admits the decomposition u = ∑∞
k=1 akϕk, then its α-harmonic has the following

explicit representation
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Extα u(x, y) =
∞∑

k=1

akϕk(x)ρ
(
λ

1/2
k y

)
(13)

where ρ solves the problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ ′′(s) + 1 − α

s
ρ ′(s) = ρ(s), s > 0,

lim
y→0+ y1−αρ ′(s) = −κα,

ρ(0) = 1.

Therefore, using (13) and Definition 2.2, equality (11) easily follows.
According to [13], we have the following definition of weak solution to problems of the type (5):

Definition 2.3. Let f ∈ L
2N

N+α (Ω), where α ∈ (0,2). We say that w ∈ Xα
0 (CΩ) is the weak solution to

problem (5) if for any test function ϕ ∈ Xα
0 (CΩ) the following identity holds:

∫
CΩ

y1−α∇w(x, y) · ∇ϕ(x, y)dx dy = κα

∫
Ω

f (x)ϕ(x,0)dx. (14)

We note that for any test function ϕ ∈ Xα
0 (CΩ), by the Sobolev trace inequality (see [13]) it follows

that the trace ϕ(·,0) on Ω × {0} belongs to L
2N

N−α (Ω), hence the integral at the right-hand side of
(14) makes sense. Besides, the classical Lax–Milgram theorem ensures that a unique weak solution
w ∈ Xα

0 (CΩ) to problem (5) exists.
Then the definition of weak solution to problem (4) is strictly related to the solution of (5) in the

following sense:

Definition 2.4. Let f ∈ L
2N

N+α (Ω), where α ∈ (0,2). We say that u ∈ H is the weak solution to (4) if
u = trΩ w , and w is the weak solution to problem (5).

We observe that if u is the weak solution to (4), its α harmonic extension Extα u is smooth for
y > 0 and decays to zero as y → ∞ (see [13]).

Finally we point out that the space H defined in (12) is an interpolation space and it is possible
to prove that (see [15] for the case α = 1 and [31,28] for the general case)

H =

⎧⎪⎨
⎪⎩

Hα/2(Ω) if α ∈ (0,1),

H1/2
00 (Ω) if α = 1,

Hα/2
0 (Ω) if α ∈ (1,2),

where Hα/2(Ω) is the usual fractional Sobolev space, Hα/2
0 (Ω) is the closure of C∞

0 (Ω) with respect
to the norm ‖ · ‖Hα/2(Ω) and

H1/2
00 (Ω) :=

{
u ∈ H1/2(Ω):

∫
Ω

u(x)2

d(x)
dx < ∞

}
,

with d(x) := dist(x, ∂Ω).
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2.2. Basic facts about rearrangements

Let Ω be a bounded open subset of RN and u be a real measurable function on Ω . We will denote
by | · | the N-dimensional Lebesgue measure. We define the distribution function μu of u as

μu(t) = ∣∣{x ∈ Ω:
∣∣u(x)

∣∣ > t
}∣∣, t � 0,

and the decreasing rearrangement of u as

u∗(s) = sup
{

t � 0: μu(t) > s
}
, s ∈ (

0, |Ω|).
Furthermore, if ωN is the measure of the unit ball in R

N and Ω# is the ball of R
N centered at the

origin having the same Lebesgue measure as Ω, the function

u#(x) = u∗(ωN |x|N)
, x ∈ Ω#,

is called spherical decreasing rearrangement of u. For an exhaustive treatment of rearrangements we
refer to [3,26] and to the appendix of [40]. Here we just recall the well-known Hardy–Littlewood
inequality (see [24])

∫
Ω

∣∣u(x)v(x)
∣∣dx �

|Ω|∫
0

u∗(s)v∗(s)ds =
∫

Ω#

u#(x)v#(x)dx (15)

where u, v are measurable functions on Ω . We point out that as we will deal with two variable
functions of the type

u : (x, y) ∈ CΩ → u(x, y) ∈R (16)

defined on the cylinder CΩ := Ω × (0,+∞), measurable with respect to x, we can define the Steiner
symmetrization of CΩ with respect to the variable x, namely the set C#

Ω := Ω# × (0,+∞). In addition,
we will denote by μu(t, y) and u∗(s, y) the distribution function and the decreasing rearrangements
of (16), with respect to x for y fixed, and we define the function

u#(x, y) = u∗(ωN |x|N , y
)

which is the Steiner symmetrization of u, with respect to the line x = 0. Obviously u# is a spherically
symmetric and decreasing function with respect to x for any fixed y.

Now we recall two derivations formulas, that will turn out very useful in the proof of the main
result. The following proposition can be found in [32], and it is a generalization of a well-known
result by Bandle (see [3]).

Proposition 2.2. Suppose that w ∈ H1(0, T ; L2(Ω)) for some T > 0. Then

w∗ ∈ H1(0, T ; L2(0, |Ω|))
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and if |{w(x, t) = w∗(s, t)}| = 0 for a.e. (s, t) ∈ (0, |Ω|) × (0, T ), the following derivation formula occurs

∫
w(x,y)>w∗(s,y)

∂ w

∂ y
(x, y)dx =

s∫
0

∂ w∗

∂ y
(s, y)ds. (17)

Moreover, what follows is a second order derivation formula due to Mercaldo and Ferone (see
[21]), which is a suitable generalization of that contained in [1], where only analytic functions are
considered.

Proposition 2.3. Let w ∈ W 2,∞(CΩ). Then for almost every y ∈ (0,+∞) the following derivation formula
holds:

∫
w(x,y)>w∗(s,y)

∂2 w

∂ y2
(x, y)dx

= ∂2

∂ y2

s∫
0

w∗(σ , y)dσ −
∫

w(x,y)=w∗(s,y)

( ∂ w
∂ y (x, y))2

|∇x w| dHN−1(x)

+
( ∫

w(x,y)=w∗(s,y)

∂ w
∂ y (x, y)

|∇x w| dHN−1(x)

)2( ∫
w(x,y)=w∗(s,y)

1

|∇x w| dHN−1(x)

)−1

.

2.3. Lorentz and Orlicz spaces

As we will deal with some sharp regularity results of the solution u to (4) in terms of the data f ,
we introduce here basic notions regarding the functional spaces where f will be supposed to belong
to.

Let Ω be a bounded open subset of RN . We say that a measurable function u : Ω → R belongs to
the Lorentz L p,q(Ω) for 0 < p,q � +∞ if the quantity

‖u‖L p,q(Ω) =
⎧⎨
⎩

(∫ +∞
0

[
s

1
p u∗(s)

]q ds
s

) 1
q , 0 < q < ∞,

sups∈(0,|Ω|) s
1
p u∗(s), q = ∞,

(18)

is finite. We remark that for p > 1, and q � 1, the quantity in (18) can be equivalently defined replac-
ing u∗(t) with

u∗∗(s) = 1

s

s∫
0

u∗(σ )dσ .

We stress that the L p,q-norm, for every 1 < p,q � +∞, is rearrangement invariant, that is

‖u‖L p,q(Ω) = ∥∥u#
∥∥

L p,q(Ω#)
.

Besides, we emphasize that L p,q(Ω) = L p(Ω), L p,∞(Ω) = Mp (the Marcinkiewicz space) for any
1 � p � ∞ and, for 1 < q < p < r < ∞ the following inclusion occurs:

L∞(Ω) ⊂ Lr(Ω) ⊂ Lp,1(Ω) ⊂ Lp,q(Ω) ⊂ Lp,p(Ω) = Lp(Ω) ⊂ Lp,r(Ω) ⊂ Lp,∞(Ω) ⊂ Lq(Ω).
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Furthermore, for any r ∈ (1,∞], if r′ ∈ [1,∞) is the conjugate exponent of r, we define the Orlicz
LΦr (Ω) generated by the N-function

Φr(t) = exp
(|t|r′) − 1

as the space of all measurable functions u on Ω such that there is a constant c = c(u) for which

∫
Ω

Φr(cu)dx < ∞.

According to [5], we can characterize the Orlicz space LΦr (Ω) in terms of rearrangements, as the
space made by all measurable functions u on Ω for which the following norm

sup
s∈(0,|Ω|)

u∗∗(s)

(1 + log |Ω|
s )

1
r′

(19)

is finite.
Now we provide some convolution inequalities due to O’Neil [33], which will play a key role to

obtain some a priori estimates (hence regularity results) for solutions to problems of the type (4) in
terms of data belonging to Lorentz spaces (see Theorems 4.3–4.4):

Lemma 2.1. If f , g are two measurable functions on Ω , then

( f ∗ g)∗∗(s) �
|Ω|∫
s

f ∗∗(σ )g∗∗(σ )dσ ∀s ∈ (
0, |Ω|).

Theorem 2.1. Suppose that f ∈ L p1,q1 (Ω), g ∈ L p2,q2 (Ω) where

1

p1
+ 1

p2
> 1.

Then f ∗ g ∈ L p3,q3 (Ω) where

1

p1
+ 1

p2
− 1 = 1

p3
,

and t � 1 is any number such that

1

q1
+ 1

q2
� 1

q3
.

Moreover

‖ f ∗ g‖L p3,q3 (Ω) � 3p3‖ f ‖L p1,q1 (Ω)‖g‖L p2,q2 (Ω).
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2.4. Spectral decomposition of the solution

In this section we highlight some properties concerning the representation of the solution to the
fractional Poisson equation by the Green function and the link with its spectral decomposition. Ac-
cording to what we have said in Subsection 2.1, it is always possible to get a spectral decomposition
of the solution u to (4) in terms of the Fourier coefficients of the source term f . Indeed, suppose
that {ϕk} is an orthonormal basis of L2(Ω) made by eigenfunctions of −� in Ω with zero Dirichlet
boundary conditions and {λk} the corresponding Dirichlet eigenvalues. Therefore, if u ∈ H is the weak
solution to problem (4), having the decomposition

u =
∞∑

k=1

akϕk, (20)

then the fractional Laplacian of u has the spectral decomposition (11). Thus if

f =
∞∑

k=1

ckϕk,

where ck = ( f ,ϕk)L2(Ω) are the Fourier coefficient of f , the Fourier coefficients of u are

ak = ck

λ
α/2
k

. (21)

Now, let us denote by GD(x, y) the Green function of a bounded domain D ⊆ R
N for the fractional

Laplacian (−�)α/2. Then we have (see [29,10])

−(−�)
α/2
x GD(x, y) = δ(x − y) in D′(D). (22)

Next, suppose that the function GΩ has the following expansion, for any fixed y ∈ Ω:

GΩ(x, y) =
∞∑

k=1

ck(y)ϕk(x).

Then equality (11) provides the following spectral decomposition for the fractional Laplacian of GΩ :

(−�)
α/2
x GΩ(x, y) =

∞∑
k=1

λ
α/2
k ck(y)ϕk(x). (23)

If we multiply both sides of Eq. (22) by ϕm and integrate over Ω with respect to x, Eq. (23) links to

∞∑
k=1

λ
α/2
k ck(y)

∫
Ω

ϕk(x)ϕm(x)dx = −ϕm(y)

i.e.

cm(y) = −ϕm(y)

α/2

λm
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that is

GΩ(x, y) = −
∞∑

k=1

ϕk(x)ϕk(y)

λ
α/2
k

. (24)

Hence from (20), (21) and (24) we easily infer that

u =
∞∑

k=1

ϕk(x)

λ
α/2
k

∫
Ω

f (y)ϕk(y)dy = −
∫
Ω

GΩ(x, y) f (y)dy. (25)

When D is a ball B(0, R), we shall frequently use the following explicit expression of the Green
function (see [7,36,29,10,7])

GB(0,R)(x, y) = −2−α Γ ( N
2 )

π N/2
Γ

(
α

2

)−2

|x − y|α−N

z∫
0

s
α
2 −1

(s + 1)N/2
ds (26)

where x, y ∈ B(0, R) and

z = (R2 − |x|2)(R2 − |y|2)
|x − y|2 .

We stress that (26) coincides with the Green function of classical Laplacian for α = 2. Clearly we have

∣∣GB(0,R)(x, y)
∣∣ � a b

|x − y|N−α
(27)

for x, y ∈ B(0, R) s.t. x �= y, where

a := 2−α Γ ( N
2 )Γ (α

2 )−2

π N/2
, b :=

∞∫
0

s
α
2 −1

(s + 1)N/2
ds. (28)

3. Comparison result

The aim of this section is to obtain a comparison result between the solutions of problems (5)
and (7). The symmetrization method allows to obtain a priori estimates which are the main tools to
obtain regularity results.

Theorem 3.1. Let w and v be the weak solutions to problems (5) and (7), respectively, and f ∈ L
2N

N+α (Ω), with
α ∈ (0,2). Then we have:

s∫
0

w∗(σ , z)dσ �
s∫

0

v∗(σ , z)dσ ∀s ∈ [
0, |Ω|] (29)

for any fixed z ∈ [0,+∞).
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Proof. We first observe that actually there is a clever way to rewrite equation in problem (5), that is

�x w + 1 − α

y

∂ w

∂ y
+ ∂2 w

∂ y2
= 0.

As a matter of fact, if we follow [18] and make the change of variable

z =
(

y

α

)α

,

we find that problem (5) is equivalent to the Cauchy–Dirichlet problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

zβ ∂2 w

∂z2
+ �x w = 0 in CΩ,

w = 0 on ∂LCΩ,

−∂ w

∂z
(x,0) = κααα−1 f (x) in Ω,

(30)

where β := 2(α − 1)/α. The aim is to compare problem (30) with the corresponding symmetrized
one:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

zβ ∂2 v

∂z2
+ �x v = 0 in C#

Ω,

v = 0 on ∂LC#
Ω,

−∂v

∂z
(x,0) = κααα−1 f #(x) in Ω#.

(31)

Now we recall that w is smooth for any z > 0, so if for a fixed z > 0 we consider the test function

ϕz
h(x) =

⎧⎪⎨
⎪⎩

sign(w(x, z)) if |w(x, z)| � t + h,

|w(x,z)|−t
h sign(w(x, z)) if t < |w(x, z)| < t + h,

0 if |w(x, z)| � t,

we can multiply the first equation in (30) by ϕz
h(x) and integrate over Ω . A simple integration by

parts yields the identity

1

h

∫
t<|w|<t+h

|∇x w|2 dx − zβ 1

h

∫
|w|>t+h

∂2 w

∂z2
dx

− zβ 1

h

∫
t<|w|<t+h

∂2 w

∂z2

( |w| − t

h
sign(w)

)
dx = 0.

Letting h → 0 and using the isoperimetric inequality, by standard arguments (see e.g. [39]) we get

−zβ

∫
w(x,z)>t

∂2 w

∂z2
dx −

(
∂μw

∂t

)−1

N2ω
2
N
N

(
μw(t)

)2− 2
N � 0.
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Now if we set

U (s, z) =
s∫

0

w∗(σ , z)dσ ,

using the second order derivation formula of Proposition 2.3, we find that U verifies the following
differential inequality

−zβ ∂2U

∂z2
− p(s)

∂2U

∂s2
� 0 (32)

for a.e. s ∈ (0, |Ω|) and for any z ∈ (0,+∞), where p(s) = N2 ω
2
N
N s2− 2

N . Moreover, the first order
derivation formula (17) implies

∂U

∂z
= ∂

∂z

s∫
0

w∗(σ , z)dσ = ∂

∂z

∫
w(x,z)>w∗(s,z)

w(x, z)dx =
∫

w(x,z)>w∗(s,z)

∂ w

∂z
(x, z)dx,

hence making use of the Hardy–Littlewood inequality (15), we easily get

∂U

∂z
(s,0) =

∫
w(x,0)>w∗(s,0)

∂ w

∂z
(x,0)dx = −αα−1κα

∫
u(x)>u∗(s)

f (x)dx

� −αα−1κα

s∫
0

f ∗(σ )dσ , s ∈ (
0, |Ω|).

So the function U satisfies the following boundary conditions

U (0, z) = 0 ∀z ∈ [0,+∞),

∂U

∂s

(|Ω|, z
) = 0 ∀z ∈ [0,+∞),

∂U

∂z
(s,0) �−αα−1κα

s∫
0

f ∗(σ )dσ , s ∈ (
0, |Ω|).

Now if v is the solution of the symmetrized problem (31), being v radially decreasing with respect
to x, we obtain

−zβ ∂2 V

∂z2
− p(s)

∂2 V

∂s2
= 0 (33)

where

V (s, z) =
s∫

v∗(σ , z)dσ .
0
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Concerning the boundary conditions, we remark that in this case one has

∂V

∂z
(s,0) = −αα−1κα

∫
v(|x|)>v∗(s)

f #(x)dx

= −NωNαα−1κα

(s/ωN )1/N∫
0

f ∗(ωNrN)
rN−1 dr

= −αα−1κα

s∫
0

f ∗(σ )dσ , s ∈ (
0, |Ω|),

therefore V satisfies the conditions

V (0, z) = 0 ∀z ∈ [0,+∞),

∂V

∂s

(|Ω|, z
) = 0 ∀z ∈ [0,+∞),

∂V

∂z
(s,0) = −αα−1κα

s∫
0

f ∗(σ )dσ , s ∈ (
0, |Ω|).

If we put

Z(s, z) = U (s, z) − V (s, z) =
s∫

0

[
w∗(σ , z) − v∗(σ , z)

]
dσ

by (32) and (33), one has

L[Z ] := −zβ ∂2 Z

∂z2
− p(s)

∂2 Z

∂s2
� 0

for a.e. (s, z) ∈ D := (0, |Ω|) × (0,+∞) and the following boundary conditions hold

Z(0, z) = 0 ∀z ∈ [0,+∞),

∂ Z

∂s

(|Ω|, z
) = 0 ∀z ∈ [0,+∞),

∂ Z

∂z
(s,0) � 0, s ∈ (

0, |Ω|). (34)

In particular

∂ Z

∂ν
(s,0) = −∂ Z

∂z
(s,0) � 0, s ∈ (

0, |Ω|), (35)

where ν is the outward normal to the line segment (0, |Ω|). We observe that the operator L is elliptic
in any point (s, z) ∈ D hence by Hopf’s maximum principle (see [35]), Z attains its maximum on the
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boundary of D , and in the points where the maximum is attained we get

∂ Z

∂ν
> 0.

Hence by (34), (35), this ensures that

Z(s, z) � 0, s ∈ [
0, |Ω|],

that is

s∫
0

w∗(σ , z)dσ �
s∫

0

v∗(σ , z)dσ , s ∈ [
0, |Ω|],

for any z ∈ [0,+∞). �
Obviously, since φ the trace on Ω# of the solution v of (7) and u the trace on Ω of the solution

w of (5), by Theorem 3.1 we get Theorem 1.1.

4. Regularity results

In this section we are interested in regularity results for solution u of problem (4). Using Theo-
rems 1.1 and 3.1, we are able to prove some regularity results of the solution u in terms of the data f .
In the following we will use the integral form (25) for the solution φ to the symmetrized problem (6),
namely

φ(x) = −
∫

Ω#

GΩ#(x, y) f #(y)dy. (36)

We start by generalizing a well-known result for the classical Laplacian:

Theorem 4.1. Let u be the solution to problem (4), where f ∈ L
N
α ,1(Ω) with 0 < α < 2. Then u ∈ L∞(Ω).

Proof. Let us consider the solution φ to problem (6). Since φ is radially decreasing, using (36) and
(27) we obtain that, for some constant C ,

‖φ‖L∞(Ω#) = φ(0) =
∫

Ω#

f #(y)
∣∣GΩ#(0, y)

∣∣dy � a b

∫
Ω#

f #(y)

|y|N−α
dy

= a b

RΩ∫
0

rα−1 f ∗(ωNrN)
dr = a b

|Ω|∫
0

s
α−N

N f ∗(s)ds = a b‖ f ‖
L

N
α ,1(Ω)

.

On the other hand, Theorem 1.1 gives

‖u‖L∞(Ω) � ‖φ‖L∞(Ω#)

and the result follows. �
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Remark 4.1. We stress that if f ∈ L p(Ω), for some p > N/α, then according to Lorentz embedding
(see Subsection 2.3) by Theorem 4.1 we get u ∈ L∞(Ω).

A consequence of the comparison result of Theorem 3.1 is the boundedness of the α-extension w

of u in CΩ when f ∈ L
N
α ,1(Ω), for 0 < α < 2. To prove this result, we first compute the solution v to

the radial problem (31) by using the separation of variable method. We look for a function v , radial
with respect to x, such that

v(x, z) = X
(|x|)W (z).

Putting v inside the first equation of (31), we find there must be a value λ such that

zβ W ′′(z)

W (z)
= −�x X = λ (37)

that is the function X(x) = X(|x|) solves the classical eigenvalue problem for the Laplacian

{
−�x X = λX in Ω#,

X = 0 on ∂Ω#,
(38)

while W (z) verifies the problem

{
zβ W ′′(z) − λW (z) = 0,

lim
z→+∞ W (z) = 0.

(39)

Therefore (λ, X) = (λk, Xk), for some k, where {λk} and {Xk(|x|)} are the eigenvalues and the radial
eigenfunctions of the Laplace operator in Ω# with zero Dirichlet boundary values on ∂Ω#, namely

λk =
(

θk

RΩ

)2

, k = 1,2, . . . , (40)

where

RΩ =
( |Ω|

ωN

)1/N

is the radius of the ball Ω#, θk are the zeros of the Bessel function J (N−2)/2(z) of order (N − 2)/2,
and

Xk(r) = 1

RΩ | J N
2
(θk)|

(
2

NωN

)1/2

r− N−2
2 J N−2

2

(
θk

RΩ

r

)
, k = 1,2, . . . , (41)

where r := |x|. We recall that the system {Xk(|x|)} forms an orthonormal basis of the space L2
rad(Ω

#)

made by all radial functions in L2.
Then, since the solution φ of (6) is radially decreasing, we can represent it by

φ(r) =
∞∑

ak Xk(r), (42)

k=1
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where the ak are given by (21), and ck are the Fourier coefficients of f # with respect to (41), i.e.

ck = NωN

RΩ∫
0

rN−1 f ∗(ωNrN)
Xk(r)dr.

Now, to each eigenvalue λk we associate a solution Wk to problem (39). The first equation in (39) is
a modified Bessel equation (see [34,30]), whose solutions are combinations of Bessel functions of the
third kind. According to the asymptotic behavior at infinity of the Bessel functions (see [30]), we have
that

Wk(z) = Ck Hk(z), (43)

where

Hk(z) := √
zK 1

2−β

(
2

2 − β

√
λkz

2−β
2

)
,

β = 2(α − 1)/α, the Ck are constants and Kν(t) is a Bessel function of the third kind. We also notice
that

H ′
k(z) = −z

1−β
2

√
λk K 1−β

2−β

(
2

2 − β

√
λkz

2−β
2

)
. (44)

Finally, using the boundary condition of problem (31), we can write the following explicit expression
of v (here r = |x|):

v(r, z) =
∞∑

k=1

Xk(r)Wk(z) = 1

RΩ

(
2

NωN

)1/2

r− N−2
2

∞∑
k=1

Ck

| J N
2
(θk)| J N−2

2

(
θk

RΩ

r

)
Hk(z), (45)

with coefficients

Ck H ′
k(0) = − (2NωN )1/2αα−1κα

RΩ | J N
2
(θk)|

RΩ∫
0

r
N
2 J N−2

2

(
θk

r

RΩ

)
f ∗(ωNrN)

dr. (46)

Of course the trace v(r,0) given in (45) coincides with the solution φ represented by (42). Indeed by
the asymptotic behavior (see [30])

Kν(t) ≈ 2ν−1Γ (ν)

tν
, t → 0, (47)

then by (44), (46) and (42) we find

v(r,0) =
∞∑

k=1

Xk(r)Ck Hk(0)

= (2NωN)1/2

RΩ

∞∑
k=1

λ
− α

2
k Xk(r)

| J N
2
(θk)|

RΩ∫
0

tN/2 J N−2
2

(
θk

RΩ

t

)
f ∗(ωNtN)

dt

= φ(x).
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Now we are able to prove the following result.

Theorem 4.2. Let w the solution to problem (5), where f ∈ L
N
α ,1(Ω) with 0 < α < 2. Then w ∈ L∞(CΩ).

Proof. Let v be the solution of (7) as in (45). By the asymptotic behavior of the Bessel functions Kν

at infinity (see [30]) we deduce that Hk(z) → 0 as z → ∞, therefore v(r, z) → 0 as z → ∞. Besides,
since v(x,0) = φ(x), by Theorem 4.1 we find that v ∈ L∞(CΩ# ). Moreover, Theorem 3.1 ensures that

∥∥w(·, z)
∥∥

L∞(Ω)
�

∥∥v(·, z)
∥∥

L∞(Ω#)
∀z ∈ [0,+∞), (48)

hence w ∈ L∞(CΩ). �
We emphasize that the result of Theorem 4.2 is not new (see for instance [13,14]), although our

techniques make us able to achieve the sharper L∞ estimate (48).
Now we provide new regularity results when f belongs to Lorentz spaces L(p, r) for p < N/α,

obtaining the generalization of the corresponding classical regularity result for the Laplacian.

Theorem 4.3. Let u be the solution to problem (4), where f ∈ L p,r(Ω) with

2N

N + α
� p <

N

α

and r � 1. Then u ∈ Lq,r(Ω) with

q := Np

N − αp
.

Proof. Inserting inequality (27) into (36) we find

∣∣φ(x)
∣∣ � a b

(
f # ∗ |x|α−N)

.

Then applying Theorem 2.3 with the choices g = |x|α−N , p1 = p, p2 = N/(N − α), q1 = r, q2 = ∞, we
have p3 = q = Np/(N − αp), q3 = r and

‖φ‖Lq,r(Ω#) � a b
∥∥ f # ∗ |x|α−N

∥∥
Lq,r(Ω#)

� 3a b q‖ f ‖L p,r(Ω#)

∥∥|x|α−N
∥∥

LN/(N−α),∞(Ω#)

= 3a b q‖ f ‖L p,r(Ω#). (49)

Finally by Theorem 1.1 we get

‖u‖Lq,r(Ω) � ‖φ‖Lq,r(Ω#)

and inequality (49) allows to conclude. �
Just like in the classical case α = 2, it is possible to show that whenever we choose the source

term f into the Lorentz space L
N
α ,r(Ω), the solution u to (4) belongs to a suitable Orlicz space. Indeed,

we have the following result:
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Theorem 4.4. Let u be the solution to problem (4), where f ∈ L
N
α ,r(Ω), with r ∈ (1,∞] and 0 < α < 2. Then

u ∈ LΦr (Ω).

Proof. According to what explained in Subsection 2.3, we may interpret LΦr (Ω) as made by all the
functions u measurable on Ω , for which the quantity (19) is finite. Therefore, we can use Theorem 1.1,
Lemma 2.1 and identity (36) to obtain

u∗∗(s) � φ∗∗(s)

� C
(

f # ∗ | · |α−N)∗∗

� C

|Ω|∫
s

σ
α
N f ∗∗(σ )

dσ

σ
. (50)

Now, if r = ∞ we have from (50)

u∗∗(s)

1 + log |Ω|
s

� C

1 + log |Ω|
s

log
|Ω|

s
� C

and we have done. If instead r ∈ (1,∞), using Hölder inequality in (50) we easily obtain

u∗∗(s)

(1 + log |Ω|
s )1/r′ �

C(log |Ω|
s )1/r′

(1 + log |Ω|
s )1/r′

( |Ω|∫
0

[
σ

α
N f ∗∗(σ )

]r dσ

σ

)1/r

= C‖ f ‖
L

N
α ,r(Ω)

and the result follows for all r ∈ (1,∞]. �
5. Best constant in L∞ estimate

In virtue of Theorem 4.1, if f ∈ LN/α,1(Ω) there is a constant C such that

‖u‖L∞ � C‖ f ‖
L

N
α ,1(Ω)

.

Due to the form of the Green function in (26), it seems quite difficult to face the problem of finding
the best value for C in (51). Nevertheless, we remark that this becomes reasonably easy when one
seeks the best C in the following inequality (see Remark 4.1)

‖u‖L∞ � C‖ f ‖L p(Ω) (51)

where f ∈ L p(Ω) for some p > N/α. In fact, since the solution φ is radially decreasing, in order to
get an L∞ estimate of φ it is enough to look for a sharp upper bound of φ(0). To this end, we first
observe that (36) yields

φ(0) = −
|Ω|∫
0

ψ
(
(s/ωN )1/N)

f ∗(s)ds, (52)
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where

ψ(t) := −2−α Γ ( N
2 )

π N/2
Γ

(
α

2

)−2

tα−N

R2
Ω

t2 (R2
Ω−t2)∫

0

s
α
2 −1

(s + 1)N/2
ds. (53)

We remark that it is possible to write an explicit form of the integral at the right-hand side of (53).
Indeed, we know that (e.g. see [23])

w∫
0

s
α
2 −1

(s + 1)N/2
ds = 2

wα/2

α
2 F1

(
N

2
; α

2
;1 + α

2
;−w

)

where 2 F1(· ; · ; · ; z) denotes the Gauss hypergeometric function. Therefore by (53)

ψ
(
(s/ωN )1/N)
= BN,αs

α−N
N

[
1

sα/N

(|Ω|2/N − s2/N)α/2
2 F1

(
N

2
; α

2
;1 + α

2
; |Ω|2/N

ω
2/N
N s2/N

(
s2/N − |Ω|2/N))]

where

BN,α := − 21−αΓ ( N
2 )|Ω| α

N

αΓ (α
2 )2π N/2ω

2 α
N −1

N

.

So if we set

ϕ(s) := 1

sα/N

(|Ω|2/N − s2/N)α/2
2 F1

(
N

2
; α

2
;1 + α

2
; |Ω|2/N

ω
2/N
N s2/N

(
s2/N − |Ω|2/N))

using Hölder inequality in (52) we have

∣∣φ(0)
∣∣ � |BN,α |‖ f ‖L p(Ω)

( |Ω|∫
0

s
α−N

N p′[
ϕ(s)

]p′
ds

)1/p′

.

We point out that the function ϕ is bounded in [0, |Ω|] (see also the picture below), so the integral
at the right-hand side of the last inequality converges if and only if p > N/α.
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The best constant C(N, p,α,Ω) in (51) is then

C(N, p,α,Ω) := |BN,α|
( |Ω|∫

0

s
α−N

N p′
ϕ(s)p′

ds

)1/p′

.

Example 5.1. Let us calculate the best constant C in the case of the square root of the Laplacian
√−�

(i.e. the case α = 1), when N = 3 and Ω = B(0,1). In this case, we have the following, explicit form
of the Gauss hypergeometric function:

2 F1

(
3

2
; 1

2
; 3

2
,−z

)
= 1√

z + 1
.

Then

ϕ(s) =
(

3

4π

)1/3
√(

4

3
π

)2/3

− s2/3

and we have, by a change of variable,

C(p) = (2π)1/p′

2π2

( 1∫
0

t
1
2 −p′

(1 − t)
p′
2 dt

)1/p′

= (2π)1/p′

2π2
B

(
p − 3

2(p − 1)
,

3p − 2

2(p − 1)

)(p−1)/p

,

where B(·,·) is the Euler beta function.
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