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Abstract

Although it provides a relatively good picture of the nucleons, the Skyrme Model is unable to reproduce
the small binding energy in nuclei. This suggests that Skyrme-like models that nearly saturate the Bogo-
mol’nyi bound may be more appropriate since their mass is roughly proportional to the baryon number A.
For that purpose, we propose a near-BPS Skyrme Model. It consists of terms up to order six in derivatives of
the pion fields, including the nonlinear and Skyrme terms which are assumed to be relatively small. For our
special choice of mass term, we obtain well-behaved analytical BPS-type solutions with constant baryon
density configurations, as opposed to the more complex shell-like configurations found in most extensions
of the Skyrme Model. Fitting the four model parameters, we find a remarkable agreement for the binding
energy per nucleon B/A with respect to experimental data. These results support the idea that nuclei could
be near-BPS Skyrmions.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

One of the most original and successful attempts to describe the low-energy regime of the
theory of strong interactions comes from an idea suggested by Skyrme [1–4] that baryons (and
nuclei) are topological soliton solutions arising from an effective Lagrangian of mesons. The pro-
posal is supported by the work of Witten [5] who realized that the large Nc limit of QCD points
towards such an interpretation. More recently, an analysis of the low energy hadron physics in
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holographic QCD [6] has led to a similar picture, i.e. the Skyrme Model. The model, in its origi-
nal form, succeeds in predicting the properties of the nucleon within a precision of 30% [7]. This
is considered a rather good agreement for model which involves only two parameters. Some at-
tempts to improve the model have given birth to a number of extensions or generalizations. Most
of them rely, to some extent, on our ignorance of the exact form of the low-energy effective La-
grangian of QCD namely, the structure of the mass term [8–10], the contribution of other vector
mesons [11,12] or simply the addition of higher-order terms in derivatives of the pion fields [8].
Unfortunately, one of the recurring problems of Skyrme-like Lagrangians is that they almost in-
evitably give nuclei binding energy that is too large by at least an order of magnitude. Perhaps a
better approach would be to construct an effective Lagrangians with soliton solutions that nearly
saturate the Bogomol’nyi bound. If this is indeed the case, then the classical static energy of
such BPS-Skyrmions (Bogomol’nyi–Prasad–Sommerfeld) grows linearly with the baryon num-
ber A (or atomic number) much like the nuclear mass. Support for this idea comes from a recent
result from Sutcliffe [13] who found that BPS-type Skyrmions seem to emerge for the original
Skyrme Model when a large number of vector mesons are added. The additional degrees of free-
dom bring the mass of the soliton down to the saturation of the Bogomol’nyi bound. A more
direct approach to construct BPS-Skyrmions was also proposed by Adam, Sanchez-Guillen, and
Wereszczynski (ASW) [14]. Their prototype model consists of only two terms: one of order six
in derivatives of the pion fields [15] and a second term, called the potential, which is chosen to
be the customary mass term for pions in the Skyrme Model [16]. The model leads to BPS-type

compacton solutions with size and mass growing as A
1
3 and A respectively, a result in general

agreement with experimental observations. However, the connection between the ASW model
and pion physics, or the Skyrme Model, is more obscure due to the absence of the nonlinear σ

and so-called Skyrme terms which are of order 2 and 4 in derivatives, respectively.
Pursuing in this direction, some of us [17,18] reexamined a more realistic generalization of the

Skyrme Model which includes terms up to order six in derivatives [15] considering the regime
where the nonlinear σ and Skyrme terms are small perturbations, referred in what follows as the
near-BPS Skyrme Model. In that limit, it is possible, given an appropriate choice of potential,
to find well-behaved analytical solutions for the static solitons in that approximation. Since they
saturate the Bogomol’nyi bound, their static energy is directly proportional to A and one recovers
some of the results of Ref. [14]. In fact, these solutions allow computing the mass of the nuclei
including static, rotational, Coulomb and isospin breaking energies. Adjusting the four parame-
ters of the model to fit the resulting binding energies per nucleon with respect to the experimental
data of the most abundant isotopes leads to an impressive agreement.

These results support the idea of a BPS-type Skyrme Model as the dominant contribution
to an effective theory for the properties of nuclear matter. However, a few issues remain to be
addressed before such a model is considered viable. One of them concerns the shape of the
energy and baryon densities. As for most extensions of the Skyrme Model, the BPS-type models
in Refs. [14], [17] and [18] generate compact, shell-like or gaussian-like configurations for the
energy and baryon densities, respectively, as opposed to what experimental data suggests, i.e.
almost constant densities in the nuclei. The purpose of this work is to show that it is possible to
construct an effective Lagrangian which leads to a uniform baryon density and still preserve the
agreement with nuclear mass data. It may be noted that near-BPS Skyrme models form a much
bigger set than previously thought as suggested from the recent discovery of topological energy
bounds [19,20] or different extensions [21].
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2. The near-BPS Skyrme Model

We consider an extension of the original Skyrme Model that consist of the Lagrangian density

L = L0 +L2 +L4 +L6 (1)

with

L0 = −μ2V (U) (2)

L2 = −α Tr
[
LμLμ

]
(3)

L4 = β Tr
[
fμνf

μν
]

(4)

L6 = −3

2

λ2

162
Tr

[
fμνf

νλfλ
μ
]

(5)

where Lμ = U†∂μU is the left-handed current and we write for simplicity, the commutators
as fμν = [Lμ,Lν]. Here the pion fields are represented by the SU(2) matrix U = φ0 + iτiφi

and obey the nonlinear condition φ2
0 + φ2

i = 1. The subscript i in Li denotes to the number of
derivatives of the pion fields which determines how each term changes with respect to a scale
transformation.

In the original Skyrme Model, only the nonlinear σ term, L2, and the Skyrme term, L4,
contribute. This implies that α,β > 0 otherwise the static solution would not be stable against
scale transformations. A mass term — or potential term — L0, is often added to take into account
chiral symmetry breaking so as to generate a pion mass term for small fluctuations of the chiral
field in V (U). We shall analyze this term in more details in the coming sections but, as it turns
out, the choice of potential V (U) will have a direct bearing on the form of the solutions and on
the predictions of our model. Finally, the term of order six in derivatives of the pion fields, L6,
is equivalent to LJ6 = −εJ6BμBμ with εJ6 = 9π4λ2/4 that was first proposed by Jackson et
al. [15] to take into account ω-meson interactions. Here, Bμ stands for the topological current
density

Bμ = εμνρσ

24π2
Tr(LνLρLσ ). (6)

The constants μ, α, β , and λ are left as free parameters although we shall focus on the regime
where α and β are relatively small, i.e. in the limit where the solutions remain close to that of
the BPS-solitons.

It is well known that setting the boundary condition for U at infinity to a constant in order to
get finite energy solutions for the Skyrme fields also characterizes such solutions by a conserved
topological charge which Skyrme identified as the baryon number B (or mass number A in the
context of nuclei)

B =
∫

d3r B0 = − εijk

24π2

∫
d3r Tr(LiLjLk). (7)

Note that the static energy arising from L6 corresponds to the square of the baryon density

E6 = 9π4λ2

4

∫ (
B0(r)

)2
d3r.

It is often associated with the energy that would emerge if the Skyrme field is couple to the
ω-meson [22]
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Eω = 1

2

g2
ω

4π

∫
B0(r)

e−mω|r−r′|

|r − r′| B0(r′)d3r d3r ′,

where instead of following the e−mω|r−r′|/|r − r′| law, the interaction is replaced by a δ-function
δ3(r − r′).

Historically, L0 and L6 were introduced to provide a more general effective Lagrangian than
the original Skyrme Model and indeed, the Lagrangian in (1) represents the most general SU(2)

model with at most two time derivatives. Since one generally relies on the standard Hamiltonian
interpretation for the quantization procedure, higher-order time derivatives are usually avoided.
On the other hand, it should be kept in mind that an effective theory based on the 1/Nc expansion
of QCD should, in principle, include terms with higher-order derivatives of the fields.

The model (1) has been studied rather extensively in the sector where the values of parameters
μ, α, β , and λ close to that of the original Skyrme Model [15,23–26]. Clearly these choices were
made so that L2 and L4 would continue to have a significant contribution to the mass of the
baryons and thereby preserve the relative successes of the Skyrme Model in predicting nucleon
properties and their link to soft-pion theorems (α is proportional to the pion decay constant Fπ ).
Yet this sector of the theory fails to provide an accurate description of the binding energy of
heavy nuclei.

Noting that this caveat may come from the fact that the solitons of the Skyrme Model do
not saturate the Bogomol’nyi bound, ASW proposed a toy model [14] (equivalent to setting
α = β = 0) whose solutions are just BPS solitons. In principle however, the model cannot lead
to stable nuclei since BPS-soliton masses are exactly proportional to the topological number, so
B > 1 solutions have no binding energies. A more realistic approach was proposed in Refs. [17,
18] where the Lagrangian (1) is assumed to be in the sector where α and β are relatively small,
treating these two terms as perturbations. The solutions almost saturate without reaching the
Bogomol’nyi bound so that it allows for small but non-zero binding energies. However, in spite
of a very good agreement with experimental nuclear masses, there remain a few obstacles to the
acceptance of such model. For instance, nuclear matter is believed to be uniformly distributed
inside a nucleus whereas the solutions of the aforementioned models [14,17,18] display either
compact, shell-like or gaussian-like baryon and energy densities respectively. The main purpose
of this work is to demonstrate that it is possible to construct an effective Lagrangian which leads
to a uniform densities and still preserves the agreement with nuclear mass data.

Let us consider the static solution for U . It can be written in the general form

U = ein·τF = cosF + in · τ sinF (8)

where n̂ is the unit vector

n̂ = (sinΘ cosΦ, sinΘ sinΦ, cosΘ) (9)

and F,Θ , and Φ depend in general on the spherical coordinates r, θ , and φ.
We first consider the model in (1) in the limit where α and β are small. For that purpose, we

introduce the axial solutions for the α = β = 0 case,

F = F(r), Θ = θ, Φ = Aφ (10)

where A is an integer that correspond to the baryon number or mass number of a nucleus.
A word of warning is in order here. The solution (10) is only one of an infinite dimensional

families of solutions of the BPS model and, is not expected to be the true minimizing solution
of the static energy of the model or, for that matter, of the total energy which includes also the
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(iso)rotational energy, the Coulomb energy and an isospin symmetry breaking term. Since α and
β are assumed to be small, the nonlinear σ and Skyrme terms are not expected to a determining
factor in minimizing the total energy. In fact, the dominant effect should come from the repulsive
Coulomb energy which would have a tendency to favor a most symmetric configuration. Which
form is the true minimizer remains an open question only to be answered by heavy numerical cal-
culations. In the absence of such an analysis and for the sake of simplicity, we chose to consider
ansatz (10) which allows to easily estimate all the contributions to the mass of the nuclei.

From hereon, we shall use whenever possible the dimensionless variable x = ar where a =
(μ/18Aλ)1/3 in order to factor out the explicit dependence on the model parameters μ,α,β , and,
λ and baryon number A. In fact, most of the relevant quantities can be written in terms of three
fundamental objects

(∇F)2 = (a∂xF )2

(sinF∇Θ)2 =
(

a
sinF

x

)2

(sinF sinΘ∇Φ)2 =
(

aA
sinF

x

)2

(11)

The total static energy Es gets a contribution from each term in (1), respectively,

E0 = 4π

(
μ2

a3

)
IV

0

E2 = 4π

(
2α

a

)(
I 0

200 + I 0
020 + I 0

002

)

E4 = 4π(16βa)
(
I 0

220 + I 0
202 + I 0

022

)

E6 = 4π

(
9

16
λ2a3

)
I 0

222 (12)

where I k
lmn are parameter-free integrals given by

I k
lmn(z) =

z∫
0

dxx2Ik
lmn(x) with Ik

lmn(x) = xk(∂xF )l
(

sinF

x

)m(
A

sinF

x

)n

(13)

IV
0 =

∞∫
0

x2 dxV (F ) =
∑
m

CV
mIm

0m0 (14)

and write I k
lmn = I k

lmn(∞) for simplicity. Note that some of these integrals are related in our case
since Ik

lmn = AnIk
l,m+n,0. In the last equality, we assume that one can recast V (F) as a power

series of sinF , i.e. V (F) = ∑
m CV

m sinm F as suggested in Ref. [8]. The terms E0 and E6 are
proportional to the baryon number A as one expects from solutions that saturate the Bogomol’nyi
bound whereas the small perturbations E2 = A1/3(a2 + b2A

2) and E4 = A−1/3(a4 + b4A
2) have

a more complex dependence. Part of this behavior, the overall factor A±1/3, is due to the scaling.
The additional factor of A2 comes from the axial symmetry of the solution (10) that can be
factored out from I k = A2I k .
lm2 l,m+2,0
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The topological charge also simplifies to

A =
∫

d3xB0(x) = − 2

π
I 0

111 (15)

The root mean square radius of the baryon density is given by

〈
r2〉 1

2 = 1

2πa

(−2I 2
120

)1/2 (16)

which is consistent with experimental observation for the charge distribution of nuclei 〈r2〉 1
2 =

r0A
1
3 .

The minimization of the static energy for α = β = 0 leads to the differential equation for F :

sin2 F

288x2
∂x

(
sin2 F

x2
∂xF

)
− ∂V

∂F
= 0. (17)

Multiplying by ∂xF , this expression can be integrated
(

sin2 F

x2
∂xF

)2

= 576V (18)

which leads to∫
sin2 F

8
√

V
dF = ±(

x3 − x3
0

)
(19)

where x0 is an integration constant. Finally, the expression for F(x) can be found analytically
provided the integral on the left-hand side is an invertible function of F . For example, assuming
that the potential may be written in the form

√
V = u(1 − u2)

g′(
√

1 − u2)
(20)

where u = cos(F/2) and, g′(u) = ∂g/∂u, Eq. (19) leads to√
1 − u2 = sin(F/2) = g−1(∓(

x3 − x3
0

))
(21)

Such solutions saturate the Bogomol’nyi bound [14], so their static energy is proportional to the
baryon number A. One would like ultimately to reproduce the observed structure of nuclei, i.e.
a roughly constant baryon density becoming diffuse at the nuclear surface which is characterized
by a skin constant thickness parameter. Unfortunately the chiral angle F in (21) cannot reproduce
this last feature since F can only be a function of the ratio r/A1/3. So the resulting thickness
parameter is not constant and should scale like A1/3.

It is interesting to note that (18) implies that for the minimum energy solutions

V (x) = 1

576

(
sinF

x

)4

(∂xF )2 (22)

so

E0 = 4π

(
λμ

32A

)
I 0

222 = E6

where the last equality arises from Derrick scaling. Furthermore according to (7) and (22), the
square root of the potential
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√
V (x) = − 1

24

sin2 F

x2
∂xF = π

48A
B0(x)

where B0(x) corresponds to the radial baryon density B0(x) = ∫
dΩ B0(x). Thus, in order to

obtain a nonshell baryon density, it suffices to construct a potential V that does not vanish at
small x or, equivalently, a solution such that ∂xF (0) 
= 0.

Expression (20) must be used with caution: it only applies for potentials V which turn out to
be function of u alone or, in other words, for potentials that depends on the real part of the pion
field matrix U or TrU . On the other hand, L0 in (1) needs to be explicitly written in terms of the
fields U . A simple but not unique approach to construct such potential is to identify u = cos(F/2)

to the expression

2U+ = u2I

where U± = (2I ± U ± U†)/8 and I is the 2 × 2 identity matrix. Then, a convenient expression
for V (U) is given by

V (U) = 16 Tr[U+U2−]
[g′((Tr[U−])1/2)]2

In the context of the BPS-Skyrme Model, not only the potential V appears as one of the dom-
inant term in the static energy but it is also a key ingredient in the determination of the solution.
In principle, the full effective theory including the potential should emerge from the low-energy
limit of QCD, but apart from a few symmetry arguments, little is known on the exact form of V .
A most simple expression for V that reads

VASW(U) = −Tr[U−] = 1 − u2 (23)

was first proposed by Adkins et al. [16] and served as an additional term to the original Skyrme
Lagrangian. Its main purpose was to recover the chiral symmetry breaking pion mass term
− 1

2m2
ππ · π in the limit of small pion field fluctuations U = exp(2iτaπa/Fπ). It is sometimes

useful to recast the potential in the form [8]

μ2V =
4∑

k=1

Ck Tr
[
2I − Uk − U†k

]
(24)

Taking the limit of small pion field fluctuations, this allows fixing the parameter μ in terms of
the pion mass mπ through the relation

∞∑
k=1

k2Ck = −m2
πF 2

π

16
.

The choice of potential (23) corresponds to the choice g(u) = u3/3 in (21) and solving for F

leads to the BPS-compacton solution of ASW [14]:

FASW(x) =
{

2 arccos(31/3x) for x ∈ [0,3−1/3]
0 for x � 3−1/3 (25)

Note here that ∂xF (x) diverges as x → 3−1/3 which implies that E2 and E4 are not well defined.
Unfortunately, this solution as well as those arising from other similar models [27] saturate the
Bogomol’nyi bound and as such, they give no binding energies for the classical solitons with
B > 1.
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Fig. 1. Profile F(x) for models ASW (dotdashed), BoM (dashed), BHM (dotted) and BeM (solid).

Several alternatives to (23) have also been proposed [8,10] but recently, the major role played
by the potential in the predictions for BPS-Skyrme Models was realized and it has led to a few
interesting cases:

• One such example is a potential based on Ref. [17]

VBoM(U) = −8 Tr
[
U+U3−

]
which correspond to the choice −C1 = C2 = C3 = 4C4 = μ2/128 and Ck>4 = 0 in (24). It
leads to well-behaved solutions

FBoM(x) = π ∓ 2 arccos
[
exp

(−x3)] (26)

where ∂xF remains negative and finite for all x. In order to set the baryon number to A, the
boundary conditions are chose to be F(0) = ±π and F(∞) = 0 for positive and negative
baryon number respectively. Note that the exponential fall off of F at large x prevents some
quantities such as the moments of inertia from becoming infinite. However, ∂xF (x) vanishes
at x = 0 and so does the baryon density, leading to an unsatisfactory shell-like configuration.

• In that regard, a solution similar to that proposed in Ref. [18] seems more appropriate

FBHM(x) = π ∓ 2 arccos
[
exp

(−x2)] (27)

since it possesses the kind of non-shell like baryon density configurations observed in nature.
It emerges from the potential of the form

VBHM(U) = −64

9

Tr[U+U3−]
ln(Tr[U−])

These models display compact, shell-like or gaussian-like baryon and energy densities (see
Figs. 1 and 2). However here, we shall demonstrate that it is possible to construct an effective
Lagrangian which leads to a uniform baryon density and still preserves and even improves the
agreement with nuclear mass data.

If we assume for now that the observed baryon density can be appropriately approximated by
the parametrization ρB(r,A) then, one is looking for a solution for F(r) such that
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Fig. 2. Radial baryon density B(x) for models ASW (dotdashed), BoM (dashed), BHM (dotted) and BeM (solid).

ρB(r,A) = − A

2π2

sin2 F

r2
F ′ (28)

Separating variables and integrating both sides of the equation

−2π2

A
r2ρB(r,A)dr = sin2 F dF

we get the expression of the form

F(r) = G−1(Z(r)
)

(29)

where

G(F) ≡ 1

2
F − 1

4
sin 2F

Z(r) = −2π2

A

∫
r2ρB(r,A)dr

In order to be consistent, the boundary conditions for Z must obey Z(∞) − Z(0) = −π/2.
Matching expressions (21) and (29) then provides an approach to construct a model, i.e. to choose
a potential V , that reproduces the empirical baryon density ρB . Again we stress that our model
leads to BPS-Skyrmions with a profile F that must be a function of the ratio r/A1/3. Unfortu-
nately, this excludes most parametrizations in the literature, for example, densities such as the
2-parameter Fermi or Wood–Saxon form

ρ
2pF
B (r) = ρ0

1 + e−c/τ

1 + e(r−c)/τ

since they tend to reproduce two empirical observations: (a) a baryon density that is roughly
constant for all nuclei up to their boundary where (b) it is suppressed within a thickness t ≈ 4.4τ

that is practically constant. The last behavior is inconsistent with the r/A1/3 dependence of F .
Let us instead construct our model by modifying the gaussian-like profile FBHM(x) in such

a way that baryon density B0(x) is approximately constant. The solution FBHM(x) leads to a
nonshell baryon density but it falls off too rapidly. In order to suppress this behavior we propose
a solution of the form (see Figs. 1 and 2)

FBeM(x) = π ∓ 2 arccos
[
exp

(−x2 − a4x
4)] (30)
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and fix the coefficient a4 = 7/5 by setting to zero the first coefficient of the series expansion of
B0(x) near x = 0. (Note that we could, in principle, extend this procedure by changing the argu-
ment of the exponential to a truncated series X(x) = x2 +∑N

i=2 a2ix
2i . Imposing that the density

remains constant further from the core would require to set a6 = 1384/525, a8 = 6302/1125, and
so on.) It is easy to find a potential that would allow such a solution

VBeM(U) = 1792

45
Tr

[
U+U3−

] (1 − (14/5) ln(Tr[U−]))
1 − √

1 − (14/5) ln(Tr[U−])
Note that in the limit of small pion field fluctuations U = exp(2iτaπa/Fπ), the potential has no
quadratic term in the pion field i.e. the pion mass remains zero in this model, where the last result
is obtained assuming the axial solution (10).

Using the profile F in (30), the static energy in (12) can be calculated. Recalling that I k
lmn =

AnIk
l,m+n,0 for the form of axial solution at hand, we need to evaluate numerically only four

parameter-free integrals:

I 0
200 = 2.68798 I 0

020 = 0.48504 I 0
220 = 5.13755

I 0
040 = 1.88156 I 0

240 = 20.27798.

In order to represent physical nuclei, we have taken into account their rotational and isoro-
tational degrees of freedom and quantize the solitons. The standard procedure is to use the
semiclassical quantization which is described in the next section.

3. Quantization

Skyrmions are not pointlike particles so we resort to a semiclassical quantization method
which consists in adding an explicit time dependence to the zero modes of the Skyrmions and
applying a time-dependent (iso)rotations on the Skyrme fields by SU(2) matrix A1(t) and A2(t)

Ũ (r, t) = A1(t)U
(
R

(
A2(t)

)
r
)
A

†
1(t) (31)

where R(A2(t)) is the associated SO(3) rotation matrix. The approach assumes that the Skyrmion
behaves as a rigid rotator. Upon insertion of this ansatz in the time-dependent part of the full
Lagrangian (1), we can write the (iso)rotational Lagrangian as

Lr = 1

2
aiUij aj − aiWij bj + 1

2
biVij bj , (32)

where ak = −i Tr τkA
†
1Ȧ1 and bk = i Tr τkȦ2A

†
2.

The moment of inertia tensors Uij are given by

Uij =
∫

d3rUij = −1

a

∫
d3x

[
2α

a2
Tr(TiTj ) + 4β Tr

([Lp,Ti][Lp,Tj ]
)

+ 9λ2

162
a2 Tr

([Ti,Lp][Lp,Lq ][Lq,Tj ]
)]

(33)

where Ti = iU†[ τi

2 ,U ]. The expressions for Wij and Vij are similar except that the isorotational
operator Ti is replaced by a rotational analog Si = −εiklxkLl as follows:
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Wij =
∫

d3r Wij =
∫

d3r Uij (Tj → Sj ) (34)

Vij =
∫

d3r Vij =
∫

d3r Uij (Tj → Sj , Ti → Si). (35)

Following the calculations in [17] for axial solution of the form (10), we find that all off-diagonal
elements of the inertia tensors vanish.

Furthermore, one can show that U11 = U22 and U33 can be obtained by setting A = 1 in the
expression for U11. Similar identities hold for Vij and Wij tensors. Finally the general expres-
sions for the moments of inertia coming from each pieces of the Lagrangian read

U11 = 4π

3a

(
8α

a2
I 2

020 + 16β
(
4I 2

220 + 3I 2
022 + I 2

040

) + 9λ2a2

16

(
3I 2

222 + I 2
240

))
(36)

V11 = 4π

3a

(
2α

a2

(
I 2

002 + 3I 2
020

) + 16β
[(

I 2
202 + 3I 2

220

) + 4I 2
022

] + 9λ2a2

4
I 2

222

)
(37)

where due to the axial form of our solution, we can extract an explicit dependence on A through
the relation I k

lmn = AnIk
l,m+n,0.

The axial symmetry of the solution imposes the constraint L3 +AK3 = 0 which is simply the
statement that a spatial rotation by an angle θ about the axis of symmetry can be compensated by
an isorotation of −Aθ about the τ3 axis. It follows from expressions (33)–(35) that W11 = W22 =
0 for |A| � 2 and A2U33 = AW33 = V33. Otherwise, for |A| = 1, the solution have spherical
symmetry and

W11 = 4π

3a

(
8α

a2
I 2

020 + 64β
(
I 2

220 + I 2
040

) + 9λ2a2

4
I 2

240

)
, (38)

where here A = 1 in a as well.
The general form of the rotational Hamiltonian is given by [28]

Hr = Hr = 1

2

∑
i=1,2,3

[
(Li + Wii

Ki

Uii
)2

Vii − W 2
ii

Uii

+ K2
i

Uii

]
(39)

where (Ki ) Li the body-fixed (iso)rotation momentum canonically conjugate to (ai ) bi . It is also
easy to calculate the rotational energies for nuclei with winding number |A| � 2

Hr = 1

2

[
L2

V11
+ K2

U11
+ ξK2

3

]
(40)

with

ξ = 1

U33
− 1

U11
− A2

V11

These momenta are related to the usual space-fixed isospin (I) and spin (J) by the orthogonal
transformations

Ii = −1

2
Tr

(
τiA1τjA

†
1

)
Kj = −R(A1)ijKj , (41)

Ji = −1
Tr

(
τiA2τjA

†
2

)T
Lj = −R(A2)

T
ijLj . (42)
2
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According to (41) and (42), we see that the Casimir invariants satisfy K2 = I2 and L2 = J2 so
the rotational Hamiltonian is given by

Hr = 1

2

[
J2

V11
+ I2

U11
+ ξK2

3

]
. (43)

We are looking for the lowest eigenvalue of Hr which depends on the dimension of the spin
and isospin representation of the nucleus eigenstate |N〉 ≡ |i, i3, k3〉|j, j3, l3〉. For α = β = 0,
we can show that ξ is negative and we shall assume that this remains true for small values of
α and β . Then, for a given spin j and isospin i, κ must take the largest possible eigenvalue k3.
Note that K2 = I2 and L2 = J2, so the state with highest weight is characterized by k3 = i and
l3 = j . Furthermore, since nuclei are build out of A fermions, the eigenvalues k3 are limited
to k3 � i � A/2. On the other hand, the axial symmetry of the static solution (10) implies that
k3 = −l3/A� j/A where j � A/2 as well. In order to minimize Hr, we need the largest possible
eigenvalue k3, so for even A nuclei, κ must be an integer such that

κ = max
(|k3|

) = min
(
i, [j/A]).

Similarly for odd nuclei, |k3| must be a positive half-integer so the only possible value is

κ = min

(
i, [j/A] + 1

2

)
= 1

2

This last relation only holds for the largest possible spin eigenstate j = A/2 which is not the
most stable in general and so it signals that the ansatz (10) may not be the most appropriate
for odd nuclei. The axial symmetry may however be only marginally broken if we consider the
odd nucleus as a combination of an additional nucleon with an even nucleus especially for large
nuclei. Nonetheless, we shall retain the ansatz (10) for both even and odd nuclei and choose the
largest possible eigenvalue k3 for the most stable isotopes as

κ =
{

0 for A = even,
1
2 for A = odd.

(44)

The lowest eigenvalue of the rotational Hamiltonian Hr for a nucleus is then given by [17]

Er = 1

2

[
j (j + 1)

V11
+ i(i + 1)

U11
+ ξκ2

]
(45)

The spins of the most abundant isotopes are well known. This is not the case for the isospins
so we resort to the usual assumption that the most abundant isotopes correspond to states with
lowest isorotational energy. Since i � |i3|, the lowest value that i can take is simply |i3| where
i3 = Z − A/2. For example, the nucleon and deuteron rotational energy reduces respectively to

EN
r = 3

8U11
A = 1, j = i = κ = 1/2 (46)

ED
r = 1

V11
A = 2, j = 1, i = κ = 0 (47)

The explicit calculations of the rotational energy of each nucleus then require the numerical
evaluation of the following four parameter-free integrals in (36), (37) and (38) which, in our
model, turn out to be
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I 2
020 = 0.142868 I 2

220 = 1.43364

I 2
040 = 0.352712 I 2

240 = 3.94598.

So far, both contributions to the mass of the nucleus, Es and Er, are charge invariant. Since
this is a symmetry of the strong interaction, it is reflected in the construction of the Lagrangian
(1) and one expects that the two terms form the dominant portion of the mass. However, isotope
masses differ by a few percent so this symmetry is broken for physical nuclei. In the next section,
we consider two additional contributions to the mass, the Coulomb energy associated with the
charge distribution inside the Skyrmion and an isospin breaking term that may be attributed to
the up and down quark mass difference.

4. Coulomb energy and isospin breaking

The electromagnetic and isospin breaking contributions to the mass have been thoroughly
studied for A = 1, mostly in the context of the computation of the proton–neutron mass difference
[29–35], but are usually neglected, to a first approximation, for higher A since they are not
expected to overcome the large binding energies predicted by the model. There are also practical
reasons why they are seldom taken into account. The higher baryon number configurations of the
original Skyrme Model are nontrivial (toroidal shape for A = 2, tetrahedral for A = 3, etc.) and
finding them exactly either requires heavy numerical calculations (see for example [36]) or some
kind of clever approximation like rational maps [37]. In our case however, we are interested in a
precise calculation of the nuclei masses and an estimate of the Coulomb energy is desirable, and
even more so in our model which generates nonshell configurations. It turns out that the axial
symmetry of the solution and the relatively simple form of the chiral angle F(r) in (30) simplify
the computation of the Coulomb energy.

Let us first consider the charge density inside Skyrmions. Following Adkins et al. [7], we
write the electromagnetic current

J
μ
EM = 1

2
Bμ + J

μ3
V , (48)

with Bμ the baryon density and J
μ3
V the vector current density. The conserved electric charge is

given by

Z =
∫

d3r J 0
EM =

∫
d3r

(
1

2
B0 + J 03

V

)
(49)

The vector current is then defined as the sum of the left and right handed currents

J
μi
V = J

μi
R + J

μi
L

which are invariant under SU(2)L ⊗ SU(2)R transformations of the form U → LUR†. More
explicitly, we get

J 0i
V = −1

2

{
R(A1)ij , (Ujkak −Wjkbk)

}
(50)

where Uij and Wij are the moment of inertia densities in (33)–(35). The calculations of the
Coulomb energy here follows that in [38,39]; it differs that from Ref. [18] where only the body-
fixed charge density was considered. The anticommutator is introduced to ensure that J 0i is a
V
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Hermitian operator. In the quantized version, aj and bj are expressed in terms of the conjugate
operators Ki and Li . Here we only need the relation

Ki = Uijaj − Wijbj

The solution is axially symmetric then the off-diagonal elements of Uij and Wij vanish, W11 =
W22 = 0 for |A| � 2 and AU33 = W33. Then have

a1 = K1

U11
, a2 = K2

U22
, a3 = K3

U33
+ Ab3

Inserting ai in (50), the isovector electric current density reduces to

J 03
V = −1

2

{
R(A1)3i ,

Uii

Uii

Ki

}

where Uii/Uii may be interpreted here as a normalized moment of inertia density for the ith
component of isospin in the body-fixed frame. The expectation value R(A1)31K1 and R(A1)32K2
for eigenstate |N〉 = |i, i3, k3〉|j, j3, l3〉 are equal so that we may simplify

〈N |J 03
V |N〉 = U11 + U22

2U11
i3 +

[U11 + U22

2U11
− U33

U33

]
〈N |R(A1)33K3|N〉 (51)

where we have used relation (41). The moment of inertia density are given by

U11 + U22 = 4αI2
020

(
1 + cos2 θ

) + 32βa2(I2
220

(
1 + cos2 θ

) + I2
040

(
A2 + cos2 θ

))

+ 9λ2

8
a4I2

240

(
A2 + cos2 θ

)
(52)

U33 =
(

4αI2
020 + 32βa2(I2

220 + I2
040

) + 9λ2

8
a4I2

240

)
sin2 θ (53)

The expression in brackets in Eq. (51) integrates to zero so that one recovers the relation
Z = A/2 + i3 as expected. But while it does not contribute to the total charge, the charge density
is not zero everywhere. Let us examine this contribution in more details. Since the electric charge
does not depend on the angular momentum, we can limit our analysis to the isospin wavefunc-
tions. Following Adkins [40] we write the wavefunctions 〈A1|i, i3, k3〉 in terms of the Wigner
functions Dn

mm′ :

〈A1|i, i3, k3〉 =
(

2i + 1

2π2

)1/2

Di
k3i3

(A1)

Similarly the matrix R(A1)33 corresponds to a spin zero and isospin zero transition that can be
written

R(A1)33 = D1
00(A1)

The appropriate expectation value is then given by

〈i, i3, k3|R(A1)33K3|i, i3, k3〉 = k3

∫
dA1

(
2i + 1

2π2

)(
Di

k3i3
(A1)

)∗
D1

00(A1)D
i
k3i3

(A1)

= k3(−1)2(k3+1−i)〈1,0; i, k3|i, k3〉〈1,0; i, i3|i, i3〉
=

{
i3k

2
3

i(i+1)
for i 
= 0
0 for i = 0
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where the last two expressions on the second line are Clebsch–Gordan coefficients. Recalling
that we have imposed the condition |k3| = κ = 0 or 1/2 for even and odd nuclei respectively and
fixed the value of the isospin to i = |i3|, we find

ρ ≡ 1

2
B0 + U11 + U22

2U11
i3 +

[U11 + U22

2U11
− U33

U33

]
i3κ

2

i(i + 1)
(54)

The last term drops for even nuclei (κ = 0). For odd nuclei, the cancellation in the brackets leads
a relatively small contribution which is further suppressed by the factor κ2/(i + 1) for large
nuclei. It is indicative of the asymmetry in the moments of inertia.

The Coulomb energy associated with a given charge distribution ρ(r) takes the usual form

EC = 1

2

1

4π

∫
ρ(r)

1

|r − r′|ρ
(
r′)d3r d3 r ′ (55)

Since we have at hand an axially symmetric distribution, it is convenient to expand ρ(r) in terms
of normalized spherical harmonics to perform the angular integrations

ρ(r) = a3ρ(x) = a3
∑
l,m

ρlm(x)Ym∗
l (θ, φ). (56)

Following the approach described in [41], we define the quantities

Qlm(r) =
r∫

0

dr̃ r̃ l+2ρlm(r̃) = a−lQlm(x) (57)

which, at large distance, are equivalent to a multipole moments of the distribution. The total
Coulomb energy is given by

EC =
∞∑
l=0

l∑
m=−l

Ulm

where

Ulm = (2παem)a

∞∫
0

dxx−2l−2
∣∣Qlm(x)

∣∣2

The isoscalar part to the charge distribution is a spherically symmetric contribution

B0(r) = a3B0(x) = − a3

2π2
I0

111(x)

where Ik
lmn is defined in (13). On the other hand, the isovector contribution in (49) possesses a

simple angular dependence so that the summation (56) consists of only two terms in Y 0∗
0 and Y 0∗

2 .
The moments Q00 and Q20 are then given by

Q00(x) = 2
√

π

3

(
− 3A

4π2
I 0

120(x) + i3

a

(
8α

a2
I 2

020(x)C− + 16β
(
4I 2

220(x)C− + CAI 2
040(x)

)

+ 9λ2a2

16
CAI 2

240(x)

))

Q20(x) = 4
√

π i3
C+

(
2α

2
I 4

020(x) + 16β
(
I 4

220(x) + I 4
040(x)

) + 9λ2

aI 4
240(x)

)

3 5 a a 16



M.-O. Beaudoin, L. Marleau / Nuclear Physics B 883 (2014) 328–349 343
where

C± = 1 + C

U11
+ C

2U33
± 3C

2U33

CA = (
3A2 + 1

)(1 + C

U11

)
− 4C

U33

and C = k2
3/i(i + 1). Finally, the Coulomb energy then takes the form

EC = (2παem)a

∞∫
0

(
Q2

00x
−4 + Q2

20x
−8)x2 dx (58)

It is again convenient to regroup the model parameters in the dimensionless quantity

p0 =
[
A,C−

α

a3
i3,CA

β

a
i3,C−

β

a
i3,CAλ2ai3

]

p2 = C+i3

[
α

a3
,
β

a
,λ2a

]

such that we may write

EC = 2παema
(
pi

0M
ij

00p
j

0 + pi
2M

ij

00p
j

2

)
. (59)

Here, each element of M
ij

00 (Mij

20) comes from squaring Q00 (Q20) in (58) and depend only on
the form of the profile F(x) and baryon number A according to

M
ij

l0 =
∞∫

0

vi
l v

j
l x−2−2l dx

where

v0 = 2
√

π

3

(
− 3

4π2
I 0

120(x),8I 2
020(x),16I 2

040(x),64I 2
220(x),

9

16
I 2

240(x)

)

v2 = 4

3

√
π

5

(
2I 4

020(x),16
(
I 4

220(x) + I 4
040(x)

)
,

9

16
I 4

240(x)

)

For the solutions at hand (30), we get

M00 =

⎛
⎜⎜⎜⎜⎝

0.035244 0.295938 1.67062 24.5793 0.65734
0.295938 2.6131624 14.1112 215.6395 5.56078
1.67062 14.1112 79.5851 1173.4095 31.3461
24.5793 215.6395 1173.4095 17835.4373 462.538
0.65734 5.56078 31.3461 462.538 12.3494

⎞
⎟⎟⎟⎟⎠

M20 =
⎛
⎝ 0.0156167 1.62666 0.126600028

1.62666 173.309 13.9867
0.126600028 13.9867 1.20944

⎞
⎠

The Coulomb energy can explain part of the isotope mass differences, but it is certainly not
sufficient. For example for the nucleon, the Coulomb energy would suggest that the neutron mass
is smaller than that of the proton. Of course, one can invoke the fact that isospin is not an exact
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symmetry to improve the predictions. Several attempts have been proposed to parametrize the
isospin symmetry breaking term within the Skyrme Model [34,35]. Here we shall assume for
simplicity that this results in a contribution proportional to the third component of isospin

EI = aI i3 (60)

where the parameter aI is fixed by setting the neutron–proton mass difference to its experimental
value �M

expt
n−p = 1.293 MeV. Since both of them have the same static and rotational energies, we

find

aI = (
En

C − E
p

C

) − �M
expt
n−p (61)

where En
C and E

p

C are the neutron and proton Coulomb energy, respectively.
Summarizing, the mass of a nucleus reads

E(A, i, j, k3, i3) = Es(A) + Er(A, i, j, k3) + EC(A, i3) + EI(A, i3) (62)

where Es is the total static energy. The prediction depends on the parameters of the model μ, α,
β , and λ and the relevant quantum numbers of each nucleus as shown in (62).

5. Results and discussion

The values of the parameters μ, α, β and λ remain to be fixed. Let us first consider the
case where α = β = 0. This should provide us with a good estimate for the values of μ,α,β ,
and λ required in the 4-parameter model (1) and, after all, it corresponds to the limit where the
minimization of the static energy leads to the exact analytical BPS solution in (30). For simplicity,
we choose the mass of the nucleon and that of a nucleus X with no (iso)rotational energy (i.e.
a nucleus with zero spin and isospin) as input parameters. Neglecting for now the Coulomb and
isospin breaking energies, the mass of these two states is according to expression (62)

EN = 15.92628λμ + 0.026426μ−1/3λ−5/3

EX = 15.92628Aλμ

For example, if the nucleus X is Calcium-40, a doubly magic number nucleus, with mass
ECa = 37214.7 MeV, then solving for λ and μ, we get the numerical values μ = 12322.3 MeV2,
α = β = 0 and, λ = 0.00474078 MeV−1 which we shall refer as Set I. The masses of the nuclei
are then computed using Eq. (62) which results in predictions that are accurate to at least 0.6%,
even for heavier nuclei. This precision is somewhat expected since the static energy of a BPS-type
solution is proportional to A so if it dominates, the nuclear masses should follow approximately
the same pattern. However, the predictions remain surprisingly good compared to that of the
original Skyrme model, another 2-parameter model.

Perhaps even more relevant are the predictions of the binding energy per nucleon B/A =
(E − Zmp − (A − Z)mn)/A, in which case, the calculation simplifies. For example, subtracting
from the static energy of a nucleus from that of its constituents we find that the binding energy
does not depend on the static energies E0 or E6,

�Es = AEs(1) − Es(A)

= 4π(A − 1)

(
2α (

I 0
200 − (A − 1)I 0

020

) − 16aβ
(
(A − 1)I 0

220 + AI 0
040

))

a
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Fig. 3. Binding energy per nucleon B/A as a function of the baryon number A: The experimental data (empty circles)
are shown along with predicted values for parametrization of Set I with α = β = 0 (dashed line), for Set II, the best fit
for nuclear masses (dotted line), and for Set III, the best fit for B/A (solid line), respectively.

whereas the contribution from EI simply cancels out. The dominant contributions come from the
(iso)rotational and Coulomb energy differences, respectively,

�Er = AEN
r − Er(A, i, j, k3)

dominated by AEN
r for large nuclei and

�EC = ZE
p

C + (A − Z)En
C − EC(A, i3)

which is, of course, negative due to the repulsive nature of the Coulomb force between nucleons.
The results for B/A are presented in Fig. 3 (dashed line). They are compared to the experi-

mental values (empty circles). We show here only a subset of the table of nuclei in [42] composed
of the most abundant 140 isotopes. The parameters of Set I lead to a sharp rise of the binding
energy per nucleon at small A followed by a slow linear increase for larger nuclei. The accuracy
is found to be roughly within 10% which is relatively good considering the facts that the model
involves only two parameters at this point and the calculation involves a mass difference between
the nucleus and its constituents.

Experimentally the charge radius of the nucleus is known to behave approximately as

〈r2
em〉 1

2 = r0A
1
3 with r0 = 1.23 fm. It is straightforward to calculate the root mean square ra-

dius of the baryon density [see Eq. (16)] which leads to 〈r2〉 1
2 = (2.007 fm)A

1
3 . On the other

hand the charge radius 〈r2
em〉 1

2 displays a more complex dependence on A since it involves an
additional isovector contribution (54)

〈
r2

em

〉 =
∫

d3rr2ρ(r)∫
d3rρ(r)

= A

2Z

〈
r2〉 + i3

Z

〈
r2
V

〉
(63)

where ρ(r) is given in expression (56) and 〈r2
V 〉 is given by

〈
r2
V

〉 = U
(2)
11

a2U11
,

where for the sake of conciseness we wrote 〈r2
V 〉 in terms of U

(2)
11 = U11(I

2
lmn → I 4

lmn), i.e. the

integrals along the radial component in U
(2) contains an extra factor of r2. Our computation
11
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Table 1
Sets of parameters.

Set I Set II Set III Expt.

μ (104 MeV2) 1.23223 1.02259 1.33515 –
α (10−3 MeV2) 0 1.48244 0.508933 –
β (10−8 MeV0) 0 1.20427 1.31582 –
λ (10−3 MeV−1) 4.74078 5.70373 4.36994 –
Fπ (MeV) 0 0.15401 0.0902381 186
mπ (MeV) 0 0 0 138
e2 (106) – 2.59492 2.37494 –
r0 (fm) 2.00667 2.27113 1.90139 1.23

verifies that the charge radius obeys roughly the proportionality relation ∼ r0A
1
3 but overesti-

mates the experimental value of r0 by about 80% with parameter Set I.
Let us now release the constraint α = β = 0, and allow for small perturbations from the

nonlinear σ and Skyrme term. In order to estimate the magnitude of the parameters α and β in
a real physical case, we perform two fits: the four parameters μ, α, β and λ in Set II optimizes
the masses of the nuclei while Set III reaches the best agreement with respect to the binding
energy per nucleon, B/A. Both fits are performed with data from the same subset of the most
abundant 140 isotopes as before. The best fits on both cases would lead to small negative values
for β similar to that of Refs. [17,18]. However, since the classical (static) energy of the model is
unbounded below if α,β < 0 we impose the constraint α,β � 0 from hereon to avoid stability
problems. (Note that in principle β could take small negative values as long as the Skyrme term
is overcome by the repulsive Coulomb energy in which case the physical nuclei would be stable
but not the classical soliton.)

A summary of the results is presented in Table 1 while Fig. 3 displays the general behavior of
B/A as a function of the baryon number for Sets I, II, III, and experimental values. Note that the
proton and neutron mass differ slightly over Sets I, II and III so for the sake of comparison we
use their experimental values in calculating B/A.

We find that the two new sets of parameters are very close to Set I. In order to make a relevant
comparison, we look at the relative importance of the four terms in (1) and how they scale with
respect to the parameters of the model, namely

μλ : α(λ/μ)1/3 : β(μ/λ)1/3 : μλ

Set I 58.42 : 0 : 0 : 58.42
Set II 58.33 : 1.226 × 10−5 : 1.463 × 10−6 : 58.33
Set III 58.35 : 3.507 × 10−6 : 1.909 × 10−6 : 58.35

for L0, L2, L4, and L6, respectively. So the nonlinear σ and Skyrme terms are found to be very
small compared to that of L0 and L6, i.e. by at least five orders of magnitude. This provides
support to the assumption that (30) is a good approximation to the exact solution.

The energy scale μλ remain approximately the same for all the sets while the values of μ and
λ shows noticeable differences. In particular for the fit involving B/A turns out to be somewhat
sensitive to these variations mostly because it involves a mass difference. We also note some
variation in the baryonic charge radius r0 = 1.3982(λ/μ)1/3; all sets overestimates the experi-
mental value by roughly 80%. Since setting the parameters mainly involves fixing the relevant
energy scale μλ, perhaps the process may not be as sensitive to setting a proper length scale for
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the nucleus so the predicted value of r0 should probably be taken as an estimate rather than a
firm prediction.

Matching the parameters of the model with that of the original Skyrme Model, we identify
Fπ = 4

√
α, e2 = 1/32β whereas mπ = 0 due to the form of the potential. The quantities Fπ and

e2 take values which are orders of magnitude away for those obtained for the Skyrme Model (see
Table 1) but this is not surprising since we have assumed from the start that α and β are relatively
small. Unfortunately, one of the successes of the original Skyrme Model is that it established a
link with soft-pion physics by providing realistic values for Fπ , mπ and baryon masses. Such
a link here is more obscure. The departure could come from the fact that the parameters of the
model are merely bare parameters and they could differ significantly from their renormalized
physical values. In other words, we may have to consider two quite different sets of parameters:
a first one, relevant to the perturbative regime for pion physics where Fπ and mπ are closer to
their experimental value and, a second set which applies to the nonperturbative regime in the
case of solitons. In our model, this remains an open question.

The model clearly improves the prediction of the nuclear masses and binding energies in the
regime where α and β are small. Let us look more closely at the results presented in Fig. 3.
The experimental data (empty circles) are shown along with predicted values for parametrization
Set I, Set II and Set III (dashed, dotted and solid lines, respectively). Setting α = β = 0 (Set I)
leads to sharp increase B/A at low baryon number followed by a regular but slow growth in
the heavy nuclei sector. This suggests that heavier nuclei should be more stable, in contradiction
to observation. However the agreement remains within ∼10% in regards to the prediction of
the nuclear masses. This is significantly better than what is obtained with the original Skyrme
Model which overestimates B/A by an order of magnitude. Since B/A depends on the difference
between the mass of a nucleus and that of its constituents, it is sensitive to small variation of the
nuclear masses so the results for B/A may be considered as rather good. The second fit (Set II)
is optimized for nuclear masses. The behavior at small A is similar to that of Set I (as well as in
Set III) while it reproduces almost exactly the remaining experimental values (A � 40). Finally,
the optimization of B/A (Set III) provide a somewhat better representation for light nuclei at the
expense of some of the accuracy found in Set II for A� 40. Overall, the binding energy is rather
sensitive to the choice of parameters. This is partly because the otherwise dominant contributions
of E0 and E6 to the total mass of the nucleus simply cancel out in B/A.

The difference of behavior between light and heavy nuclei shown by the model may be partly
attributed to the (iso)rotational contribution to the mass. The spin of the most abundant isotopes
remains small while isospin can have relatively large values due to the growing disequilibrium
between the number of proton and the number of neutron in heavy nuclei. On the other hand,
the moments of inertia increase with A, so the total effect leads to an (iso)rotational energy
Er < 1 MeV with A > 10 for all sets of parameters considered and its contribution to B/A

decreases rapidly as A increases. On the contrary, for A < 10, the rotational energy is responsible
for a larger part of the binding energy which means that B/A should be sensitive to the way the
rotational energy is computed. So clearly, the variations in shape of the baryon density has some
bearing on the predictions for the small A sector not only the values of the parameters.

To summarize, the main purpose this work is to propose a model in a regime where the nuclei
are described by near-BPS solitons with approximately constant baryon density configuration.
This is achieved with a 4-terms generalization of the Skyrme Model in the regime where the
nonlinear σ and Skyrme terms are considered small. The choice of an appropriate potential V al-
lows to build constant baryon density near-BPS solitons, i.e. a more realistic description of nuclei
as opposed to the more complex configurations found in most extensions of the Skyrme Model
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(e.g. A = 2 toroidal, A = 3 tetrahedral, A = 4 cubic, . . . ). Fitting the model parameters, we find
a remarkable agreement for the binding energy per nucleon B/A with respect to experimental
data. On the other hand, there remain some caveats. First, the Skyrme Model provides a simul-
taneous description for perturbative pion interactions and nonperturbative baryon physics with
realistic values for Fπ and mπ and baryon masses. The connection between the two sectors here
seems to be much more intricate. Secondly, there may be place for improvement by proposing
more appropriate solutions that would describe equally well the light and heavy nuclei. Finally,
the model seems unable to reproduce a constant skin thickness in the baryon or charge density
and the experimental size of the nucleus correctly. On the other hand, the concept of BPS-type
Skyrmions also arises when one adds a large number of vector mesons to the Skyrme Model as
suggested by recent results based on holographic QCD from Sutcliffe [13]. Unfortunately, the
emerging large A Skyrmions configurations are rather complicated or simply unknown so that
it has yet been impossible to perform an analysis of the nuclear properties comparable to that
presented in this work. More recently Adam, Naya, Sanchez-Guillen and Wereszczynski [38,39]
considered the special case of the pure BPS-model (α = β = 0) using the potential VASW. Al-
though their treatment differ slightly they find a similar agreement for the binding energy per
nucleon. Yet, all approaches clearly suggest that nuclei could be treated as near-BPS Skyrmions.

This work was supported by the National Science and Engineering Research Council of
Canada.
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