The Λ_{S}-Householder matrices

Dennis I. Merino ${ }^{\text {a,* }}$, Agnes T. Paras ${ }^{\text {b }}$, Terrence Erard D. Teh ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Southeastern Louisiana University, Hammond, LA 70402-0687, USA
b Institute of Mathematics, University of the Philippines, Diliman, Quezon City 1101, Philippines

ARTICLEINFO

Article history:

Received 5 July 2011
Accepted 6 October 2011
Available online 10 November 2011
Submitted by V. Sergeichuk
AMS classification:
15A21
15A23
Keywords:
Λ_{L}-Householder matrices
Householder matrices

Abstract

Let $A, S \in M_{n}(\mathbb{C})$ be given. Suppose that S is nonsingular and Hermitian. Then A is Λ_{S}-orthogonal if $A^{*} S A=S$. Let $u \in \mathbb{C}^{n}$ be such that $u^{*} S u \neq 0$. The Λ_{S}-Householder matrix of u is $S_{u} \equiv I-t u u^{*} S$, where $t=\frac{2}{u^{*} s u}$. We show that $\operatorname{det}\left(S_{u}\right)=-1$, so that products of Λ_{S}-Householder matrices have determinant ± 1. Let $n \geqslant 2$ and let k be positive integers with $k \leqslant n$. Set $L_{k} \equiv I_{k} \oplus-I_{n-k}$. We show that every $\Lambda_{L_{k}}$-orthogonal matrix having determinant ± 1 can be written as a product of at most $2 n+2 \Lambda_{L_{k}}$-Householder matrices. We also determine the possible Jordan Canonical Forms of products of two $\Lambda_{L_{k}}$-Householder matrices.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

We denote by $M_{m, n}(\mathbb{F})$ the set of m-by- n matrices with entries in $\mathbb{F}=\mathbb{C}$ or $\mathbb{F}=\mathbb{R}$. When $m=n$, we set $M_{n}(\mathbb{F}) \equiv M_{n, n}(\mathbb{F})$. We denote by \mathbb{F}^{n} the set of column vectors with entries in \mathbb{F}. For $x \in \mathbb{F}^{n}$, we set $\langle x\rangle=\{\alpha x: \alpha \in \mathbb{F}\}$.

Let an integer $n \geqslant 2$ and a unit vector $v \in \mathbb{C}^{n}$ be given. The Householder matrix of v is $H_{v} \equiv$ $I-2 v v^{*}$. One checks that H_{v} is Hermitian, unitary, and an involution. Let $v_{1}=v$ and extend this to an orthonormal basis of \mathbb{C}^{n}, say $\left\{v_{1}, \ldots, v_{n}\right\}$. Set $V=\left[v_{1} \cdots v_{n}\right]$, and notice that $V^{*} H_{v} V=[-1] \oplus I_{n-1}$. Hence, $\operatorname{det}\left(H_{v}\right)=-1$.

Consider $B \equiv \operatorname{diag}\left(e^{i \theta},-e^{-i \theta}\right)$, where $\theta \in \mathbb{R}$ and $\theta \neq k \pi$ with k an integer. Then $B-I$ is nonsingular, so that B is not a Householder matrix. Suppose that B is a product of Householder matrices. Because det $(B)=-1$, we must have that B is a product of an odd number of Householder matrices. That is, if B can be written as a product of Householder matrices, then B can be written as a product of

[^0]at least three Householder matrices. This contradicts Theorem 1 in [4], which says that every unitary $U \in M_{n}(\mathbb{C})$ can be written as a product of at most n Householder matrices.

Let $e_{i}^{(n)} \in \mathbb{C}^{n}$ be the vector whose i th entry is 1 and 0 elsewhere. When the context is clear, we drop the superscript.

Let $e_{1}, e_{2} \in \mathbb{C}^{2}$. Set $a=\frac{1}{\sqrt{2}}\left(e_{1}+e_{2}\right)$ and set $b=\frac{1}{\sqrt{2}}\left(e_{1}+e^{i \theta} e_{2}\right)$. Notice that $C=\operatorname{diag}\left(e^{i \theta}, e^{-i \theta}\right)$ $=H_{a} H_{b}$. Moreover, $B=H_{e_{2}} \mathrm{C}$ is a product of three Householder matrices. Suppose that $n \geqslant 3$. Let $V=\operatorname{diag}\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{n}}\right)$, where $\theta_{1}, \ldots, \theta_{n} \in \mathbb{R}$ and $\theta_{1}+\cdots+\theta_{n}=k \pi$ for some integer k. Let $C=\operatorname{diag}\left(e^{i \theta}, e^{-i \theta}\right) \oplus I_{n-2}$ and let $D=\operatorname{diag}\left(1, e^{i\left(\theta_{1}+\theta_{2}\right)}, e^{i \theta_{3}}, \ldots, e^{i \theta_{n}}\right)$. Then C can be written as a product of two Householder matrices. An easy induction argument now shows that V can be written as a product of at most $2 n-1$ Householder matrices. This confirms Theorem 3 in [4]. In fact, if $\operatorname{rank}(V-I)=k$, then V can be written as a product of at most $2 k-1$ Householder matrices.

Let $Q \in M_{n}(\mathbb{C})$ be unitary and let $v \in \mathbb{C}^{n}$ be a unit vector. Then $Q H_{v} Q^{*}=H_{Q v}$. If $U \in M_{n}(\mathbb{C})$ is unitary with $\operatorname{det}(U)= \pm 1$, then there exists a unitary Q such that $Q U Q^{*}=\operatorname{diag}\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{n}}\right)$. Hence, U can be written as a product of at most $2 k-1$ Householder matrices, where $k=\operatorname{rank}(U-I)$. In particular, U can be written as a product of at most $2 n-1$ Householder matrices.

For more discussion on Householder matrices and related topics, see [3-6].

2. $\boldsymbol{\Lambda}_{\boldsymbol{s}}$-Householder matrices

Definition 1. Let $S \in M_{n}(\mathbb{C})$ be nonsingular. Let $\Lambda_{S}: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ be given by $\Lambda_{S}(A)=$ $S^{-1} A^{*} S$ for every $A \in M_{n}(\mathbb{C})$. A given $A \in M_{n}(\mathbb{C})$ is called Λ_{S}-symmetric if $\Lambda_{S}(A)=A$; and A is called Λ_{S}-orthogonal if $\Lambda_{S}(A)=A^{-1}$.

Notice that $\Lambda_{S}(A B)=\Lambda_{S}(B) \Lambda_{S}(A)$ and that $\Lambda_{S}(I)=I$. Hence, if A is nonsingular, then $\Lambda_{S}(A)$ is nonsingular and $\left(\Lambda_{S}(A)\right)^{-1}=\Lambda_{S}\left(A^{-1}\right)$. When S is Hermitian, then $\Lambda_{S}\left(\Lambda_{S}(A)\right)=A$ for every $A \in M_{n}(\mathbb{C})$.

Let $A \in M_{n}(\mathbb{C})$ be Λ_{S}-symmetric. Then, [1, Theorem 4.1.7] guarantees that A is similar to a real matrix. Hence, the trace and the determinant of A are both real. If k is a positive integer and if $\alpha \in \mathbb{R}$ is given, then αA^{k} is Λ_{S}-symmetric. It follows that if $p(x)$ is a polynomial with real coefficients, then $p(A)$ is also Λ_{S}-symmetric. If S is Hermitian, then for any $A \in M_{n}(\mathbb{C})$, the matrices $\Lambda_{S}(A) A, A \Lambda_{S}(A)$ and $A+\Lambda_{S}(A)$ are all Λ_{S}-symmetric.

Let $A \in M_{n}(\mathbb{C})$ be Λ_{S}-orthogonal. Then $A^{*} S A=S$, so that $|\operatorname{det}(A)|=1$. If $x \in \mathbb{C}^{n}$ and if $\langle x, x\rangle_{S} \equiv x^{*} S x$, then $\langle A x, A x\rangle_{S}=\langle x, x\rangle_{S_{S}}$. Moreover, if $\alpha \in \mathbb{C}$ is such that $|\alpha|=1$, then αA is also Λ_{S}-orthogonal. Notice that $S=A^{-*} S A^{-1}$, so that A^{-1} is also Λ_{S}-orthogonal. In addition, the product of two Λ_{S}-orthogonal matrices is Λ_{S}-orthogonal. We denote by \mathcal{O}_{S} the set all Λ_{S}-orthogonal matrices, and by $\mathcal{S O} \mathcal{S}_{S}$ the set of all Λ_{S}-orthogonal matrices having determinant ± 1.

Definition 2. Let $S \in M_{n}(\mathbb{C})$ be nonsingular and Hermitian. Let $0 \neq v \in \mathbb{C}^{n}$ be given. Then v is isotropic with respect to S (or S-isotropic) if $v^{*} S v=0$. If $v^{*} S v \neq 0$, then v is nonisotropic with respect to S (or S-nonisotropic).

Take $S=\operatorname{diag}(1,-1) \in M_{2}(\mathbb{C})$ and take $u=\left[a e^{i \alpha} a e^{i \beta}\right]^{T}$. For any $a \in \mathbb{C}$, and for any $\alpha, \beta \in \mathbb{R}$, notice that u is S-isotropic.

Definition 3. Let $S \in M_{n}(\mathbb{C})$ be nonsingular and Hermitian. Let $x, y \in \mathbb{C}^{n}$ be given. Then x and y are S-perpendicular if $x^{*} S y=0$. Two subspaces V and $W\left(\right.$ of $\left.\mathbb{C}^{n}\right)$ are S-perpendicular if $v^{*} S w=0$ for all $v \in V$ and all $w \in W$.

If $x, y \in \mathbb{C}^{n}$ are S-perpendicular, then $\langle x\rangle$ and $\langle y\rangle$ are S-perpendicular. Take $S=\operatorname{diag}(1,-1) \in$ $M_{2}(\mathbb{C})$, take $v=[a b]^{T}$, and take $w=[b a]^{T}$ with $a, b \in \mathbb{R}$. Then v and w are S-perpendicular.

Definition 4. Let $S \in M_{n}(\mathbb{C})$ be nonsingular and Hermitian. Let $v \in \mathbb{C}^{n}$ be S-nonisotropic. The Λ_{S}-Householder matrix of v is $S_{v} \equiv I-t v v^{*} S$, where $t=\frac{2}{v^{*} S v}$.

Let $S \in M_{n}(\mathbb{C})$ be nonsingular and Hermitian. If $n=1$, then for any $0 \neq v \in \mathbb{C}$, we have $S_{v}=[-1]$. Conversely, if $S_{v}=-I$, then $I=\frac{1}{v^{*} S v} v v^{*} S$. Hence, $n=\operatorname{rank}(I)=\operatorname{rank}\left(\frac{1}{v^{*} S v} v v^{*} S\right)=1$. Thus, $S_{v}=-I$ if and only if $n=1$.

Let $n \geqslant 2$ be a given integer. Let $v \in \mathbb{C}^{n}$ be S-nonisotropic. Then $\langle v\rangle \stackrel{\perp}{S} \equiv\left\{x \in \mathbb{C}^{n}: x^{*} S v=0\right\}$ has dimension $n-1$. Now, if $x \in\langle v\rangle$, then $S_{v} x=-x$. If $x \in\langle v\rangle_{S}^{\perp}$, then $S_{v} x=x$.

Proposition 5. Let $S \in M_{n}(\mathbb{C})$ be nonsingular and Hermitian. Let $u, v \in \mathbb{C}^{n}$ be S-nonisotropic.

1. S_{u} is Λ_{S}-symmetric, is Λ_{S}-orthogonal, and is an involution.
2. S_{u} is diagonalizable and S_{u} is similar to $I_{n-1} \oplus[-1]$. Hence, $\operatorname{tr}\left(S_{u}\right)=n-2$ and $\operatorname{det}\left(S_{u}\right)=-1$. If $n_{2}=1$, then the minimal polynomial of S_{u} is $x+1$. If $n \geqslant 2$, then the minimal polynomial of S_{u} is $x^{2}-1$.
3. $S_{u}=S_{v}$ if and only if $\langle u\rangle=\langle v\rangle$.
4. If u and v are S-perpendicular, then $S_{u} S_{v}=S_{v} S_{u}$.
5. If $P \in \mathcal{O}_{S}$, then $P S_{u} P^{-1}=S_{P u}$.
6. If $n \geqslant 2$, then the singular values of S_{u} are 1 (with multiplicity $n-2$) and $\sqrt{\frac{\mu \pm \sqrt{\mu^{2}-4}}{2}}$, where $\mu=\frac{4\left(u^{*} S^{2} u\right) u^{*} u}{\left(u^{*} S u\right)^{2}}-2$.

Proof. The first claim can be verified by direct computation. For the second claim, if $n=1$, then $S_{u}=-1$. If $n \geqslant 2$, then notice that 1 is an eigenvalue of S_{u}, with an eigenspace of dimension $n-1$, and -1 is an eigenvalue of S_{u} with an eigenspace of dimension 1.

To show the third claim, suppose $S_{u}=S_{v}$. Then $-u=S_{u} u=S_{v} u=\left(I-t v v^{*} S\right) u=u-t\left(v^{*} S u\right) v$. Notice that $v^{*} S u \neq 0$, otherwise, $u=0$. Now, $u=\frac{t v^{*} S u}{2} v$ and $\langle u\rangle=\langle v\rangle$. If $\langle u\rangle=\langle v\rangle$, then $v=\alpha u$ for some $0 \neq \alpha \in \mathbb{C}$. Now, $S_{v}=S_{\alpha u}=I-\frac{2}{(\alpha u)^{*} S(\alpha u)}(\alpha u)(\alpha u)^{*} S=S_{u}$.

The next two claims can be shown by direct computation.
For the last claim, we have

$$
\operatorname{rank}\left(S_{u} S_{u}^{*}-I\right)=\operatorname{rank}\left(S_{u}\left(S_{u}^{*}-S_{u}\right)\right)=\operatorname{rank}\left(S_{u}^{*}-S_{u}\right)
$$

Now, $S_{u}^{*}-S_{u}=t u u^{*} S-t S u u^{*}$ has rank at most 2 . Hence, 1 is an eigenvalue of $S_{u} S_{u}^{*}$ with geometric multiplicity at least $n-2$. Let α and β be the (possibly) other two eigenvalues of $S_{u} S_{u}^{*}$. Then $1=$ $\operatorname{det}\left(S_{u} S_{u}^{*}\right)=\alpha \beta$. A direct computation now shows that $S_{u} S_{u}^{*}=I-t u u^{*} S-t S u u^{*}+\frac{4\left(u^{*} S^{2} u\right)}{\left(u^{*} S u\right)^{2}} u u^{*}$. Taking the trace of both sides, we get $n-2+\alpha+\frac{1}{\alpha}=n-4+\frac{4\left(u^{*} S^{2} u\right) u^{*} u}{\left(u^{*} S u\right)^{2}}$. Setting $\mu \equiv \frac{4\left(u^{*} S^{2} u\right) u^{*} u}{\left(u^{*} S u\right)^{2}}-2$, we get $\alpha^{2}-\mu \alpha+1=0$, and $\alpha=\frac{\mu \pm \sqrt{\mu^{2}-4}}{2}$. The remaining singular values of S_{u} are $\sqrt{\frac{\mu \pm \sqrt{\mu^{2}-4}}{2}}$.

2.1. *-Congruence

Let $S, T \in M_{n}(\mathbb{C})$ be Hermitian matrices. Then S and T are $*$-congruent $\left(S=P^{*} T P\right.$ for some nonsingular P) if and only if they have the same inertia, that is, they have the same number of positive, negative, and zero eigenvalues. If S is nonsingular, then its spectrum contains only positive and negative eigenvalues, that is, S is $*$-congruent to $L_{k} \equiv I_{k} \oplus-I_{n-k}$ for some $k=0,1, \ldots, n$, and where we make the convention that I_{0} is not present.

Let $S, T \in M_{n}(\mathbb{C})$ be nonsingular Hermitian matrices and suppose that $S=P^{*} T P$ for some nonsingular P. Suppose that $C \in M_{n}(\mathbb{C})$ is Λ_{S}-symmetric, that is, $S^{-1} C^{*} S=C$. Then, $P^{-1} T^{-1} P^{-*} C^{*} P^{*} T P=$
C and $T^{-1}\left(P C P^{-1}\right)^{*} T=\left(P C P^{-1}\right)$, so that $P C P^{-1}$ is Λ_{T}-symmetric. Conversely, if $P C P^{-1}$ is $\Lambda_{T^{-}}$ symmetric, then C is Λ_{S}-symmetric.

A similar calculation also shows that $C \in M_{n}(\mathbb{C})$ is Λ_{S}-orthogonal if and only if $P C P^{-1}$ is $\Lambda_{T^{-}}$ orthogonal.

Theorem 6. Let $S, T \in M_{n}(\mathbb{C})$ be nonsingular Hermitian matrices. Suppose that $S=P^{*} T P$ for some nonsingular $P \in M_{n}(\mathbb{C})$.

1. $C \in M_{n}(\mathbb{C})$ is Λ_{S}-symmetric if and only if $P C P^{-1}$ is Λ_{T}-symmetric.
2. $C \in M_{n}(\mathbb{C})$ is Λ_{S}-orthogonal if and only if $P C P^{-1}$ is Λ_{T}-orthogonal.
3. Let $v \in \mathbb{C}^{n}$ be S-nonisotropic. Then Pv is T-nonisotropic and $P S_{v} P^{-1}=T_{P v}$.

Proof. Suppose that v is S-nonisotropic. Then $v^{*} P^{*} T P v=v^{*} S v \neq 0$. Now, $P S_{v} P^{-1}=P\left(I-\frac{2}{v^{*} S v} v v^{*} S\right)$ $P^{-1}=P\left(I-\frac{2}{v^{*} P^{*} T P v} v v^{*} P^{*} T P\right) P^{-1}=I-\frac{2}{(P v)^{*} T(P v)}(P v)(P v)^{*} T=T_{P v}$.

Let $S \in M_{n}(\mathbb{C})$ be nonsingular and Hermitian. Then there exists an integer k, with $0 \leqslant k \leqslant n$ such that S is $*$-congruent to L_{k}. Now, $-L_{k}$ and L_{n-k} have the same inertia. In fact, if we set $P=\left[\begin{array}{ll}0 & I_{n-k} \\ I_{k} & 0\end{array}\right]$, then $P^{-1}=P^{*}$ and $-L_{k}=P^{*} L_{n-k} P$. Let $A \in M_{n}(\mathbb{C})$ be given. Then $\Lambda_{L_{k}}(A)=L_{k}^{-1} A^{*} L_{k}=$ $\left(-L_{k}\right)^{-1} A^{*}\left(-L_{k}\right)=\Lambda_{-L_{k}}(A)$.

Lemma 7. Let $n \geqslant 2$ be a given integer. Suppose that $0 \leqslant k \leqslant n$ is an integer.

1. If $C \in M_{n}(\mathbb{C})$ is $\Lambda_{L_{k}}$-symmetric , then C is permutation similar to a $\Lambda_{L_{n-k}}$-symmetric matrix.
2. If $C \in M_{n}(\mathbb{C})$ is $\Lambda_{L_{k}}$-orthogonal , then C is permutation similar to a $\Lambda_{L_{n-k}}$-orthogonal matrix.

Proof. Suppose that $C \in M_{n}(\mathbb{C})$ is $\Lambda_{L_{k}}$-symmetric. Then C is $\Lambda_{-L_{k}}$-symmetric. Theorem 6 (1) now guarantees that $P C P^{-1}$ is $\Lambda_{L_{n-k}}$-symmetric.

The second claim can be proven similarly.

3. Product of $\boldsymbol{\Lambda}_{\boldsymbol{S}}$-Householder matrices

Let $S \in M_{n}(\mathbb{C})$ be nonsingular and Hermitian. Then there exist an integer k, with $0 \leqslant k \leqslant n$, and a nonsingular $P \in M_{n}(\mathbb{C})$ such that $S=P^{*} L_{k} P$. Suppose that $Q=Q_{1} Q_{2}$ is a product of Λ_{S}-orthogonal matrices Q_{1} and Q_{2}. Theorem 6 guarantees that $P Q P^{-1}=\left(P Q_{1} P^{-1}\right)\left(P Q_{2} P^{-1}\right)$ is a product of $\Lambda_{L_{k}}$. orthogonal matrices.

For now, we let $n \geqslant 2$, we fix k, and we drop the subscript, that is, we say that $L=L_{k}$.
Let $Q \in \mathcal{O}_{S}$ be given. Then $|\operatorname{det} Q|=1$. Hence, there exists $\alpha \in \mathbb{C}$ such that $\alpha Q \in \mathcal{S} \mathcal{O}_{S}$, that is, $\operatorname{det}(\alpha Q)= \pm 1$. Our goal is to determine which elements of $\mathcal{S} \mathcal{O}_{S}$ can be written as a product of Λ_{S}-Householder matrices. We are also interested in finding the least number of Λ_{S}-Householder matrices necessary to form such a product. Our approach is to study Λ_{L}-orthogonal matrices.

3.1. Λ_{L}-orthogonal matrices

We begin with the following observation.
Lemma 8. Let $S \in M_{n}(\mathbb{C})$ be nonsingular and Hermitian. Suppose that $S=P^{*} L P$, where $P \in M_{n}(\mathbb{C})$ is nonsingular and $L=I_{k} \oplus-I_{n-k}$ for some integer k with $0 \leqslant k \leqslant n$. Then $A \in \mathcal{O}_{S}$ can be written as a product of Λ_{S}-Householder matrices if and only if PAP ${ }^{-1}$ can be written as a product of Λ_{L}-Householder matrices. Moreover, the minimum number used in both cases are the same.

Let $A \in M_{n}(\mathbb{C})$ be Λ_{L}-orthogonal. If A can be written as a product of Λ_{L}-Householder matrices, then necessarily, $\operatorname{det}(A)= \pm 1$. We show that the converse holds, as well.

Suppose that $A=L_{u_{1}} L_{u_{2}} \cdots L_{u_{m}}$ and suppose that such a factorization is minimal. If $\left\langle u_{k}\right\rangle=\left\langle u_{k+1}\right\rangle$, then $L_{u_{k}}=L_{u_{k+1}}$, and since Proposition 5 guarantees that L_{u} is an involution, we can take away $L_{u_{k}} L_{u_{k+1}}$ (which is I). If $\left\langle u_{k}\right\rangle=\left\langle u_{k+t}\right\rangle$ for $t \geqslant 2$, then $L_{u_{k}} L_{u_{k+1}} \cdots L_{u_{k+t}}=L_{u_{k}} L_{u_{k+1}} \cdots L_{u_{k}}=$ $\left(L_{u_{k}} L_{u_{k+1}} L_{u_{k}}\right) \cdots\left(L_{u_{k}} L_{u_{k+t-1}} L_{u_{k}}\right)$. Now, for each $l=1, \ldots, t-1$, Proposition 5 (5) guarantees that $L_{u_{k}} L_{u_{k+l}} L_{u_{k}}=L_{w_{l}}$, where each $w_{l}=L_{u_{k}} u_{k+l}$. This apparent contradiction shows the following.

Lemma 9. Let $u_{i} \in \mathbb{C}^{n}$ for $i=1, \ldots, m$. Let $A \in M_{n}(\mathbb{C})$ be Λ_{L}-orthogonal. Suppose that $A=$ $L_{u_{1}} L_{u_{2}} \cdots L_{u_{m}}$. If m is minimal, then $\left\langle u_{i}\right\rangle \neq\left\langle u_{j}\right\rangle$ for $i \neq j$.

Let $x, y \in \mathbb{R}^{n}$ be given, and let D be a nonsingular diagonal matrix in $M_{n}(\mathbb{R})$. If $x^{T} D x=y^{T} D y \neq 0$, then either $(x+y)^{T} D(x+y) \neq 0$ or $(x-y)^{T} D(x-y) \neq 0$ [4, Lemma 3]. The following is an analog in the complex case and using $D=L$.

Lemma 10. Let $x, y \in \mathbb{C}^{n}$ be such that $x^{*} L x=y^{*} L y \neq 0$. Then $x+y$ is L-nonisotropic or $x-y$ is L-nonisotropic.

Proof. The assumption assures that $x^{*} L x+y^{*} L y \neq 0$. Suppose now that both $x+y$ and $x-y$ are L-isotropic. Then $(x+y)^{*} L(x+y)=0$, so that $\operatorname{Re}\left(x^{*} L y\right)=-\frac{1}{2}\left(x^{*} L x+y^{*} L y\right)$. Now, we also have $(x-y)^{*} L(x-y)=0$, so that $\operatorname{Re}\left(x^{*} L y\right)=\frac{1}{2}\left(x^{*} L x+y^{*} L y\right)$, a contradiction.

Let $x, y \in \mathbb{C}^{n}$ be such that $x^{*} L x=y^{*} L y \neq 0$. Say, $w=x+y$ is L-nonisotropic. Suppose that $x^{*} L y \in \mathbb{R}$. Now, compute: $L_{w} x=x-\frac{2}{w^{*} L w} w w^{*} L x$. Notice that $w^{*} L w=2\left(x^{*} L x+x^{*} L y\right)$. Also, $w^{*} L x=x^{*} L x+y^{*} L x=x^{*} L x+x^{*} L y$. Hence, $L_{w} x=-y$.

Conversely, if $L_{w} X=-y$, then $w\left(1-\frac{2 w^{*} L x}{w^{*} L w}\right)=0$, so that $w^{*} L w-2 w^{*} L x=0$. Now, $w^{*} L w=$ $2 x^{*} L x+2 \operatorname{Re}\left(y^{*} L x\right)$ and $w^{*} L x=x^{*} L x+y^{*} L x$. Hence, $\operatorname{Re}\left(y^{*} L x\right)=y^{*} L x$. Consequently, $x^{*} L y \in \mathbb{R}$.

If $v=x-y$ is L-nonisotropic, then a similar calculation shows that $L_{v} x=y$ if and only if $x^{*} L y \in \mathbb{R}$.
Lemma 11. Let $x, y \in \mathbb{C}^{n}$ be such that $x^{*} L x=y^{*} L y \neq 0$. If $w=x+y$ is L-nonisotropic, then $L_{w} x=-y$ if and only if $x^{*} L y \in \mathbb{R}$. If $v=x-y$ is L-nonisotropic, then $L_{v} x=y$ if and only if $x^{*} L y \in \mathbb{R}$.

It is known that if $x, y \in \mathbb{C}^{n}$ have the same Euclidean norm, then there exists a unitary U such that $U x=y$ [1, Problem 4 on page 77]. The following is an analog.

Lemma 12. Let $x, y \in \mathbb{C}^{n}$ be such that $x^{*} L x=y^{*} L y \neq 0$. Then there exists a Λ_{L}-orthogonal P such that $P x=y$.

Proof. Suppose that $x^{*} L y=r e^{i \theta}$, where $r, \theta \in \mathbb{R}$. Set $u=e^{i \theta} x$. Then $u^{*} L u=y^{*} L y \neq 0$. Moreover, $u^{*} L y \in \mathbb{R}$. Let $w=u+y$ and let $v=u-y$. Lemma 10 guarantees that w or v is L-nonisotropic. If w is L-nonisotropic, then Lemma 11 guarantees that $L_{w} u=-y$. We take $P=-e^{i \theta} L_{w}$. If v is L-nonisotropic, then Lemma 11 guarantees that $L_{v} u=y$. We take $P=e^{i \theta} L_{v}$.

Let $x \in \mathbb{C}^{n}$ be L-nonisotropic. Write $x=\left[x_{i}\right]$. Then $x^{*} L x=\sum_{i=1}^{k}\left|x_{i}\right|^{2}-\sum_{i=k+1}^{n}\left|x_{i}\right|^{2} \in \mathbb{R}$. Suppose that $x^{*} L x=\alpha^{2}$, with $\alpha>0$. Set $e \equiv \alpha e_{1}$. Then $e^{*} L e=\alpha^{2}$. Lemma 12 guarantees that there exists a Λ_{L}-orthogonal P such that $x=P e$. Now, $L_{X}=L_{P e}=P L_{e} P^{-1}$. Notice that $L_{e}=L_{\alpha e_{1}}=L_{e_{1}}$ is diagonal.

Suppose that $x^{*} L x=-\alpha^{2}$, with $\alpha>0$. Set $e \equiv \alpha e_{k+1}$. Then $e^{*} L e=-\alpha^{2}$. Lemma 12 guarantees that there exists a Λ_{L}-orthogonal P such that $x=P e$. Now, $L_{x}=L_{P e}=P L_{e} P^{-1}$. Notice that $L_{e}=L_{\alpha e_{k+1}}=L_{e_{k+1}}$ is diagonal.

Theorem 13. Let $x \in \mathbb{C}^{n}$ be L-nonisotropic. There exists a $\Lambda_{L^{-}}$-orthogonal P such that $P L_{\chi} P^{-1}$ is diagonal.

Let $0 \neq x \in \mathbb{C}^{n}$ be L-isotropic. Write $x=\left[x_{1}^{T} x_{2}^{T}\right]^{T}$, with $x_{1} \in \mathbb{C}^{k}$. Notice that $0=x^{*} L x=$ $x_{1}^{*} x_{1}-x_{2}^{*} x_{2}$, so that $\left\|x_{1}\right\|_{2}=\left\|x_{2}\right\|_{2}$. Because $x \neq 0$, we have $x_{1} \neq 0$ (and also $x_{2} \neq 0$). Let $U_{1} \in M_{k}(\mathbb{C})$ be a unitary such that $U_{1} x_{1}=\left\|x_{1}\right\|_{2} e_{1}^{(k)}$ and let $U_{2} \in M_{n-k}(\mathbb{C})$ be a unitary such that $U_{2} x_{2}=\left\|x_{1}\right\|_{2} e_{1}^{(n-k)}$. Set $U=U_{1} \oplus U_{2}$. Then U is Λ_{L}-orthogonal and $U x=\left\|x_{1}\right\|_{2} e_{1}^{(n)}+\left\|x_{1}\right\|_{2} e_{k+1}^{(n)}$. Set $H_{\beta} \equiv\left[\begin{array}{cc}{[\cosh \beta] \oplus I_{k-1}} & {[\sinh \beta] \oplus 0} \\ {[\sinh \beta] \oplus 0} & {[\cosh \beta] \oplus I_{n-k-1}}\end{array}\right]$, and notice that H_{β} is Λ_{L}-orthogonal. Moreover, $H_{\beta} U x=e^{\beta}\left\|x_{1}\right\|_{2} e_{1}^{(n)}+e^{\beta}\left\|x_{1}\right\|_{2} e_{k+1}^{(n)}$. Choosing $\beta=-\ln \left(\left\|x_{1}\right\|_{2}\right)$, we have $H_{\beta} U x=e_{1}^{(n)}+e_{k+1}^{(n)}$.

Lemma 14. Let $0 \neq x \in \mathbb{C}^{n}$ be L-isotropic. Then there exists a Λ_{L}-orthogonal Psuch that $P x=e_{1}^{(n)}+e_{k+1}^{(n)}$.
Let $U \in M_{n}(\mathbb{C})$ be unitary. If U is block upper triangular, then in fact, U is block diagonal.
Lemma 15. Let $A \in M_{n}(\mathbb{C})$ be Λ_{L}-orthogonal. If A is block upper triangular, then A is block diagonal.
Proof. Suppose that $A=\left[\begin{array}{cc}W & X \\ 0 & Y\end{array}\right]$. Because A is Λ_{L}-orthogonal, W and Y are both nonsingular. Write $L=D_{1} \oplus D_{2}$ conformal to A. Looking at the $(1,2)$ entries of the equation $A^{*} L A=L$, we have $W^{*} D_{1} X=0$. Since both W and D_{1} are nonsingular, we have $X=0$.

3.2. Product of Λ_{L}-Householder matrices

Let $L=\operatorname{diag}(1,-1)$ and let $A \in M_{2}(\mathbb{C})$ be Λ_{L}-orthogonal and suppose that $\operatorname{det}(A)= \pm 1$. Let $u=\left[u_{1} u_{2}\right]^{T}$ be the first column of A with $u_{1}=r e^{i \theta}$ and $r, \theta \in \mathbb{R}$. Then $u^{*} L u=1$. Set $e=e^{i \theta} e_{1}$, so that $u^{*} L e=r$ and $e^{*} L e=1$. Lemma 10 guarantees that $w=u+e$ is L-nonisotropic or that $v=u-e$ is L-nonisotropic. If w is L-nonisotropic, then Lemma 11 guarantees that $L_{w} u=-e$ and if v is L-nonisotropic, then Lemma 11 guarantees that $L_{v} u=e$.

Suppose that w is L-nonisotropic. Then $L_{w} A=\left[\begin{array}{rr}-e^{i \theta} & b \\ 0 & c\end{array}\right]$. Lemma 15 ensures that $b=0$, and since $\operatorname{det}(A)= \pm 1$, we must have $c= \pm e^{-i \theta}$.

If v is L-nonisotropic, then $L_{v} A=\left[\begin{array}{cc}e^{i \theta} & b \\ 0 & c\end{array}\right]$. Lemma 15 ensures that $b=0$, and $\operatorname{since} \operatorname{det}(A)= \pm 1$, we must have $c= \pm e^{-i \theta}$.

We look at the number of Λ_{L}-Householder factors of $X_{1} \equiv \operatorname{diag}\left(e^{i \theta}, e^{-i \theta}\right)$ and $X_{2} \equiv \operatorname{diag}\left(e^{i \theta},-e^{-i \theta}\right)$. First, notice that for many values of θ, we have $X_{1}-I$ and $X_{2}-I$ are both nonsingular. Hence, for these values of θ, neither X_{1} nor X_{2} is Λ_{L}-Householder. Moreover, since det $\left(X_{1}\right)=1$, if X_{1} can be written as a product of Λ_{L}-Householder matrices, then the number of such factors must be even. Now, if X_{2} can be written as a product of Λ_{L}-Householder matrices, then the number of factors must be odd and that number must be bigger than or equal to 3 .

When $\theta=0$, we have $X_{1}=I=L_{t}^{2}$ for any L-nonisotropic vector t and we have $X_{2}=L_{e_{2}}$.
When $\theta=\pi$, we have $X_{1}=-I=L_{e_{1}} L_{e_{2}}$ and we have $X_{2}=L_{e_{1}}$.
Suppose now that $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$. We show that X_{1} and X_{2} can be written as a product of $\Lambda_{L^{-}}$ Householder matrices. Let $u \in \mathbb{C}^{2}$ be L-nonisotropic. Suppose that $u^{*} L u>0$. Set $v=\frac{1}{\sqrt{u^{*} L u}} u$ and notice that $v^{*} L v=1$. Suppose that $u^{*} L u<0$. Set $w=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] u$ and notice that $w^{*} L w=-u^{*} L u>0$. Hence, we may assume that $u^{*} L u=1$.

Let $u=\left[r e^{i \alpha} s e^{i \beta}\right]^{T}$, where $r, s, \alpha, \beta \in \mathbb{R}$. Then $w=e^{-i \alpha} u \in\langle u\rangle$ and $L_{u}=L_{w}$. Hence, we may further assume that $u=\left[r s e^{i \theta}\right]^{T}$, where $r^{2}-s^{2}=1$. Now, notice that $L_{u}=\left[\begin{array}{cc}1-2 r^{2} & 2 r s e^{-i \theta} \\ -2 r s e^{i \theta} & 1+2 s^{2}\end{array}\right]$. Set $a \equiv 1-2 r^{2}$ and $b \equiv-2 r$. Then we have $a^{2}-b^{2}=1$, we have $1+2 s^{2}=2 r^{2}-1=-a$, and we have

$$
L_{u}=\left[\begin{array}{ll}
a & -b e^{-i \theta} \\
b e^{i \theta} & -a
\end{array}\right]
$$

Let $u_{1}=\left[r s e^{i \alpha}\right]^{T}$ and let $u_{2}=\left[r s e^{i \beta}\right]^{T}$. We look at the product $L_{u_{1}} L_{u_{2}}$. A direct computation shows that

$$
L_{u_{1}} L_{u_{2}} e_{1}=\left[\begin{array}{c}
a^{2}-b^{2} e^{i(\beta-\alpha)} \\
a b\left(e^{i \alpha}-e^{i \beta}\right)
\end{array}\right] .
$$

Let $x=\beta-\alpha$ and note that $d \equiv a^{2}-b^{2} e^{i x}=a^{2}-b^{2} \cos x-i b^{2} \sin x$. Write $d=c \cos y+i c \sin y$, with $c, y \in \mathbb{R}$ and $c \geqslant 0$. Then $\tan y=\frac{-b^{2} \sin x}{a^{2}-b^{2} \cos x}=\frac{-b^{2} \sin x}{1+b^{2}-b^{2} \cos x}$, so that $\cot y=-\frac{1-\cos x}{\sin x}-\frac{1}{b^{2} \sin x}=$ $-\tan \left(\frac{x}{2}\right)-\frac{1}{b^{2} \sin x}$. For each b, the range of $f(x, b)=-\tan \left(\frac{x}{2}\right)-\frac{1}{b^{2} \sin x}$ is $\mathbb{R} \backslash\{0\}$. Now choose $y=\cot ^{-1}\left(-\tan \left(\frac{x}{2}\right)-\frac{1}{b^{2} \sin x}\right)$ so that $y \in\left(-\frac{\pi}{2}, 0\right) \cup\left(0, \frac{\pi}{2}\right)$, and notice that for each b, the function $g(y)=\cot y$ is a bijection from $\left(-\frac{\pi}{2}, 0\right) \cup\left(0, \frac{\pi}{2}\right)$ to $\mathbb{R} \backslash\{0\}$.

Now, $\left(L_{u_{1}} L_{u_{2}} e_{1}\right)^{*} L\left(L_{u_{1}} L_{u_{2}} e_{1}\right)=e_{1}^{*} L e_{1}=1$. Set $e=e^{i y} e_{1}$, so that $e^{*} L\left(L_{u_{1}} L_{u_{2}} e_{1}\right)=c \in \mathbb{R}$. Moreover, $e^{*} L e=1$. Hence, $w=L_{u_{1}} L_{u_{2}} e_{1}+e$ is L-nonisotropic or $v=L_{u_{1}} L_{u_{2}} e_{1}-e$ is L-nonisotropic.

If w is L-nonisotropic, then $L_{w} L_{u_{1}} L_{u_{2}} e_{1}=-e$, so that $L_{w} L_{u_{1}} L_{u_{2}}=\left[\begin{array}{cc}-e^{i y} & h \\ 0 & j\end{array}\right]$. Since $L_{w} L_{u_{1}} L_{u_{2}}$ is Λ_{L}-orthogonal, we have $h=0$ and $j= \pm e^{-i y}$. That is, $Y \equiv\left[\begin{array}{cc}-e^{i y} & 0 \\ 0 & \pm e^{-i y}\end{array}\right]$ can be written as a product of three Λ_{L}-Householder matrices. However, since the determinant of an odd number of Λ_{L}-Householder matrices is -1 , we have $Y=\left[\begin{array}{cc}-e^{i y} & 0 \\ 0 & e^{-i y}\end{array}\right]$. Now, $X_{1}=L_{e_{1}} Y$ is a product of four Λ_{L}-Householder matrices. Also, X_{2} is a product of five Λ_{L}-Householder matrices.

Notice that $Y^{2}=\operatorname{diag}\left(e^{2 i y}, e^{-2 i y}\right)=\left(L_{w} L_{u_{1}} L_{u_{2}}\right)^{2}$. Proposition 5 (5) guarantees that

$$
\left(L_{w} L_{u_{1}} L_{u_{2}}\right)^{2}=L_{L_{w} u_{1}} L_{L_{w} u_{2}} L_{u_{1}} L_{u_{2}}
$$

is a product of four Λ_{L}-Householder matrices. Moreover, $\operatorname{diag}\left(e^{2 i y},-e^{-2 i y}\right)=L_{e_{2}} Y^{2}$ is a product of five Λ_{L}-Householder matrices.

If v is L-nonisotropic, then $L_{v} L_{u_{1}} L_{u_{2}} e_{1}=e$, so that $L_{v} L_{u_{1}} L_{u_{2}}=\left[\begin{array}{cc}e^{i y} & h \\ 0 & j\end{array}\right]$. Since $L_{v} L_{u_{1}} L_{u_{2}}$ is $\Lambda_{L^{-}}$ orthogonal with determinant -1 , we have $h=0$ and $j=-e^{-i y}$. That is, $Y=\left[\begin{array}{cc}e^{i y} & 0 \\ 0 & -e^{-i y}\end{array}\right]$. Thus, $X_{2}=L_{v} L_{u_{1}} L_{u_{2}}$ can be written as a product of three Λ_{L}-Householder matrices, and $X_{1}=L_{e_{2}} X_{2}$ is a product of four Λ_{L}-Householder matrices.

Notice that $X_{2}^{2}=\operatorname{diag}\left(e^{2 i y}, e^{-2 i y}\right)=\left(L_{v} L_{u_{1}} L_{u_{2}}\right)^{2}$ is a product of four Λ_{L}-Householder matrices. Moreover, $\operatorname{diag}\left(e^{2 i y},-e^{-2 i y}\right)=L_{e_{2}} X_{2}^{2}$ is a product of five Λ_{L}-Householder matrices.

Suppose that $-\pi<\theta<\pi$. Set $\theta=2 y$. Then $\operatorname{diag}\left(e^{2 i y}, e^{-2 i y}\right)$ can be written as a product of four $\Lambda_{L^{-}}$-Householder matrices, while $\operatorname{diag}\left(e^{2 i y},-e^{-2 i y}\right)$ can be written as a product of five $\Lambda_{L^{-}}$ Householder matrices.

Lemma 16. Let $L=\operatorname{diag}(1,-1)$. Let $\theta \in \mathbb{R}$ be given. Then $\operatorname{diag}\left(e^{i \theta}, \pm e^{-i \theta}\right)$ can be written as a product of at most five Λ_{L}-Householder matrices in $M_{2}(\mathbb{C})$.

We summarize our results.
Lemma 17. Let $A \in M_{2}(\mathbb{C})$ be Λ_{L}-orthogonal. If $\operatorname{det}(A)= \pm 1$, then A can be written as a product of at most $6 \Lambda_{L}$-Householder matrices.

Let $A \in M_{n}(\mathbb{C})$ be Λ_{L}-orthogonal with $\operatorname{det}(A)= \pm 1$. Suppose that $k=1$. We look at the first column of A, say u, and suppose that the first entry of u is $c e^{i \theta}$, with $c, \theta \in \mathbb{R}$. Let $w=u+e^{i \theta} e_{1}$ and let $v=u-e^{i \theta} e_{1}$. As before, either w is L-nonisotropic or v is L-nonisotropic. Moreover, $L_{w} u=-e^{i \theta} e_{1}$ or $L_{v} u=e^{i \theta} e_{1}$. For $j=1$, 2, we let $B_{j}=\left[\begin{array}{ll}1 & 0 \\ 0 & A_{j}\end{array}\right]$ and let $C(a, b, n) \equiv\left(\left[\begin{array}{cc}e^{i(a+b)} & 0 \\ 0 & e^{-i(a+b)}\end{array}\right] \oplus I_{n-2}\right)$. If w is L-nonisotropic, then we have $L_{w} A=B_{1} C(\theta, \pi, n)$. If v is L-nonisotropic, then we have $L_{v} A=$ $B_{2} C(\theta, 0, n)$. Notice that B_{1} and B_{2} have the same forms, and that $C(\theta, \pi, n)$ and $C(\theta, 0, n)$ have the same forms. Hence, it is without loss of generality to assume that v is L-nonisotropic. Now, $A_{1} \in$ $M_{n-1}(\mathbb{C})$ is a unitary matrix having determinant ± 1, and hence a product of at most $2(n-1)-1=$ $2 n-3$ Householder matrices [4, Theorem 1]. Let $H_{x}=I-2 x x^{*} \in M_{n-1}(\mathbb{C})$ be a Householder matrix. Set $y=\left[0 x^{T}\right]^{T} \in \mathbb{C}^{n}$. Set $L_{y}=I-\frac{2}{y^{*} L y} y y^{*} L$. Then $L_{y}=\left[\begin{array}{cc}1 & 0 \\ 0 & H_{x}\end{array}\right]$. Hence, $\left[\begin{array}{cc}1 & 0 \\ 0 & A_{1}\end{array}\right]$ is a product of at most $2 n-3 \Lambda_{L}$-Householder matrices. Let $C=C(\theta, \pi, n)$ or $C=C(\theta, 0, n)$ so that $\operatorname{det}(C)=1$. Notice that we can write C as a product of at most $4 \Lambda_{L}$-Householder matrices. Hence, A is a product of at most $2 n+2 \Lambda_{L}$-Householder matrices.

Suppose $k \geqslant 2$. We look at the first column of A, say u and suppose that the second entry of u is $c e^{i \theta}$, with $c, \theta \in \mathbb{R}$. Let $w=u+e^{i \theta} e_{2}$ and let $v=u-e^{i \theta} e_{2}$. Then, either w is L-nonisotropic or v is L-nonisotropic. Moreover, $L_{w} u=-e^{i \theta} e_{2}$ or $L_{v} u=e^{i \theta} e_{2}$.

Suppose that w is L-nonisotropic. Then $L_{w} A=\left[\begin{array}{cc}0 & b^{T} \\ -e^{i \theta} & c^{T} \\ 0 & B\end{array}\right]$, where $b, c \in \mathbb{C}^{n-1}$ and $B \in$ $M_{(n-2),(n-1)}(\mathbb{C})$. Let $p=\frac{1}{\sqrt{2}}\left(e_{1}+e^{i \theta} e_{2}\right)$. Then $L_{p}=\left[\begin{array}{cc}0 & -e^{-i \theta} \\ -e^{i \theta} & 0\end{array}\right] \oplus I_{n-2}$. Hence, we have $L_{p} L_{w} A=\left[\begin{array}{ll}1 & d^{T} \\ 0 & D\end{array}\right]$, where $d \in \mathbb{C}^{n-1}$ and $D \in M_{n-1}(\mathbb{C})$. Lemma 15 guarantees that $d=0$, so that D is $\Lambda_{L_{k-1}}$-orthogonal. If $k=2$, then D can be written as a product of $2(n-1)+2 \Lambda_{L_{k-1}}$-Householder matrices. Thus, A can be written as a product of $2 n+2 \Lambda_{L}$-Householder matrices. If $k>2$, repeat the reduction $k-2$ more times. At this time, we have used $2(k-1) \Lambda_{L}$-Householder matrices, and we need $2(n-k+1)+2$ more. Hence, A can be written as a product of $2 n+2 \Lambda_{L}$-Householder matrices.

If v is L-nonisotropic, then a similar calculation shows that A can be written as a product of $2 n+2$ Λ_{L}-Householder matrices.

Theorem 18. Let $n \geqslant 2$ and $1 \leqslant k \leqslant n$ be integers. Let $L=I_{k} \oplus-I_{n-k}$. Let $A \in M_{n}(\mathbb{C})$ be $\Lambda_{L^{-}}$ orthogonal with $\operatorname{det}(A)= \pm 1$. Then A can be written as a product of at most $2 n+2 \Lambda_{L}$-Householder matrices.

The following is part of Theorem 3 in [4]. We provide a different proof.
Corollary 19. Let $n \geqslant 2$ and $k \geqslant 1$ be integers such that $n \geqslant k$. Let $L=I_{k} \oplus-I_{n-k}$. Let $A \in M_{n}(\mathbb{R})$ be Λ_{L}-orthogonal. Then A can be written as a product of at most $2 n-1 \Lambda_{L}$-Householder matrices.

Proof. Let $A \in M_{n}(\mathbb{R})$ be Λ_{L}-orthogonal. Because A is real, we have $\operatorname{det}(A)= \pm 1$. Suppose $L_{p} A=$ $B_{1} C_{1}(\theta, 0, n)$, where $p=w$ or $p=v$ as in the proof of Theorem 18. Notice that we may take $\theta=0$ so that $C_{1}=I$ and $B_{1}=\left[\begin{array}{cc} \pm 1 & 0 \\ 0 & A_{1}\end{array}\right]$. So, far, we have only used $1 \Lambda_{L}$-Householder matrix. We apply induction to show that we can use $n-2$ more Λ_{L}-Householder matrices to reduce A_{1} to a diagonal matrix with diagonal entries ± 1. We only need $n-2 \Lambda_{L}$-Householder matrices because only $1 \Lambda_{L^{-}}$ Householder matrix is needed to reduce a 2 -by- 2 matrix to a diagonal. Now, for each diagonal entry that is -1 , multiply by $L_{e_{i}}$. Hence, every Λ_{L}-orthogonal A can be written as a product of at most $2 n-1$ Λ_{L}-Householder matrices.

3.3. Product of two Λ_{L}-Householder matrices

Let $n \geqslant 2$ and $k \geqslant 1$ be given integers with $k \leqslant n$. Let $L_{k}=I_{k} \oplus-I_{n-k}$. Let $Q=\left[q_{i}\right] \in M_{n}(\mathbb{C})$ be $\Lambda_{L_{k}}$-orthogonal. Then $q_{i}^{*} L_{k} q_{i}=1$ for $i=1, \ldots, k, q_{i}^{*} L_{k} q_{i}=-1$ for $i=k+1, \ldots, n$, and $q_{i}^{*} L_{k} q_{j}=0$ for $i \neq j$.

Definition 20. Let $p \leqslant n$ be a given positive integer. Then $\left\{x_{1}, \ldots, x_{p}\right\} \subset \mathbb{C}^{n}$ is a $\Lambda_{L_{k}}$-orthogonal set if $x_{i}^{*} L_{k} x_{j}=0$ for $i \neq j$ and $x_{i}^{*} L_{k} x_{i}= \pm 1$ for $i=1, \ldots, p$.

Let $A=\left\{x_{1}, \ldots, x_{p}\right\} \subset \mathbb{C}^{n}$ be a $\Lambda_{L_{k}}$-orthogonal set. Let $y=\alpha_{1} x_{1}+\cdots+\alpha_{p} x_{p}=0$. Then, for each $i=1, \ldots, p$, we have $0=x_{i}^{*} L_{k} y= \pm \alpha_{i}$, so that $\alpha_{i}=0$. Hence, A is linearly independent. Let $Q \in M_{n}(\mathbb{C})$ be $\Lambda_{L_{k}}$-orthogonal. One checks that $Q A=\left\{Q x_{1}, \ldots, Q x_{p}\right\}$ is also a $\Lambda_{L_{k}}$-orthogonal set. Suppose that $x_{i}^{*} L_{k} x_{i}=1$ for $i=1, \ldots, q$ and that $x_{i}^{*} L_{k} x_{i}=-1$ for $i=q+1, \ldots, p$. Set $B=$ $\left[x_{1} \cdots x_{p}\right.$]. Lemma 12 guarantees that there exists a $\Lambda_{L_{k}}$-orthogonal P such that $P x_{1}=e_{1}^{(n)}$. Because $P A$ is a $\Lambda_{L_{k}}$-orthogonal set, we must have $P B=\left[\begin{array}{cc}1 & 0 \\ 0 & B_{1}\end{array}\right]$, where $B_{1}=\left[b_{i}^{(1)}\right] \in M_{(n-1),(p-1)}(\mathbb{C})$ and $\left\{b_{1}^{(1)}, \ldots, b_{p-1}^{(1)}\right\}$ is a $\Lambda_{L_{k-1}}$-orthogonal set.

If $k=1$, then B_{1} has orthonormal columns. Extend $\left\{b_{1}^{(1)}, \ldots, b_{p-1}^{(1)}\right\}$ to an orthonormal basis of \mathbb{C}^{n-1}, say $\left\{c_{1}, \ldots, c_{n-p}\right\} \cup\left\{b_{1}^{(1)}, \ldots, b_{p-1}^{(1)}\right\}$. Set $C_{1}=\left[c_{i}\right]$ and set $C=\left[B_{1} C_{1}\right]$. Then $C \in M_{n-1}(\mathbb{C})$ is unitary. Moreover, $D \equiv[1] \oplus C$ is $\Lambda_{L_{k}}$-orthogonal. Let $P^{-1} D=\left[y_{i}\right]$. Notice that $y_{i}=x_{i}$ for $i=1, \ldots, p$. Moreover, we have extended A to a $\Lambda_{L_{k}}$-orthogonal basis of \mathbb{C}^{n}.

If $k>1$, then there exists a $\Lambda_{L_{k-1}}$-orthogonal $Q_{1} \in M_{n-1}(\mathbb{C})$ such that $Q_{1} B_{1}=\left[\begin{array}{cc}1 & 0 \\ 0 & B_{2}\end{array}\right]$, where $B_{2}=\left[b_{i}^{(2)}\right] \in M_{(n-2),(p-2)}(\mathbb{C})$ and $\left\{b_{1}^{(2)}, \ldots, b_{p-2}^{(2)}\right\}$ is a $\Lambda_{L_{k-2}}$-orthogonal set. Set $P_{2}=[1] \oplus Q_{1}$ and notice that P_{2} is $\Lambda_{L_{k}}$-orthogonal and that $P_{2} P B=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & B_{2}\end{array}\right]$. Continue the reduction un-
til $i=q$, and let $T=P_{q} \cdots P_{2} P$. Then $T B=\left[\begin{array}{cc}I_{q} & 0 \\ 0 & C\end{array}\right]$, where $C=\left[c_{i}\right] \in M_{(n-q),(p-q)}(\mathbb{C})$ and $\left\{c_{1}, \ldots, c_{p-q}\right\}$ is a $\Lambda_{L_{k-q}-}$ orthogonal set. Notice that necessarily, $q \leqslant k$. Otherwise, we have $e_{q}^{*} L_{k} e_{q}=-1$, but $(T B)^{*} L_{k}(T B)=B^{*} L_{k} B=I_{q} \oplus-I_{p-q}$ implies $e_{q}^{*} L_{k} e_{q}=1$. Now, $c_{i}^{*} L_{k-q} c_{j}=0$ for $i \neq j$ and $c_{i}^{*} L_{k-q} c_{i}=-1$ for $i=1, \ldots, p-q$. There exists a $\Lambda_{L_{k-q}}$-orthogonal $S \in M_{n-q}(\mathbb{C})$ such that $S c_{1}=e_{n-q}^{(n-q)}$. Then $S C=\left[\begin{array}{cc}C_{1} & 0 \\ 0 & 1\end{array}\right]$. Let $N_{1}=I_{q} \oplus S$. Then N_{1} is $\Lambda_{L_{k}}$-orthogonal. Moreover, $C_{1}=\left[f_{i}\right] \in M_{(n-q-1),(p-q-1)}(\mathbb{C})$ and $\left\{f_{1}, \ldots, f_{p-q-1}\right\}$ is a $\Lambda_{L_{k-q}}$ orthogonal set. Here, $L_{k-q}=I_{k-q} \oplus-I_{n-k-1}$. Now, there exists $\Lambda_{L_{k-q}}$-orthogonal R_{1} such that $R_{1} C_{1}=\left[\begin{array}{cc}C_{2} & 0 \\ 0 & 1\end{array}\right]$. Set $S_{2}=R_{1} \oplus[1]$ and set $N_{2}=I_{q} \oplus S_{2}$. Continue the reduction until $i=p-q$, and let $W=N_{p-q} \cdots N_{1}$. Necessarily, $p-q \leqslant n-k$ and

$$
W T B=\left[\begin{array}{cc}
I_{q} & 0 \\
0 & 0 \\
0 & I_{p-q}
\end{array}\right]
$$

Let $M=W T$, and let $M^{-1}=\left[n_{i}\right]$. Set $F=\left[n_{q+1} \cdots n_{n-p+q}\right]$, set $E_{1}=\left[x_{1} \cdots x_{q}\right]$, set $E_{2}=$ $\left[x_{q+1} \cdots x_{p}\right]$, and set $D=\left[E_{1} F E_{2}\right]$. Then $M D=I$, so that $D=M^{-1}$. Now, notice that M is $\Lambda_{L_{k}}$ orthogonal, so that M^{-1} is also $\Lambda_{L_{k}}$-orthogonal. Hence, we have extended A to a $\Lambda_{L_{k}}$-orthogonal basis of \mathbb{C}^{n}.

Theorem 21. Let $A=\left\{x_{1}, \ldots, x_{p}\right\} \subset \mathbb{C}^{n}$ be a $\Lambda_{L_{k}}$-orthogonal set. Then A is linearly independent. Suppose that $x_{i}^{*} L_{k} x_{i}=1$ for $i=1, \ldots, q$ and $x_{i}^{*} L_{k} x_{i}=-1$ for $i=q+1, \ldots, p$. Then $q \leqslant k$ and $p-q \leqslant n-k$. Moreover, A can be extended to a $\Lambda_{L_{k}}$-orthogonal basis of \mathbb{C}^{n}.

Let $A \in M_{n}(\mathbb{C})$ be a product of two $\Lambda_{L_{k}}$-Householder matrices, say $A=L_{u} L_{v}$, where $u, v \in \mathbb{C}^{n}$. Then $\operatorname{rank}(A-I)=\operatorname{rank}\left(L_{u}\left(L_{v}-L_{u}\right)\right)=\operatorname{rank}\left(L_{v}-L_{u}\right) \leqslant 2$. If $\operatorname{rank}\left(L_{u}-L_{v}\right)=0$, then $L_{v}=L_{u}$ and $A=I$. Suppose that $\operatorname{rank}(A-I) \neq 0$. Theorem 45 of [2] guarantees that the Jordan Canonical Form of A contains only blocks of the form (1) $J_{k}(\lambda) \oplus J_{k}\left(\frac{1}{\lambda}\right)$, where $|\lambda|>1$ and any k, and (2) $J_{k}\left(e^{i \theta}\right)$, where $\theta \in \mathbb{R}$ and any k. If the Jordan Canonical Form of A contains blocks of the form (1), then λ must be real. Since $\operatorname{rank}(A-I) \leqslant 2$, we must have $k=1$, that is, A is similar to $\operatorname{diag}\left(\lambda, \frac{1}{\lambda}\right) \oplus I_{n-2}$. If the Jordan Canonical Form of A contains blocks of the form (2) and if $\theta \neq k \pi$, where k is an integer, then the Jordan Canonical Form of A must also contain $J_{k}\left(e^{-i \theta}\right)$. In this case, we must have $k=1$. If -1 is an eigenvalue of A, then A is similar to $-I_{2} \oplus I_{n-2}$ or A is similar to $J_{2}(-1) \oplus I_{n-2}$. If 1 is the only eigenvalue of A, then A is similar to $J_{2}(1) \oplus I_{n-2}$ or A is similar to $J_{3}(1) \oplus I_{n-3}$.

It is without loss of generality to assume that $u^{*} L_{k} u= \pm 1$ and that $v^{*} L_{k} v= \pm 1$. We look at these cases.

Case 1. $u^{*} L_{k} u=v^{*} L_{k} v=1$. There exists a $\Lambda_{L_{k}}$-orthogonal P such that $P u=e_{1}$. Then $P A P^{-1}=$ $L_{e_{1}} L_{P v}$. Let $P v=\left[a_{i}\right]_{i=1}^{n}$, let $z=\left[a_{i}\right]_{i=2}^{n}$.

Suppose that $k=1$. If $z=0$, then $P v=a_{1} e_{1}$ and $\left|a_{1}\right|=1$, so that $L_{P v}=L_{e_{1}}$ and $A=I$, a contradiction. Hence, $z \neq 0$. Let $\|z\|_{2}=b$. Then, there exists a unitary $Q \in M_{n-1}(\mathbb{C})$ such that $Q z=b e_{1}^{(n-1)}$. Set $P_{1}=[1] \oplus Q$, so that P_{1} is $\Lambda_{L_{k}}$-orthogonal. Moreover, $P_{1} e_{1}=e_{1}$ and $P_{1} P v=a_{1} e_{1}+b e_{2}$. A direct computation shows that

$$
P_{1} P A P^{-1} P_{1}^{-1}=L_{e_{1}} L_{a_{1} e_{1}+b e_{2}}=\left[\begin{array}{cc}
2\left|a_{1}\right|^{2}-1 & -2 a_{1} b \\
-2 \overline{a_{1}} b & 1+2 b^{2}
\end{array}\right] \oplus I_{n-2} .
$$

Here, we have $\left|a_{1}\right|^{2}-b^{2}=1$ since $v^{*} L_{k} v=1$ and $P_{1} P$ is $\Lambda_{L_{k}}$-orthogonal. Let $\alpha=1+2 b^{2}$. Then the eigenvalues of A are the two positive numbers $\alpha \pm \sqrt{\alpha^{2}-1}$ and 1 .

Suppose that $k \geqslant 2$. Notice that if $\{u, v\}$ is a $\Lambda_{L_{k}}$-orthogonal set, then $a_{1}=0$. Moreover, $z^{*} L_{k-1} z=$ 1, so that there exists a $\Lambda_{L_{k-1}}$-orthogonal Q such that $Q z=e_{1}^{(n-1)}$. Set $P_{1}=[1] \oplus Q$, so that P_{1} is $\Lambda_{L_{k}}$-orthogonal. Moreover, $P_{1} e_{1}=e_{1}$ and $P_{1} P v=e_{2}$. In this case, $P_{1} P A P P_{1}^{-1}=L_{e_{1}} L_{e_{2}}=-I_{2} \oplus I_{n-2}$.

Suppose that $\{u, v\}$ is not a $\Lambda_{L_{k}}$-orthogonal set. We have two subcases: z is L_{k-1}-isotropic or z is L_{k-1}-nonisotropic.

Suppose that z is L_{k-1}-isotropic. Notice that $n \geqslant 3$, otherwise, $z=0$ and $A=I$. Now, $\left|a_{1}\right|=1$, say, $a_{1}=e^{i \theta}$, where $\theta \in \mathbb{R}$. Lemma 14 guarantees that there exists a $\Lambda_{L_{k-1}}$-orthogonal Q such that $Q z=e_{1}^{(n-1)}+e_{k}^{(n-1)}$. Set $P_{1}=[1] \oplus Q$, so that P_{1} is $\Lambda_{L_{k}}$-orthogonal. Moreover, $P_{1} e_{1}=e_{1}$ and $P_{1} P v=e^{i \theta} e_{1}+e_{2}+e_{k+1}$. A direct calculation shows that

$$
P_{1} P A P^{-1} P_{1}^{-1}=\left[\begin{array}{ccccc}
1 & 2 e^{i \theta} & 0 & -2 e^{i \theta} & 0 \\
-2 e^{-i \theta} & -1 & 0 & 2 & 0 \\
0 & 0 & I_{k-2} & 0 & 0 \\
-2 e^{-i \theta} & -2 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & I_{n-k-1}
\end{array}\right]
$$

Let $A_{1}=\left[\begin{array}{ccc}1 & 2 e^{i \theta} & -2 e^{i \theta} \\ -2 e^{-i \theta} & -1 & 2 \\ -2 e^{-i \theta} & -2 & 3\end{array}\right]$. Then, notice that $\left(A_{1}-I\right)^{2}$ has rank 1 and that $\left(A_{1}-I\right)^{3}=0$. Hence, in this case, A is similar to $J_{3}(1) \oplus I_{n-3}$.

Suppose that z is L_{k-1}-nonisotropic. We have two subcases: $z^{*} L_{k-1} z>0$ and $z^{*} L_{k-1} z<0$.
Suppose that $b^{2}=z^{*} L_{k-1} z>0$, with $b>0$. There exists a $\Lambda_{L_{k-1}}$-orthogonal Q such that $Q z=b e_{1}^{(n-1)}$. Set $P_{1}=[1] \oplus Q$, and notice that $P_{1} e_{1}=e_{1}$ and that $P_{1} P v=a_{1} e_{1}+b e_{2}$. Here, we have $\left|a_{1}\right|^{2}+b^{2}=1$. In this case, we have

$$
P_{1} P A P^{-1} P_{1}^{-1}=\left[\begin{array}{cc}
2\left|a_{1}\right|^{2}-1 & -2 a_{1} b \\
-2 \overline{a_{1}} b & 1-2 b^{2}
\end{array}\right] \oplus I_{n-2} .
$$

Let $\alpha=1-2 b^{2}$. Because $|\alpha|<1$, the eigenvalues of A are $\alpha \pm i \sqrt{1-\alpha^{2}}$ and 1 .
Suppose that $-b^{2}=z^{*} L_{k-1} z<0$, with $b>0$. There exists a $\Lambda_{L_{k-1}}$-orthogonal Q such that $\mathrm{Q} z=b e_{k}^{(n-1)}$. Set $P_{1}=[1] \oplus Q$, and notice that $P_{1} e_{1}=e_{1}$ and that $P_{1} P v=a_{1} e_{1}+b e_{k+1}$. Here, we have $\left|a_{1}\right|^{2}-b^{2}=1$. In this case, we have

$$
P_{1} P A P^{-1} P_{1}^{-1}=\left[\begin{array}{cccc}
2\left|a_{1}\right|^{2}-1 & 0 & -2 a_{1} b & 0 \\
0 & I_{k-1} & 0 & 0 \\
-2 \overline{a_{1}} b & 0 & 1+2 b^{2} & 0 \\
0 & 0 & 0 & I_{n-k-1}
\end{array}\right]
$$

Let $\alpha=1+2 b^{2}$. Then the eigenvalues of A are $\alpha \pm \sqrt{\alpha^{2}-1}$ and 1 .
Case 2. $u^{*} L_{k} u=v^{*} L_{k} v=-1$. Then $u^{*}\left(-L_{k}\right) u=1$. Set $P=\left[\begin{array}{cc}0 & I_{n-k} \\ I_{k} & 0\end{array}\right]$. Then $P\left(-L_{k}\right) P^{T}=L_{n-k}$. Set $x=P u$ and set $y=P v$. Then $x^{*} L_{n-k} x=y^{*} L_{n-k} y=1$.

Case 3. $u^{*} L_{k} u=1$ and $v^{*} L_{k} v=-1$. There exists a $\Lambda_{L_{k}}$-orthogonal P such that $P u=e_{1}$. Then PAP ${ }^{-1}=L_{e_{1}} L_{P v}$. Let $P v=\left[a_{i}\right]_{i=1}^{n}$, let $z=\left[a_{i}\right]_{i=2}^{n}$.

Suppose that $k=1$. Suppose further that $\{u, v\}$ is a $\Lambda_{L_{k}}$-orthogonal set. Then $a_{1}=0$ and $\|z\|_{2}=1$, so that there exists a unitary $Q \in M_{n-1}(\mathbb{C})$ such that $Q z=e_{1}^{(n-1)}$. Set $P_{1}=[1] \oplus Q$ and notice that $P_{1} P A P^{-1} P_{1}^{-1}=-I_{2} \oplus I_{n-2}$.

Suppose that $\{u, v\}$ is not a $\Lambda_{L_{k}}$-orthogonal set. Let $b=\|z\|_{2}$. Then $\left|a_{1}\right|^{2}-b^{2}=1$. Notice that $b \neq 0$, otherwise, $v^{*} L_{k} v=1$. Now, there exists a unitary $Q \in M_{n-1}(\mathbb{C})$ such that $Q z=b e_{1}^{(n-1)}$. Set $P_{1}=[1] \oplus Q$, and notice that $P_{1} e_{1}=e_{1}$ and $P_{1} P v=a_{1} e_{1}+b e_{2}$. One checks that

$$
P_{1} P A P^{-1} P_{1}^{-1}=\left[\begin{array}{cc}
-1-2\left|a_{1}\right|^{2} & 2 a_{1} b \\
2 \overline{a_{1}} b & 1-2 b^{2}
\end{array}\right] \oplus I_{n-2} .
$$

Set $\alpha=1+2 b^{2}$. Then, the eigenvalues of A are $-\alpha \pm \sqrt{\alpha^{2}-1}$ and 1 .
Suppose that $k \geqslant 2$. Suppose further that $\{u, v\}$ is a $\Lambda_{L_{k}}$-orthogonal set. Then $a_{1}=0$ and $z^{*} L_{k-1} z=$ -1 , so that there exists a $\Lambda_{L_{k-1}}$-orthogonal $Q \in M_{n-1}(\mathbb{C})$ such that $Q z=e_{k}^{(n-1)}$. Set $P_{1}=[1] \oplus Q$ and notice that $P_{1} e_{1}=e_{1}$, and that $P_{1} P V=e_{k+1}$. In this case, $P_{1} P A P^{-1} P_{1}^{-1}=[-1] \oplus I_{k-1} \oplus[-1] \oplus I_{n-k-1}$, so that A is similar to $-I_{2} \oplus I_{n-2}$.

Suppose that $\{u, v\}$ is not a $\Lambda_{L_{k}}$-orthogonal set. Notice that z is not L_{k-1}-isotropic, otherwise, we have $-1=\left|a_{1}\right|^{2}+z^{*} L_{k-1} z=\left|a_{1}\right|^{2}$. Moreover, $z^{*} L_{k-1} z=-1-\left|a_{1}\right|^{2}<0$. Let $b=\sqrt{1+\left|a_{1}\right|^{2}}$. There exists a $\Lambda_{L_{k-1}}$-orthogonal $Q \in M_{n-1}(\mathbb{C})$ such that $Q z=b e_{k}^{(n-1)}$. Set $P_{1}=[1] \oplus Q$, and notice that $P_{1} e_{1}=e_{1}$ and that $P_{1} P v=a_{1} e_{1}+b e_{k+1}$. Then,

$$
P_{1} P A P^{-1} P_{1}^{-1}=\left[\begin{array}{cccc}
-1-2\left|a_{1}\right|^{2} & 0 & 2 a_{1} b & 0 \\
0 & I_{k-1} & 0 & 0 \\
2 \overline{a_{1}} b & 0 & 1-2 b^{2} & 0 \\
0 & 0 & 0 & I_{n-k-1}
\end{array}\right] .
$$

Set $\alpha=2 b^{2}-1=1+2\left|a_{1}\right|^{2}$. The eigenvalues of A are the two real numbers $-\alpha \pm \sqrt{\alpha^{2}-1}$ and 1 .
Case 4. $u^{*} L_{k} u=-1$ and $v^{*} L_{k} v=1$. Consider instead $-L_{k}$.
We summarize our results. Notice that neither $J_{2}(1)$ nor $J_{2}(-1)$ is a possible Jordan block of a product of two $\Lambda_{L_{k}}$-Householder matrices.

Theorem 22. Let $n \geqslant 2$ and $k \geqslant 1$ be given integers. Let $A \in M_{n}(\mathbb{C})$ be given. Suppose that A is a product of two $\Lambda_{L_{k}}$-Householder matrices. Then A is similar to only one of the following:

1. $\operatorname{diag}\left(\lambda, \frac{1}{\lambda}\right) \oplus I_{n-2}$, where $\lambda \in \mathbb{R}$ and $|\lambda| \geqslant 1$,
2. $\operatorname{diag}\left(e^{i \theta}, e^{-i \theta}\right) \oplus I_{n-2}$, where $\theta \in \mathbb{R}$, or
3. $J_{3}(1) \oplus I_{n-3}$.

References

[1] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, New York, NY, 1985.
[2] R.A. Horn, D.I. Merino, D. Serre, The orthogonal groups (preprint, private communication with the authors).
[3] P. Scherk, On the decomposition of orthogonalities into symmetries, Proc. Amer. Math. Soc. 4 (1950) 481-491.
[4] F. Uhlig, Constructive ways for generating (generalized) real orthogonal matrices as products of (generalized) symmetries, Linear Algebra Appl. 332/334 (2001) 459-467.
[5] D.S. Mackey, N. Mackey, F. Tisseur, G-reflectors: analogues of Householder transformations in scalar product spaces, Linear Algebra Appl. 385 (2004) 187-213.
[6] A. Mostafazadeh, Pseudo-unitary operators and pseudo-unitary dynamics, J. Math. Phys. 45 (2003) 932-946.

[^0]: * Corresponding author.

 E-mail addresses: dmerino@selu.edu (D.I. Merino), agnes@math.upd.edu.ph (A.T. Paras), tdteh1@upd.edu.ph (T.E.D. Teh).

