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Schizophrenia and bipolar disorder are often viewed as distinct clinical disorders, however there is substantial
overlap in their neuropathologies. While compromised cortical interneurons are implicated in both diseases,
few studies have examined the relative contribution of the distinct interneuron populations to each psychotic
disorder. We report reductions in somatostatin and vasoactive intestinal peptide mRNAs in prefrontal and
orbitofrontal cortices in bipolar disorder (n = 31) and schizophrenia (n = 35) compared to controls (n = 34)
and increased calbindin mRNA in schizophrenia. We show, at the molecular level, shared deficits in interneuron
markers in schizophrenia and bipolar disorder, and a unique interneuron marker increase in schizophrenia.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-SA license
(http://creativecommons.org/licenses/by-nc-sa/3.0/).
1. Introduction

Schizophrenia and bipolar disordermay be biologically distinct or, as
suggested by overlap in symptoms, genetic risk factors, and affected
signaling pathways,may be on a continuumof underlying neuropathol-
ogy (Craddock andOwen, 2010). Indeed, cortical interneuron pathology
may be shared between individuals with schizophrenia and bipolar
disorder, as GABAergic dysregulation is thought to contribute to altered
gamma band oscillations and cognitive deficits in both (Hall et al., 2011;
Lewis et al., 2012). Abnormalities in several cortical transcripts and pro-
teins, including reduced glutamic acid decarboxylase 67 kDa (Akbarian
et al., 1995; Guidotti et al., 2000; Volk et al., 2000; Knable et al., 2002;
Torrey et al., 2005;Woo et al., 2008; Thompson et al., 2009) and various
interneuron biochemical markers are found, suggesting that inhibitory
neurotransmission is diminished in both schizophrenia and bipolar dis-
order (Benes et al., 1991; Beasley and Reynolds, 1997; Caberlotto and
Hurd, 1999; Cotter et al., 2002; Hashimoto et al., 2003; Pantazopoulos
et al., 2007; Hashimoto et al., 2008; Morris et al., 2008; Morris et al.,
2009; Fung et al., 2010; Sibille et al., 2011;Wang et al., 2011). However,
before we conclude the degree of overlap in the cortical interneuron
tralia, Hospital Road, Randwick,

. This is an open access article under
deficit across these two clinically distinct diseases, more comparative
studies using similar techniques across diagnostic groups with a wider
panel of interneuron makers are needed.

Interneurons are heterogeneous cells with different subtypes
inhibiting pyramidal neurons by primarily targeting the cell body and/
or axon initial segment (cholecystokinin, parvalbumin), or by targeting
the dendrites [e.g. somatostatin, neuropeptide Y (NPY)] (Markram
et al., 2004). Interneurons may also directly inhibit other interneurons
[e.g. vasoactive intestinal peptide (VIP)] (Pi et al., 2013). Thus, examin-
ing these interneuron subtypes more specifically and comparatively
will determine the degree and nature of the cortical interneuron
pathology in bipolar disorder and schizophrenia and will determine if
they can be considered different manifestations of a similar underlying
neurobiological deficit, or if they are qualitatively different.

Several previous studies have examined the expression of interneu-
ron markers in both schizophrenia and bipolar disorder (Cotter et al.,
2002; Sakai et al., 2008;Wang et al., 2011). However, whether a unique
profile of interneuron deficits can be distinguished for each disorder
across two functionally distinct cortical regions is unknown. We exam-
ined the relative change in expression of seven interneuron biochemical
marker mRNAs (parvalbumin, cholecystokinin, somatostatin, NPY,
calbindin, VIP, and calretinin) in two brain regions: the dorsolateral
prefrontal cortex (DLPFC) and orbitofrontal cortex (OFC). We hypothe-
sized there may be both shared and distinct alterations in interneuron
mRNA expression in the two diseases.
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Table 2
TaqMan gene expression assays.

Gene name Gene symbol TaqMan assay ID

Interneuron marker
Parvalbumin PV Hs161045_m1
Somatostatin SST Hs356144_m1
Calbindin CB Hs1077197_m1
Calretinin CR Hs242372_m1
Neuropeptide Y NPY Hs173470_m1
Cholecystokinin CCK Hs174937_m1
Vasoactive intestinal peptide VIP Hs929575_m1

Housekeeper
TATA box binding protein TBP Hs00427620_m1
β-actin ACTB Hs99999903_m1
Ubiquitin C UBC Hs00824723_m1
β-2-microglobulin B2M Hs99999907_m1
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2. Experimental/materials and methods

2.1. Post-mortem brain samples

Studies were carried out with approval of the University of New
South Wales Human Research Ethics Committee, (#HREC07261). RNA
from postmortem DLPFC (BA46) and lateral OFC cases was obtained
from the Stanley Medical Research Institute Array Cohort (Table 1).

2.2. qPCR analysis

Due to availability of RNA, the examined cohort consisted of 34
controls, 31 bipolar disorder, and 35 (DLPFC) or 34 (OFC) schizophrenia
subjects. cDNAwas synthesized as previously described (Weickert et al.,
2010). Transcript levels were measured by qPCR on ABI Prism 7900HT
system using TaqMan Gene Expression Assays (Table 2) as previously
described (Fung et al., 2010). The geometric mean for 4 housekeeper
control mRNAs (TATA box binding protein, β-actin, ubiquitin C, β-2-
microglobulin) used for normalization did not vary according to diag-
nostic group (DLPFC: F = 1.51, df = 2, 99, p = 0.23; OFC: F = 0.53,
df = 2, 98, p = 0.59).

2.3. Analysis

Where data were not normally distributed, quantities were trans-
formed (square root: cholecystokinin and calretinin in DLPFC, calretinin
and NPY in the OFC; log: calbindin in OFC). Group outliers of N2 SD from
themeanwere removed (0–4 per group, average 1.57 outliers per group,
4.67%, Supplementary Table 1). Demographic variables that correlated
with gene expression across the cohort (Pearson's correlation on nor-
mally distributed data, Supplementary Table 2) were used as covariates
in ANCOVA analyses of differential gene expression between diagnostic
groups where warranted, otherwise one-way ANOVAs were used to
determine diagnostic differences (LSD post-hocs). Statistical analyses
were performed using IBM SPSS Statistics, Version 20.

3. Results

3.1. InterneuronmRNAs are altered in theDLPFC of schizophrenia and bipo-
lar disorder subjects

Several interneuron transcripts were changed in the DLPFC according
to diagnostic group (Fig. 1). Somatostatin mRNA was reduced in schizo-
phrenia (20.9%, p = 0.021) and in bipolar disorder (34.7%, p b 0.001)
DLPFC relative to healthy controls (overall ANOVA, F = 7.17, df = 2, 93,
p = 0.001). VIP was reduced 17.8% in schizophrenia subjects (p =
0.018) compared to controls and 32.6% in bipolar patients compared to
controls (p b 0.001, overall ANOVA F = 9.10, d = 2, 92, p b 0.001).
Conversely, calbindin mRNA expression was increased in people with
schizophrenia relative to both controls (22.7%, p = 0.001) and bipolar
Table 1
Stanley array cohort demographics (based on DLPFC).

Control group
n = 34

Age (years) (range) 43.8 (31–60)
Gender 9F/25M
Hemisphere 16L/18R
pH (±SD) 6.61 ± 0.27
PMI (hours) (±SD) 29.5 ± 13.0
RIN (±SD) 8.30 ± 0.69
Manner of death Natural = 34
Age of onset (years) (±SD) –

Duration of illness (years) (±SD) –

Lifetime antipsychotics (fluphenazine equivalents, mg) –

Antidepressant use Yes = 0, no = 34
subjects (22.5%, p= 0.002), and unchanged between bipolar and control
subjects (p N 0.05, overall ANCOVA covarying for age, F = 7.40, df = 2,
89, p =0.001). Parvalbumin, cholecystokinin and calretinin mRNAs did
not show significant changes across diagnostic groups by ANOVA (all
F b 1.05, p N 0.05). As there was a trend for overall change in NPY
mRNA (ANOVA F = 2.85, df = 2, 94, p = 0.063) combined with our
prior findings of reduced NPY mRNA in schizophrenia (Fung et al.,
2010), we conducted post-hoc analysis, revealing a reduction in
NPY mRNA in schizophrenia compared to controls (18.8%, p = 0.035),
and reduced NPY mRNA in bipolar disorder relative to controls at the
level of significance (17.6%, p = 0.05).

3.2. InterneuronmRNAs are altered in the OFC of schizophrenia and bipolar
disorder subjects

Somatostatin mRNA was reduced in schizophrenia (23.9%, p =
0.004), and in bipolar disorder relative to controls (29.9%, p = 0.001;
overall ANOVA F = 7.216, df = 2, 90, p = 0.001) (Fig. 2). There was
a trend for a diagnostic group difference in VIP mRNA (F = 2.54,
df = 2, 89, p = 0.085), with reduction in bipolar relative to controls
(16.2%, p = 0.043) and a trend toward reduction in schizophrenia
relative to controls (13.6%, p = 0.079). Calbindin mRNA was increased
in schizophrenia relative to bipolar disorder OFC (27.4%, p = 0.016,
overall ANOVA F= 3.33, df=2, 91, p= 0.040), and tended to decrease
in bipolar relative to controls, but this did not quite reach statistical
significance (15.3%, p = 0.06). No other interneuron marker mRNAs
were significantly changed between groups (F b 1.15, p N 0.05).

4. Discussion

Our results indicate that bipolar disorder and schizophrenia share
significant interneuron pathology, with the largest and most consistent
Bipolar disorder group
n = 31

Schizophrenia group
n = 35

44.9 (19–64) 42.6 (19–59)
16F/15M 9F/26M
17L/14R 17L/18R
6.46 ± 0.28 6.47 ± 0.24
36.6 ± 18.1 31.4 ± 15.4
8.32 ± 0.84 8.47 ± 0.56
Natural = 17, suicide = 14 Natural = 28, suicide = 7
24.8 ± 8.95 21.3 ± 6.07
20.2 ± 9.89 21.3 ± 10.1
10,296.8 ± 23,865 85004.3 ± 100,335
Yes = 18, no = 13 Yes = 9, no = 26



Fig. 1. Expression of interneuron marker mRNAs are altered in the dorsolateral prefrontal cortex (DLPFC) of schizophrenia (scz, light data points) and bipolar disorder (bp, dark data
points) subjects compared to controls (con, gray data points). Error bars represent standard error. PV= parvalbumin, CCK= cholecystokinin, SST= somatostatin, NPY= neuropeptide
Y, CB = calbindin, VIP = vasoactive intestinal peptide, CR = calretinin. *p b 0.05, **p b 0.005, ***p b 0.001.
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reductions in VIP and somatostatin mRNAs. These abnormalities are
evident across both regions studied suggesting that interneuron deficits
are not restricted to theDLPFC (implicated bydeficits inworkingmemory
and cognitive control), but also include the frontal cortical areas associat-
ed with social–emotional function (OFC). Our finding of reduced somato-
statin, VIP and NPY mRNAs in the DLPFC in schizophrenia replicate our
previous finding (Fung et al., 2010) and those of others that also show re-
duced somatostatin (Hashimoto et al., 2008; Morris et al., 2008) and NPY
mRNA (Morris et al., 2009), implicating dendrite targeting interneurons
as pathological in both psychotic disorders. Ameta-analysis ofmicroarray
data comparing patients with schizophrenia and bipolar disorder with
psychosis to affective disorder patients without psychosis found both so-
matostatin and NPY mRNAs reduced in the psychotic group, suggesting
that these transcripts may be associated with psychotic features of these
disorders (Choi et al., 2008). Interestingly, however, the reduction in so-
matostatinmRNA is of greatermagnitude in bipolar disorder than schizo-
phrenia,while psychotic and cognitive symptoms tend to be less severe in
Fig. 2. Expression of interneuron marker mRNAs are altered in the orbitofrontal cortex (OFC) o
compared to controls (con, gray data points). Error bars represent standard error. PV= parvalbu
VIP = vasoactive intestinal peptide, CR = calretinin. *p b 0.05, **p b 0.005, ***p b 0.001.
bipolar disorder (Caletti et al., 2013), suggesting additional factors also
contribute to symptom severity.

Surprisingly,we found frontal cortical parvalbuminmRNAwas unal-
tered in both schizophrenia and bipolar disorder in contrast to previous
studies that consistently demonstrate reduction in parvalbumin mRNA
in the cortex (Cotter et al., 2002; Hashimoto et al., 2003; Hashimoto
et al., 2008; Fung et al., 2010; Sibille et al., 2011) and reductions of cell
number, cell density and parvalbumin expression in hippocampus
(Zhang and Reynolds, 2002; Knable et al., 2004; Konradi et al., 2011),
parahippocampal region (Wang et al., 2011) and entorhinal cortex
(Pantazopoulos et al., 2007). The most significantly altered mRNAs
that we report in the frontal cortex (somatostatin, VIP and NPY) in
schizophrenia overlap with those showing the greatest magnitude of
change in our earlier report in the DLPFC (Fung et al., 2010). While our
previous study also found parvalbumin mRNA reduced, the magnitude
of this change was less than that of somatostatin, VIP and NPY mRNAs.
This indicates that, while much attention has focused on parvalbumin
f schizophrenia (scz, light data points) and bipolar disorder (bp, dark data points) subjects
min, CCK= cholecystokinin, SST= somatostatin, NPY= neuropeptide Y, CB= calbindin,

image of Fig.�2
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abnormalities in schizophrenia and in animal models of schizophrenia-
like behaviors, deficits in other interneuron subtypes may be more pro-
found or widespread, at least in the frontal cortex, in schizophrenia and
bipolar disorder.

We were able to identify one qualitative distinction in interneuron
marker mRNA change in people with schizophrenia from those with
bipolar disorder. In schizophrenia, we find increased calbindin mRNA
replicating our previous finding in a different cohort (Fung et al., 2010).
While calbindinmay be co-expressedwith somatostatin and other inter-
neuron markers (Kawaguchi and Kubota, 1996), it can also be found in
pyramidal neurons (Hof and Morrison, 1991). However, since earlier
reports demonstrated an increase in density of non-pyramidal calbindin
immunopositive neurons in the frontal cortex of peoplewith schizophre-
nia (Daviss and Lewis, 1995), our finding of increased calbindin mRNA
expression may also reflect an interneuronal increase in calbindin that
may be compensatory for reductions in other interneuron markers.

Alternatively, in human frontal cortex development, calbindinmRNA
expression shows a dramatic upregulation early in childhood, prior to
the peak in VIP and parvalbumin mRNA expression (Fung et al., 2010).
Thus, the elevated levels of calbindin mRNA that we find in schizophre-
nia could reflect an immature phenotype of cortical interneurons that
persists into adulthood in schizophrenia, and would be consistent with
the theory of delayed or arrested development of cortical interneurons
in schizophrenia (Catts et al., 2013; Volk and Lewis, 2013). The increase
in calbindin mRNA that we find in schizophrenia but not bipolar disor-
der may suggest differences in the underlying developmental trajecto-
ries of these disorders.

Our study adds to a growing body of literature suggesting that the
molecular neuropathologies of schizophrenia and bipolar disorder dis-
play substantial overlap, including that much interneuron pathology is
shared between the disorders and may be conserved across distinct
frontal brain regions (e.g. Thompson et al., 2009; Thompson Ray et al.,
2011; Sinclair et al., 2012). However an interneuron subtype-specific
alteration (increase in calbindin mRNA) in the DSM-IV defined schizo-
phrenia group only demonstrates that there are also unique differences
to the interneuron pathology in these major mental illnesses and may
indicate the existence of unique “biotypes” within the psychosis
spectrum.
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