On the Derivation Algebras of Lie Module Triple Systems

NORA C. HOPKINS

Department of Mathematics, Ohio State University, Columbus, Ohio 43210

Communicated by I. N. Herstein

Received February 20, 1986

1. INTRODUCTION

We continue here work on the classification of Lie module triple systems over an algebraically closed field k of characteristic zero begun in [4], where we indicated how to decompose a Lie module triple system under certain restrictions into constituents from two relatively simple subclasses. We study these two subclasses in the present paper.

Recall [5] that a Lie module triple system (abbreviated LMTS) is formed from a finite dimensional Lie algebra \mathcal{L} having a nondegenerate symmetric associative (invariant) bilinear form b and a finite dimensional faithful \mathcal{L}-module M having a nondegenerate \mathcal{L}-invariant bilinear form φ, that is,

$$\varphi(xl, y) = -\varphi(x, yl)$$

for all $x, y \in M, l \in \mathcal{L}$. A triple product $\{ , , \}$ is defined on M by defining $\{xyz\} := xR(y, z)$, where $R: M \times M \to \mathcal{L}$ is defined by setting

$$b(l, R(y, z)) = \varphi(zl, y)$$

for all $y, z \in M, l \in \mathcal{L}$. The Lie module triple system $(M, \{ , , \})$ is denoted $(M, \{ , , \}, \mathcal{L}, b, \varphi)$ when the ingredients need to be specified.

$(M, \{ , , \}, \mathcal{L}, b, \varphi)$ is a Type I LMTS if M is an irreducible \mathcal{L}-module and is a Type II LMTS if M is the direct sum of two irreducible \mathcal{L}-submodules such that φ restricted to any irreducible \mathcal{L}-submodule of M is zero. By Corollary 3.5 of [4], Type I and Type II LMTSs are the constituents out of which can be formed any LMTS $(M, \{ , , \}, \mathcal{L}, b, \varphi)$ for which M is a completely reducible \mathcal{L}-module with φ symmetric or symplectic.
The goal of this paper is to classify Type I and Type II LMTSs by considering their derivation algebras. In Section 2 we prove that their derivation algebras are reductive and in Section 3 we give a bound on the dimension of toral subalgebras centralizing \mathcal{L} in the derivation algebra of $(M, \{ , , \}, \mathcal{L}, b, \varphi)$. We use these results in Section 4 to obtain the classification.

2. REDUCTIVITY OF DERIVATION ALGEBRAS

Recall from Corollary 2.11 of [5] that in a LMTS $(M, \{ , , \}, \mathcal{L}, b, \varphi)$, $\mathcal{L} = R(M, M) := \{\sum_{i=1}^{n} R(y_i, z_i) | y_i, z_i \in M\}$ and that [5, (2.8.1)]

$$\{\{xyz\ uv\} - \{\{xuw\} yz\} = \{x\{yuv\}z\} + \{xy\{zuv\}\}$$

(2.1)

for all $x, y, z, u, v \in M$. In operator form (2.1) becomes

$$[R(y, z), R(u, v)] = R(yR(u, v), z) + R(y, zR(u, v)).$$

(2.1')

Hence $R(u, v)$ is a derivation of $(M, \{ , , \})$, where $D \in \text{End} M$ is a derivation of $(M, \{ , , \})$ if

$$[R(y, z), D] = R(yD, z) + R(y, zD)$$

(2.2)

for all $y, z \in M$. Elements of \mathcal{L} are called inner derivations. Equation (2.2) implies that \mathcal{L} is an ideal of $\text{Der}(M, \{ , , \})$, the Lie subalgebra of $\text{End} M$ consisting of derivations of $(M, \{ , , \})$.

$\text{End}_{\mathcal{L}} M$ will denote the Lie subalgebra of $\text{End} M$ of \mathcal{L}-module endomorphisms of M. Note that $\text{End}_{\mathcal{L}} M$ is the centralizer of \mathcal{L} in $\text{End} M$. We need the following technical lemma.

Lemma 2.3. Suppose $(M, \{ , , \}, \mathcal{L}, b, \varphi)$ is a LMTS with $M = \{MMM\}$ and $D \in \text{End}_{\mathcal{L}} M$. Then $D \in \text{Der}(M, \{ , , \})$ if and only if for all $y, z \in M$

$$\varphi(zD, y) = -\varphi(z, yD).$$

(2.3.1)

Proof. If $D \in \text{Der}(M, \{ , , \}) \cap \text{End}_{\mathcal{L}} M$, $R(yD, z) = -R(y, zD)$ and $lD = Dl$ for all $l \in \mathcal{L}$ so by (1.2)

$$\varphi(zl, yD) = b(l, R(yD, z)) = -b(l, R(y, zD))$$

$$= -\varphi(zDl, y) = -\varphi(zlD, y)$$

so (2.3.1) holds since M is spanned by elements of the form zl. The converse follows from the same argument in reverse.
THEOREM 2.4. Suppose \((M, \{\cdot, \cdot, \cdot\}, \mathcal{L}, b, \phi)\) is a semisimple LMTS such that \(M\) is a completely reducible \(\mathcal{L}\)-module and \(\phi\) is symmetric or symplectic. Then \(\text{Der}(M, \{\cdot, \cdot, \cdot\})\) is reductive.

Proof: Since \(M\) is a completely reducible \(\mathcal{L}\)-module, \(\mathcal{L}\) is reductive \([7, \text{Theorem 10, p. 811}],\) i.e., \(\mathcal{L} = [\mathcal{L}, \mathcal{L}] \oplus C\) with \([\mathcal{L}, \mathcal{L}]\) semisimple and \(C\) a central ideal whose elements act semisimply on \(M\). Thus, by Schur’s lemma if \(M = M_1 \oplus \cdots \oplus M_n\) as an \(\mathcal{L}\)-module with \(M_i\), irreducible for \(i = 1, \ldots, n\), then for all \(c \in C\) there are scalars \(\alpha_i(c) \in k\) with \(x_i c = \alpha_i(c)x_i\) for all \(x_i \in M_i\).

Define \(\text{ad}: \text{Der}(M, \{\cdot, \cdot, \cdot\}) \to \text{Der} \mathcal{L}\) by \(l(\text{ad} D) = [l, D]\). \(\text{ad}\) is a Lie algebra homomorphism and since \(\text{Der}[\mathcal{L}, \mathcal{L}] \cong \text{ad}[\mathcal{L}, \mathcal{L}] \cong [\mathcal{L}, \mathcal{L}]\) by the semisimplicity of \([\mathcal{L}, \mathcal{L}]\), \([\mathcal{L}, \mathcal{L}]\) \cap \ker \text{ad} = 0 and for all \(D \in \text{Der}(M, \{\cdot, \cdot, \cdot\})\) there is an \(l \in [\mathcal{L}, \mathcal{L}]\) such that for all \(l_1 \in [\mathcal{L}, \mathcal{L}]\), \([l_1, l - D] = 0\). Thus \(\text{Der}(M, \{\cdot, \cdot, \cdot\}) = [\mathcal{L}, \mathcal{L}] \oplus \mathcal{K}\), where \(\mathcal{K} = \text{Der}(M, \{\cdot, \cdot, \cdot\}) \cap \text{End}_{[\mathcal{L}, \mathcal{L}]} M\). \([\mathcal{L}, \mathcal{L}]\) is semisimple so once it is shown that \(\mathcal{K}\) is reductive, we will have the desired result.

Now if \(D \in \mathcal{K}\), by the Jacobi identity \([c, D] \in C\) for all \(c \in C\) since \(\mathcal{L}\) is an ideal of \(\text{Der}(M, \{\cdot, \cdot, \cdot\})\). If \(x \in M_i\) with \(x \neq 0\), \(xD = x_1 + \cdots + x_n\) with \(x_j \in M_j\) for \(1 \leq j \leq n\). Thus for all \(c \in C\),

\[
\alpha_i([c, D])x = x[c, D] = xcD - xDc = (\alpha_i(c) - \alpha_1(c))x_1 + \cdots + 0x_i + \cdots + (\alpha_n(c) - \alpha_n(c))x_n
\]

so \(\alpha_i([c, D]) = 0\) for \(i = 1, \ldots, n\) and hence \([c, D] = 0\) for all \(c \in C\). Hence \(D \in \ker \text{ad} = \text{Der}(M, \{\cdot, \cdot, \cdot\}) \cap \text{End}_\mathcal{L} M\). Now by Lemma 2.3, \(\mathcal{K} = \ker \text{ad}\) is the centralizer of \(\mathcal{L}'\) in \(G := \{A \in \text{End} M \mid \varphi(xA, y) = -\varphi(x, yA)\}\) for all \(x, y \in M\) since the semisimplicity of \((M, \{\cdot, \cdot, \cdot\})\) gives \(M = \{MMM\}\) by Proposition 4.2 of \([4]\). Since \(\varphi\) is symmetric or symplectic, \(G\) is a Lie algebra of type \(B, C,\) or \(D\) and hence is reductive. Thus \(\mathcal{K}\) is reductive by Theorem 7 of \([6]\).

Recall from \([5]\) that \((M, \{\cdot, \cdot, \cdot\})\) is abelian if \(\{xyz\} = 0\) for all \(x, y, z \in M\) and an ideal \(N\) of \((M, \{\cdot, \cdot, \cdot\})\) is central if \(\{xyz\} = \{yoz\} = \{yzx\} = 0\) for all \(x \in N, y, z \in M\).

LEMMA 2.5. If \((M, \{\cdot, \cdot, \cdot\}, \mathcal{L}, b, \phi)\) is a Type I or Type II LMTS, then \((M, \{\cdot, \cdot, \cdot\})\) is either abelian or simple.

Proof: By Proposition 4.2 of \([5]\), \(M = M_1 \oplus Z(M)\), where \((M, \{\cdot, \cdot, \cdot\}, \mathcal{L}, b, \varphi|_{M_1}),\) and \((Z(M), \{\cdot, \cdot, \cdot\}), 0, 0, \varphi|_{Z(M)}\) are ideals of \(M\) with \(M_1\) semisimple and \(Z(M)\) central. Since an ideal of \((M, \{\cdot, \cdot, \cdot\})\) is an \(\mathcal{L}\)-submodule, if \((M, \{\cdot, \cdot, \cdot\})\) is Type I, either \(M = Z(M)\), in which case...
Theorem 4.3 of [5] shows that $(M, \{\ ,\ ,\ \})$ is simple.

Lemma 2.6. Suppose $(M, \{\ ,\ ,\ \}, \mathcal{L}, b, \varphi)$ is a LMTS and M_1 and M_2 are irreducible \mathcal{L}-submodules of M. If φ restricted to $M_2 \times M_1$ is nonzero, there is an $a \in k$ with $\varphi(x, y) = a \varphi(y, x)$ for all $x \in M_1, y \in M_2$. In particular, φ is symmetric or symplectic if $(M, \{\ ,\ ,\ \})$ is Type I or if $(M, \{\ ,\ ,\ \})$ is Type II and is the direct sum of two isomorphic irreducible \mathcal{L}-submodules.

Proof. The first statement follows from Section 7.5 of [1]. If $(M, \{\ ,\ ,\ \})$ is Type I, $\varphi \neq 0$ so taking $M_1 = M_2 = M$, $\varphi(x, y) = a \varphi(y, x) = a^2 \varphi(x, y)$ and this gives $a = \pm 1$ so φ is symmetric or symplectic.

Suppose $(M, \{\ ,\ ,\ \})$ is Type II and $M = M_1 \oplus M_2$ as an \mathcal{L}-module with $M_1 \cong M_2$. Then φ restricted to $M_i \times M_i$ is zero for $i = 1, 2$ so φ restricted to $M_1 \times M_2$ and φ restricted to $M_2 \times M_1$ are both nonzero and hence nondegenerate by irreducibility. In particular, if $x_i \in M_i$ is a nonzero lowest weight vector and $y_j \in M_j$ is a nonzero highest weight vector with $j \neq i$, then $\varphi(x_i, y_j) \neq 0$ by (1.1). Now if $x_i \in M_i$ is a lowest weight vector for $i = 1, 2$, there are $e_1, \ldots, e_m \in \mathcal{L}$ with $y_i := x_i e_1 \cdots e_m$ a nonzero highest weight vector of M_i for $i = 1, 2$. Hence $\varphi(x_1 + x_2, y_1 + y_2) = 0$ since otherwise $\varphi|_P$ would be nonzero for P the \mathcal{L}-submodule generated by $x_1 + x_2$. Thus $\varphi(x_1, y_1) + \varphi(x_1, y_2) + \varphi(x_2, y_1) + \varphi(x_2, y_2) = \varphi(x_1, y_2) + \varphi(x_2, y_1) = 0$. Now the one dimensionality of the highest weight space of M_i, $i = 1, 2$, gives that there is a scalar c with $x_i e_m \cdots e_1 = cy_i$. Thus

$$
\varphi(x_1, y_2) = -\varphi(x_2, y_1) = -\varphi(x_2, x_1 e_1 \cdots e_m)
$$

$$
= -(-1)^m \varphi(x_2 e_m \cdots e_1, x_1) \quad \text{by (1.1)}
$$

$$
= -(-1)^m c \varphi(y_2, x_1)
$$

$$
= -(-1)^m c \varphi(x_2 e_1 \cdots e_m, x_1)
$$

$$
= -(-1)^{2m} c \varphi(x_2, x_1 e_m \cdots e_1) \quad \text{by (1.1)}
$$

$$
= -c^2 \varphi(x_2, y_1) = c^2 \varphi(x_1, y_2).
$$

Thus $c = \pm 1$ and $a = (-1)^{m+1} c = \pm 1$ so φ is symmetric or symplectic.
THEOREM 2.7. If \((M, \{ , , \}, \mathcal{L}, b, \varphi)\) is a Type I or Type II LMTS, then \(\text{Der}(M, \{ , , \})\) is reductive.

Proof. If \((M, \{ , , \})\) is abelian, then \(\text{Der}(M, \{ , , \}) = \text{End } M\), which is reductive. If \((M, \{ , , \})\) is not abelian, it is simple by Lemma 2.5 so if \(\varphi\) is symmetric or symplectic, we are done by Theorem 2.4. By Lemma 2.6 this takes care of Type I LMTSs and Type II's which are the direct sum of two isomorphic irreducible submodules.

The remaining possibility is \((M, \{ , , \})\) is a simple Type II LMTS and \(M = M_1 \oplus M_2\) with \(M_1\) and \(M_2\) nonisomorphic irreducible \(\mathcal{L}\)-submodules. As in the proof of Theorem 2.4, \(\text{Der}(M, \{ , , \}) = [\mathcal{L}, \mathcal{L}] \oplus \mathcal{K}\), where \([\mathcal{L}, \mathcal{L}]\) is semisimple and \(\mathcal{K} = (M, \{ , , \}) \cap \text{End } \mathcal{L} M\). But if \(D \in \mathcal{K}\), \(M_i D \subseteq M_i\) since \(D\) is an \(\mathcal{L}\)-module homomorphism and \(M_1 \not\cong M_2\). Hence by Schur's lemma there are scalars \(\alpha_1, \alpha_2 \in k\) with \((x_1 + x_2) D = \alpha_1 x_1 + \alpha_2 x_2\) for all \(x_i \in M_i\). Hence \(\mathcal{K}\) is a central ideal of \(\text{Der}(M, \{ , , \})\) consisting of semisimple elements and so \(\text{Der}(M, \{ , , \})\) is reductive.

3. THE STRUCTURE OF THE COMPLEMENT \(\mathcal{K}\)

If \((M, \{ , , \}, \mathcal{L}, b, \varphi)\) is a LMTS with \(\text{Der}(M, \{ , , \})\) reductive, \(\mathcal{L}\) is reductive since it is an ideal of \(\text{Der}(M, \{ , , \})\) so, as in the proof of Theorem 2.4, \(\text{Der}(M, \{ , , \}) = [\mathcal{L}, \mathcal{L}] \oplus \mathcal{K}\), where \(\mathcal{K} = \text{Der}(M, \{ , , \}) \cap \text{End } \mathcal{L} M\) is reductive, and the center of \(\mathcal{L}\) centralizes \(\text{Der}(M, \{ , , \})\). Let \(n\) be the number of irreducible summands of \(M\) as an \(\mathcal{L}\)-module, i.e., \(M = M_1 \oplus \cdots \oplus M_n\) with \(M_i\) an irreducible \(\mathcal{L}\)-submodule for \(i = 1, \ldots, n\) [7, Theorem 10, p. 81].

THEOREM 3.1. Suppose \((M, \{ , , \}, \mathcal{L}, b, \varphi)\) is a semisimple LMTS with \(\text{Der}(M, \{ , , \})\) reductive. If \(H\) is a Cartan subalgebra of \(\mathcal{K}\), then \(\dim H < n/2\).

Proof. \(\mathcal{L}_1 = [\mathcal{L}, \mathcal{L}] \oplus H\) is reductive so by Theorem 10, p. 81, of [7], \(M = N_1 \oplus \cdots \oplus N_k\) with \(N_i\) an irreducible \(\mathcal{L}_1\)-submodule for \(i = 1, \ldots, k\). By Schur's lemma for all \(h \in H\) there are scalars \(\alpha_i(h) \in k\) with \(x_i h = \alpha_i(h) x_i\) for all \(x_i \in N_i\). Hence \(N_i\) is an irreducible \(\mathcal{L}\)-submodule and \(k = n\). Now \(\dim H = \dim \langle \alpha_1, \ldots, \alpha_n \rangle\) since \(M\) is a faithful \(H\)-module. By Proposition 4.2 of [5], \(M\) has no abelian ideals so for \(i = 1, \ldots, n\) \(\{N_i, MM\} \neq 0\) by Lemma 3.1 of [5]. Hence \(0 \neq \phi(M, \{N_i, MM\}) = b(R(M, M), R(N_i, M))\) so \(R(N_i, M) \neq 0\) so there is a \(j\) with \(R(N_i, N_j) \neq 0\). Now for \(x_i \in N_i, x_j \in N_j, h \in H, 0 = [R(x_i, x_j), h] = R(x_i h, x_j) + R(x_i, x_j h) = [\alpha_i(h) + \alpha_j(h)] R(x_i, x_j)\) by (2.2). Hence if \(R(N_i, N_j) \neq 0, \alpha_i = 0\) and if \(j \neq i, \alpha_i = -\alpha_j\). Thus \(\dim H \leq n/2\).
This result was shown in [2] for triple systems \((M, \{ , , \})\) which are \(\text{Der}(M, \{ , , \})\) irreducible.

Corollary 3.2. Suppose \((M, \{ , , \}, \mathcal{L}, b, \varphi)\) is a simple LMTS and \(\mathcal{K} = \text{Der}(M, \{ , , \}) \cap \text{End}_{\mathcal{L}} M\).

(i) If \((M, \{ , , \})\) is Type I, \(\mathcal{L}\) is semisimple and \(\text{Der}(M, \{ , , \}) = \mathcal{L}\).

(ii) If \((M, \{ , , \})\) is Type II and is the direct sum of nonisomorphic submodules, \(\mathcal{K}\) is one dimensional.

(iii) If \((M, \{ , , \})\) is Type II and is the direct sum of isomorphic submodules, \(\mathcal{K} = sl(2)\).

Proof. By Theorem 2.7, \(\text{Der}(M, \{ , , \})\) is reductive if \((M, \{ , , \})\) is Type I or Type II. If \((M, \{ , , \})\) is Type I, \(\dim H = 0\) by Theorem 3.1 for \(H\) a Cartan subalgebra of \(\mathcal{K}\). Hence \(\mathcal{K} = 0\) and so \(\mathcal{L} \subseteq \text{Der}(M, \{ , , \}) = [\mathcal{L}, \mathcal{L}]\), giving \(\mathcal{L}\) semisimple.

Suppose \((M, \{ , , \})\) is Type II and \(M = M_1 \oplus M_2\) with \(M_i\) an irreducible \(\mathcal{L}\)-submodule. In this case \(\dim H = 0\) or \(1\) by Theorem 3.1. Define \(D \in \text{End} M\) by \((x_1 + x_2) D := x_1 - x_2\) for \(x_i \in M_i\). Then (2.3.1) holds so \(D \in \mathcal{K}\) and since \(D\) is semisimple, \(\dim H = 1\). Hence \(\mathcal{K}\) is one dimensional or \(\mathcal{K} = sl(2)\). If \(M_1 \not\cong M_2\), then for any \(E \in \mathcal{K} \subseteq \text{End}_{\mathcal{L}} M\), \(M_i E \subseteq M_i\), so by Schur's lemma \(E\) acts semisimply and hence \(\mathcal{K}\) is one dimensional. So suppose \(M_1 \cong M_2\), in particular suppose \(\tau: M_1 \to M_2\) is an \(\mathcal{L}\)-module isomorphism. \(P := \{x_1 + x_1 \tau \mid x_1 \in M_1\}\) is an irreducible \(\mathcal{L}\)-module of \(M\) so \(\varphi|_P \equiv 0\). Hence if \(x_1, y_1 \in M_1, \varphi(x_1 + x_1 \tau, y_1 + y_1 \tau) = \varphi(x_1, y_1 \tau) + \varphi(x_1 \tau, y_1) = 0\), i.e., \(\varphi(x_1 \tau, y_1) = -\varphi(x_1, y_1 \tau)\). Define \(E \in \text{End}_{\mathcal{L}} M\) by \((x_1 + x_2) E = x_1 \tau\) for \(x_i \in M_i\). Then \(E\) satisfies (2.3.1) since \(\varphi((x_1 + x_2) E, y_1 + y_2) = \varphi(x_1 \tau, y_1) = -\varphi(x_1, y_1 \tau) = -\varphi(x_1 + x_2, (y_1 + y_2) E)\) so \(E \in \mathcal{K}\). \(E\) is nilpotent so \(\mathcal{K} = sl(2)\).

4. Classification

We now prove our classification result:

Theorem 4.1. Suppose \((M, \{ , , \}, \mathcal{L}, b, \varphi)\) is a simple LMTS.

(i) If \((M, \{ , , \})\) is Type I, then \(M\) is a self-dual irreducible \(\mathcal{L}\)-module, for \(e = \pm 1, \varphi(x, y) = e\varphi(y, x)\) for all \(x, y \in M\) and \(R(y, z) = -eR(z, y)\) for all \(y, z \in M\), and \(\mathcal{L} = \text{Der}(M, \{ , , \})\) is semisimple.

(ii) Suppose \((M, \{ , , \})\) is Type II so \(M = M_1 \oplus M_2\) with \(M_1\) and \(M_2\) irreducible \(\mathcal{L}\)-modules. Then \(M_1\) and \(M_2\) are dual and there is an \(a \in k^*\)
with \(\varphi(x, y) = a \varphi(y, x) \) for all \(x \in M_1, y \in M_2 \) and \(R(z, y) = -a^{-1}R(y, z) \) for all \(z \in M_1, y \in M_2 \). \(R(M_1, M_1) = R(M_2, M_2) = 0 \) and \(R(M_1, M_2) = R(M_2, M_1) = \mathcal{L} \neq 0 \). There are two possibilities:

(a) \(M_1 \) and \(M_2 \) are isomorphic self-dual \(\mathcal{L} \)-modules, in which case \(a = \pm 1 \), \(\mathcal{L} \) is semisimple, and \(\text{Der}(M, \{ , , \}) = \mathcal{L} \oplus \mathfrak{s}(2) \).

(b) \(M_1 \) and \(M_2 \) are not isomorphic, in which case \(\text{Der}(M, \{ , , \}) \) is reductive with a one dimensional center spanned by \(D \), where \((x_1 + x_2)D := x_1 - x_2 \) for \(x_i \in M_i \).

Proof: \(\mathcal{L} \) is a self-dual \(\mathcal{L} \)-module since \(x \to \varphi(x, -) \) is an \(\mathcal{L} \)-module isomorphism of \(M \) with \(M^* \). That \(\varphi \) is symmetric or symplectic in (i) and (ii)(a) was shown in Lemma 2.6, as was the existence of \(a \in k \) such that \(\varphi(x, y) = a \varphi(y, x) \) for \((M, \{ , , \}) \) Type II and \(x \in M_1, y \in M_2 \). By the nondegeneracy of \(\varphi, a \neq 0 \). Hence if \(z \in M_1, y \in M_2, b(l, R(z, y)) = \varphi(yl, z) = a^{-1} \varphi(z, yl) = b(l, -a^{-1}R(y, z)) \), giving \(R(z, y) = -a^{-1}R(y, z) \). Thus \(R(M_1, M_2) = R(M_2, M_1) \). Since \(\varphi|_{M_j} = 0 \) for \(i = 1, 2, b(R(M, M), R(M_i, M_j)) = \varphi(\{ M_i, M, M_j \}, M_i) = \varphi(M_i, M_i) = 0 \) so \(R(M_1, M_1) = R(M_2, M_2) = 0 \), giving \(\mathcal{L} = R(M_1, M_2) = R(M_2, M_1) \) by Corollary 2.11 of [S]. Thus \(M_1 \) and \(M_2 \) are dual since \(x \to \varphi(x, -) \) is an isomorphism of \(M_i \) with \(M_i^* \) for \(i, j = 1, 2, i \neq j \). If \(M_1 \cong M_2 \), they are self-dual. The statements about the derivation algebras were shown in Corollary 3.2 except that \(\mathcal{L} \) is semisimple in (ii)(a). However, in this case \(\text{Der}(M, \{ , , \}) = [\mathcal{L}, \mathcal{L}] \oplus \mathfrak{s}(2) \) is semisimple so since \(\mathcal{L} \) is an ideal of \((M, \{ , , \}) \), \(\mathcal{L} \) is semisimple.

It remains only to show that all of the possibilities do, in fact, occur. Simple Lie triple systems give examples of Type I LMTSs and the Type II's in Theorem 4.1(ii)(b) for which \(D \in \mathcal{L} \) [8]. Some of the Type II Lie triple systems are direct sums of nonisomorphic \([\mathcal{L}, \mathcal{L}]\)-modules. The \([\mathcal{L}, \mathcal{L}]\)-cutdown (see [4] for the definition) of such a Lie triple system is a Type II for which \(D \notin \mathcal{L} \). Finally we give an example of a Type II LMTS which is the direct sum of isomorphic submodules.

Example 4.2. On the two dimensional space \(V_1 = kx \oplus ky \) define the nondegenerate bilinear form \(\varphi_1 \) by \(\varphi_1(x, x) = \varphi_1(y, y) = 0 \) and \(\varphi_1(x, y) = 8 = -\varphi_1(y, x) \) and on \(V_2 = ka \oplus kb \) define the nondegenerate bilinear form \(\varphi_2 \) by \(\varphi_2(a, a) = \varphi_2(b, b) = 0 \) and \(\varphi_2(a, b) = 8 = -\varphi_2(b, a) \).

Let \(M = V_1 \otimes V_2 \) and define the nondegenerate bilinear form \(\psi \) on \(M \) by \(\psi(w \otimes c, u \otimes d) := \varphi_1(w, u) \varphi_2(c, d) \) for \(w, u \in V_1, c, d \in V_2 \) and define \(\{ , , \} \) on \(M \) by \(\{ w \otimes c, u \otimes d, v \otimes e \} := \frac{1}{2} \varphi_2(e, d) \varphi_1(w, u) v \otimes c + \frac{1}{2} \varphi_2(e, d) \varphi_1(w, v) u \otimes c + \frac{1}{2} \varphi_2(e, c) \varphi_1(w, v) u \otimes c \). Then \(\{ , , \} \) and \(\psi \) satisfy the hypotheses of Corollary 2.8 of [5] so \((M, \{ , , \}) \) is a LMTS. It is easy to check that \(\mathcal{L} := R(M, M) = \mathfrak{s}(2) \), where \((w \otimes c) \cdot D = w l \otimes c \) and \(x \).
and \(y \) are respectively the highest and lowest weight vectors. Clearly then \(M = M_1 \oplus M_2 \) as an \(L \)-module with \(M_1 = \{ w \otimes a \mid w \in V_1 \} \), \(M_2 = \{ w \otimes b \mid w \in V_1 \} \) and \(M_1 \cong M_2 \) and both are irreducible. Any lowest weight vector of \(M \) is of the form \(y \otimes e \) for some \(e \in V_2 \). Then the highest weight vector of the \(L \)-submodule \(\Phi \) generated by \(y \otimes e \) is \(x \otimes e \). Now \(\psi(x \otimes e, y \otimes e) = \varphi_1(x, y) \varphi_2(e, e) = 8 \cdot 0 = 0 \) since \(\varphi_2 \) is symplectic so \(\psi_{|\rho} \) is zero and \((M, \{ , , \}) \) is Type II.

Note that if \((M, \{ , , \}) \) is a Type II LMTS, then \((M_1, M_2) \) is a pair algebra as defined by Faulkner in [3].

ACKNOWLEDGMENTS

Much of this work appeared in my Ph.D. dissertation, done under the direction of J. R. Faulkner at the University of Virginia, although the proofs that appear here are substantially different. I thank him for his patience and many helpful suggestions. I also thank E. Neher for pointing out a mistake in my dissertation, one that is corrected here, and J. C. Ferrar for reading an earlier draft of this paper.

REFERENCES