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Let A, S ∈ Mn (C) be given. Suppose that S is nonsingular and

Hermitian. ThenA is�S-orthogonal ifA
∗SA = S. Let u ∈ Cn be such

that u∗Su �= 0. The �S-Householder matrix of u is Su ≡ I − tuu∗S,
where t = 2

u∗Su . We show that det (Su) = −1, so that products of

�S-Householdermatrices have determinant±1. Let n � 2 and let k

be positive integers with k � n. Set Lk ≡ Ik ⊕−In−k . We show that

every�Lk -orthogonalmatrix having determinant±1 can bewritten

as a product of at most 2n + 2 �Lk -Householder matrices. We also

determine the possible Jordan Canonical Forms of products of two

�Lk -Householder matrices.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

We denote byMm,n (F) the set ofm-by-nmatrices with entries in F = C or F = R. Whenm = n,

we setMn (F) ≡ Mn,n (F). We denote by Fn the set of column vectors with entries in F. For x ∈ Fn,

we set 〈x〉 = {αx : α ∈ F}.
Let an integer n � 2 and a unit vector v ∈ Cn be given. The Householder matrix of v is Hv ≡

I−2vv∗. One checks thatHv is Hermitian, unitary, and an involution. Let v1 = v and extend this to an

orthonormal basis ofCn, say {v1, . . . , vn}. Set V = [v1 · · · vn], and notice that V∗HvV = [−1]⊕ In−1.

Hence, det (Hv) = −1.

Consider B ≡ diag
(
eiθ , −e−iθ

)
, where θ ∈ R and θ �= kπ with k an integer. Then B − I is

nonsingular, so thatB is not aHouseholdermatrix. Suppose thatB is aproduct ofHouseholdermatrices.

Because det (B) = −1, we must have that B is a product of an odd number of Householder matrices.

That is, if B can be written as a product of Householder matrices, then B can be written as a product of
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at least three Householder matrices. This contradicts Theorem 1 in [4], which says that every unitary

U ∈ Mn (C) can be written as a product of at most n Householder matrices.

Let e
(n)
i ∈ Cn be the vector whose ith entry is 1 and 0 elsewhere. When the context is clear, we

drop the superscript.

Lete1, e2 ∈ C2. Seta = 1√
2
(e1 + e2)andsetb = 1√

2

(
e1 + eiθ e2

)
. Notice thatC =diag

(
eiθ , e−iθ

)
= HaHb. Moreover, B = He2C is a product of three Householder matrices. Suppose that n � 3. Let

V = diag
(
eiθ1 , . . . , eiθn

)
, where θ1, . . . , θn ∈ R and θ1 + · · · + θn = kπ for some integer k. Let

C = diag
(
eiθ , e−iθ

)
⊕ In−2 and let D = diag

(
1, ei(θ1+θ2), eiθ3, . . . , eiθn

)
. Then C can be written

as a product of two Householder matrices. An easy induction argument now shows that V can be

written as a product of at most 2n− 1 Householder matrices. This confirms Theorem 3 in [4]. In fact,

if rank(V − I) = k, then V can be written as a product of at most 2k − 1 Householder matrices.

Let Q ∈ Mn (C) be unitary and let v ∈ Cn be a unit vector. Then QHvQ
∗ = HQv. If U ∈ Mn (C)

is unitary with det (U) = ±1, then there exists a unitary Q such that QUQ∗ = diag
(
eiθ1 , . . . , eiθn

)
.

Hence, U can be written as a product of at most 2k−1 Householder matrices, where k = rank(U − I).
In particular, U can be written as a product of at most 2n − 1 Householder matrices.

For more discussion on Householder matrices and related topics, see [3–6].

2. �S-Householder matrices

Definition 1. Let S ∈ Mn (C) be nonsingular. Let �S : Mn (C) → Mn (C) be given by �S (A) =
S−1A∗S for every A ∈ Mn (C). A given A ∈ Mn (C) is called �S-symmetric if �S (A) = A; and A is

called �S-orthogonal if �S (A) = A−1.

Notice that �S (AB) = �S (B) �S (A) and that �S (I) = I. Hence, if A is nonsingular, then �S (A)

is nonsingular and (�S (A))−1 = �S

(
A−1

)
. When S is Hermitian, then �S (�S (A)) = A for every

A ∈ Mn (C).
Let A ∈ Mn (C) be �S-symmetric. Then, [1, Theorem 4.1.7] guarantees that A is similar to a real

matrix. Hence, the trace and the determinant of A are both real. If k is a positive integer and if α ∈ R
is given, then αAk is �S-symmetric. It follows that if p (x) is a polynomial with real coefficients, then

p (A) is also �S-symmetric. If S is Hermitian, then for any A ∈ Mn (C), the matrices �S (A) A, A�S (A)
and A + �S (A) are all �S-symmetric.

Let A ∈ Mn (C) be �S-orthogonal. Then A∗SA = S, so that |det (A)| = 1. If x ∈ Cn and if
〈x, x〉S ≡ x∗Sx, then 〈Ax, Ax〉S = 〈x, x〉S . Moreover, if α ∈ C is such that |α| = 1, then αA is also

�S-orthogonal. Notice that S = A−∗SA−1, so that A−1 is also �S-orthogonal. In addition, the product

of two�S-orthogonalmatrices is�S-orthogonal. We denote byOS the set all�S-orthogonalmatrices,

and by SOS the set of all �S-orthogonal matrices having determinant ±1.

Definition 2. Let S ∈ Mn (C) be nonsingular and Hermitian. Let 0 �= v ∈ Cn be given. Then v is

isotropic with respect to S (or S-isotropic) if v∗Sv = 0. If v∗Sv �= 0, then v is nonisotropic with respect

to S (or S-nonisotropic).

Take S = diag(1, −1) ∈ M2 (C) and take u =
[
aeiα aeiβ

]T
. For any a ∈ C, and for any α, β ∈ R,

notice that u is S-isotropic.

Definition 3. Let S ∈ Mn (C) be nonsingular and Hermitian. Let x, y ∈ Cn be given. Then x and y are

S-perpendicular if x∗Sy = 0. Two subspaces V and W (of Cn) are S-perpendicular if v∗Sw = 0 for all

v ∈ V and all w ∈ W .

If x, y ∈ Cn are S-perpendicular, then 〈x〉 and 〈y〉 are S-perpendicular. Take S = diag(1, −1) ∈
M2 (C), take v = [a b]T , and take w = [b a]T with a, b ∈ R. Then v and w are S-perpendicular.
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Definition 4. Let S ∈ Mn (C) be nonsingular and Hermitian. Let v ∈ Cn be S-nonisotropic. The

�S-Householder matrix of v is Sv ≡ I − tvv∗S, where t = 2
v∗Sv .

Let S ∈ Mn (C) be nonsingular and Hermitian. If n = 1, then for any 0 �= v ∈ C, we have

Sv = [−1]. Conversely, if Sv = −I, then I = 1
v∗Sv vv

∗S. Hence, n = rank(I) = rank
(

1
v∗Sv vv

∗S
)

= 1.

Thus, Sv = −I if and only if n = 1.

Let n � 2 be a given integer. Let v ∈ Cn be S-nonisotropic. Then 〈v〉⊥S ≡ {x ∈ Cn : x∗Sv = 0} has
dimension n − 1. Now, if x ∈ 〈v〉, then Svx = −x. If x ∈ 〈v〉⊥S , then Svx = x.

Proposition 5. Let S ∈ Mn (C) be nonsingular and Hermitian. Let u, v ∈ Cn be S-nonisotropic.

1. Su is �S-symmetric, is �S-orthogonal, and is an involution.

2. Su is diagonalizable and Su is similar to In−1 ⊕ [−1]. Hence, tr(Su) = n − 2 and det(Su) = −1. If

n = 1, then the minimal polynomial of Su is x + 1. If n � 2, then the minimal polynomial of Su is

x2 − 1.

3. Su = Sv if and only if 〈u〉 = 〈v〉.
4. If u and v are S-perpendicular, then SuSv = SvSu.

5. If P ∈ OS, then PSuP
−1 = SPu.

6. If n � 2, then the singular values of Su are 1 (with multiplicity n − 2) and

√
μ±

√
μ2−4

2
, where

μ = 4(u∗S2u)u∗u
(u∗Su)2 − 2.

Proof. The first claim can be verified by direct computation. For the second claim, if n = 1, then

Su = −1. If n � 2, then notice that 1 is an eigenvalue of Su, with an eigenspace of dimension n − 1,

and −1 is an eigenvalue of Su with an eigenspace of dimension 1.

To show the third claim, suppose Su = Sv. Then−u = Suu = Svu = (I − tvv∗S) u = u−t (v∗Su) v.
Notice that v∗Su �= 0, otherwise, u = 0. Now, u = tv∗Su

2
v and 〈u〉 = 〈v〉. If 〈u〉 = 〈v〉, then v = αu

for some 0 �= α ∈ C. Now, Sv = Sαu = I − 2
(αu)∗S(αu)

(αu) (αu)∗ S = Su.

The next two claims can be shown by direct computation.

For the last claim, we have

rank
(
SuS

∗
u − I

) = rank
(
Su

(
S∗
u − Su

)) = rank
(
S∗
u − Su

)
.

Now, S∗
u − Su = tuu∗S− tSuu∗ has rank at most 2. Hence, 1 is an eigenvalue of SuS

∗
u with geometric

multiplicity at least n − 2. Let α and β be the (possibly) other two eigenvalues of SuS
∗
u . Then 1 =

det
(
SuS

∗
u

) = αβ . A direct computation now shows that SuS
∗
u = I − tuu∗S − tSuu∗ + 4(u∗S2u)

(u∗Su)2 uu∗.

Taking the trace of both sides,we get n−2+α+ 1
α

= n−4+ 4(u∗S2u)u∗u
(u∗Su)2 . Settingμ ≡ 4(u∗S2u)u∗u

(u∗Su)2 −2,

we getα2−μα+1 = 0, andα = μ±
√

μ2−4

2
. The remaining singular values of Su are

√
μ±

√
μ2−4

2
. �

2.1. ∗-Congruence
Let S, T ∈ Mn (C) be Hermitian matrices. Then S and T are ∗-congruent (S = P∗TP for some

nonsingular P) if and only if they have the same inertia, that is, they have the same number of positive,

negative, andzeroeigenvalues. If S is nonsingular, then its spectrumcontainsonlypositive andnegative

eigenvalues, that is, S is ∗-congruent to Lk ≡ Ik ⊕ −In−k for some k = 0, 1, . . . , n, and where we

make the convention that I0 is not present.

Let S, T ∈ Mn (C) be nonsingular Hermitianmatrices and suppose that S = P∗TP for some nonsin-

gular P. Suppose that C ∈Mn (C) is �S-symmetric, that is, S−1C∗S = C. Then, P−1T−1P−∗C∗P∗TP =
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C and T−1
(
PCP−1

)∗
T =

(
PCP−1

)
, so that PCP−1 is �T -symmetric. Conversely, if PCP−1 is �T -

symmetric, then C is �S-symmetric.

A similar calculation also shows that C ∈ Mn (C) is �S-orthogonal if and only if PCP−1is �T -

orthogonal.

Theorem 6. Let S, T ∈ Mn (C) be nonsingular Hermitian matrices. Suppose that S = P∗TP for some

nonsingular P ∈ Mn (C).

1. C ∈ Mn (C) is �S-symmetric if and only if PCP−1 is �T -symmetric.

2. C ∈ Mn (C) is �S-orthogonal if and only if PCP−1 is �T -orthogonal.

3. Let v ∈ Cn be S-nonisotropic. Then Pv is T-nonisotropic and PSvP
−1 = TPv.

Proof. Suppose that v is S-nonisotropic. Then v∗P∗TPv = v∗Sv �= 0. Now, PSvP
−1 = P

(
I − 2

v∗Sv vv
∗S

)

P−1 = P
(
I − 2

v∗P∗TPv vv
∗P∗TP

)
P−1 = I − 2

(Pv)∗T(Pv) (Pv) (Pv)∗ T = TPv. �

Let S ∈ Mn (C) be nonsingular and Hermitian. Then there exists an integer k, with 0 � k � n such

that S is ∗-congruent to Lk . Now,−Lk and Ln−k have the same inertia. In fact, if we set P =
⎡
⎣ 0 In−k

Ik 0

⎤
⎦,

then P−1 = P∗ and −Lk = P∗Ln−kP. Let A ∈ Mn (C) be given. Then �Lk (A) = L
−1
k A∗Lk =

(−Lk)
−1 A∗ (−Lk) = �−Lk (A).

Lemma 7. Let n � 2 be a given integer. Suppose that 0 � k � n is an integer.

1. If C ∈ Mn (C) is �Lk -symmetric , then C is permutation similar to a �Ln−k
-symmetric matrix.

2. If C ∈ Mn (C) is �Lk -orthogonal , then C is permutation similar to a �Ln−k
-orthogonal matrix.

Proof. Suppose that C ∈ Mn (C) is �Lk -symmetric. Then C is �−Lk -symmetric. Theorem 6 (1) now

guarantees that PCP−1 is �Ln−k
-symmetric.

The second claim can be proven similarly. �

3. Product of �S-Householder matrices

Let S ∈ Mn (C) be nonsingular and Hermitian. Then there exist an integer k, with 0 � k � n, and a

nonsingular P ∈ Mn (C) such that S = P∗LkP. Suppose that Q = Q1Q2 is a product of �S-orthogonal

matrices Q1 and Q2. Theorem 6 guarantees that PQP−1 =
(
PQ1P

−1
) (

PQ2P
−1

)
is a product of �Lk -

orthogonal matrices.

For now, we let n � 2, we fix k, and we drop the subscript, that is, we say that L = Lk .

Let Q ∈ OS be given. Then |det Q | = 1. Hence, there exists α ∈ C such that αQ ∈ SOS , that

is, det (αQ) = ±1. Our goal is to determine which elements of SOS can be written as a product

of �S-Householder matrices. We are also interested in finding the least number of �S-Householder

matrices necessary to form such a product. Our approach is to study �L-orthogonal matrices.

3.1. �L-orthogonal matrices

We begin with the following observation.

Lemma 8. Let S ∈ Mn (C) be nonsingular and Hermitian. Suppose that S = P∗LP, where P ∈ Mn (C) is
nonsingular and L = Ik ⊕ −In−k for some integer k with 0 � k � n. Then A ∈ OS can be written as a

product of �S-Householder matrices if and only if PAP−1 can be written as a product of �L-Householder

matrices. Moreover, the minimum number used in both cases are the same.
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Let A ∈ Mn (C) be �L-orthogonal. If A can be written as a product of �L-Householder matrices,

then necessarily, det (A) = ±1. We show that the converse holds, as well.

Suppose that A = Lu1Lu2 · · · Lumand suppose that such a factorization is minimal. If 〈uk〉 = 〈uk+1〉,
then Luk = Luk+1

, and since Proposition 5 guarantees that Lu is an involution, we can take away

LukLuk+1
(which is I). If 〈uk〉 = 〈uk+t〉 for t � 2, then LukLuk+1

· · · Luk+t
= LukLuk+1

· · · Luk =(
LukLuk+1

Luk

)
· · ·

(
LukLuk+t−1

Luk

)
. Now, for each l = 1, . . . , t − 1, Proposition 5 (5) guarantees that

LukLuk+l
Luk = Lwl

, where each wl = Lukuk+l . This apparent contradiction shows the following.

Lemma 9. Let ui ∈ Cn for i = 1, . . . ,m. Let A ∈ Mn (C) be �L-orthogonal. Suppose that A =
Lu1Lu2 · · · Lum . If m is minimal, then 〈ui〉 �= 〈

uj
〉
for i �= j.

Let x, y ∈ Rn be given, and let D be a nonsingular diagonal matrix inMn (R). If xTDx = yTDy �= 0,

then either (x + y)T D (x + y) �= 0 or (x − y)T D (x − y) �= 0 [4, Lemma3]. The following is an analog

in the complex case and using D = L.

Lemma 10. Let x, y ∈ Cn be such that x∗Lx = y∗Ly �= 0. Then x + y is L-nonisotropic or x − y is

L-nonisotropic.

Proof. The assumption assures that x∗Lx + y∗Ly �= 0. Suppose now that both x + y and x − y are

L-isotropic. Then (x + y)∗ L (x + y) = 0, so that Re(x∗Ly) = − 1
2
(x∗Lx + y∗Ly). Now, we also have

(x − y)∗ L (x − y) = 0, so that Re(x∗Ly) = 1
2
(x∗Lx + y∗Ly), a contradiction. �

Let x, y ∈ Cn be such that x∗Lx = y∗Ly �= 0. Say, w = x + y is L-nonisotropic. Suppose that

x∗Ly ∈ R. Now, compute: Lwx = x − 2
w∗Lwww∗Lx. Notice that w∗Lw = 2 (x∗Lx + x∗Ly). Also,

w∗Lx = x∗Lx + y∗Lx = x∗Lx + x∗Ly. Hence, Lwx = −y.

Conversely, if Lwx = −y, then w
(
1 − 2w∗Lx

w∗Lw

)
= 0, so that w∗Lw − 2w∗Lx = 0. Now, w∗Lw =

2x∗Lx + 2Re(y∗Lx) and w∗Lx = x∗Lx + y∗Lx. Hence, Re(y∗Lx) = y∗Lx. Consequently, x∗Ly ∈ R.

If v = x− y is L-nonisotropic, then a similar calculation shows that Lvx = y if and only if x∗Ly ∈ R.

Lemma 11. Let x, y ∈ Cn be such that x∗Lx = y∗Ly �= 0. If w = x+ y is L-nonisotropic, then Lwx = −y

if and only if x∗Ly ∈ R. If v = x − y is L-nonisotropic, then Lvx = y if and only if x∗Ly ∈ R.

It is known that if x, y ∈ Cn have the same Euclidean norm, then there exists a unitary U such that

Ux = y [1, Problem 4 on page 77]. The following is an analog.

Lemma 12. Let x, y ∈ Cn be such that x∗Lx = y∗Ly �= 0. Then there exists a �L-orthogonal P such that

Px = y.

Proof. Suppose that x∗Ly = reiθ , where r, θ ∈ R. Set u = eiθ x. Then u∗Lu = y∗Ly �= 0. Moreover,

u∗Ly ∈ R. Letw = u+ y and let v = u− y. Lemma 10 guarantees thatw or v is L-nonisotropic. Ifw is

L-nonisotropic, then Lemma11 guarantees that Lwu = −y. We take P = −eiθ Lw . If v is L-nonisotropic,

then Lemma 11 guarantees that Lvu = y. We take P = eiθ Lv. �

Let x ∈ Cn be L-nonisotropic. Write x = [xi]. Then x∗Lx = ∑k
i=1 |xi|2 − ∑n

i=k+1 |xi|2 ∈ R.

Suppose that x∗Lx = α2, with α > 0. Set e ≡ αe1. Then e∗Le = α2. Lemma 12 guarantees that there

exists a �L-orthogonal P such that x = Pe. Now, Lx = LPe = PLeP
−1. Notice that Le = Lαe1 = Le1 is

diagonal.

Suppose that x∗Lx = −α2, with α > 0. Set e ≡ αek+1. Then e∗Le = −α2. Lemma 12

guarantees that there exists a �L-orthogonal P such that x = Pe. Now, Lx = LPe = PLeP
−1. Notice

that Le = Lαek+1
= Lek+1

is diagonal.

Theorem 13. Let x ∈ Cn be L-nonisotropic. There exists a �L-orthogonal P such that PLxP
−1 is diagonal.
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Let 0 �= x ∈ Cn be L-isotropic. Write x =
[
xT1 xT2

]T
, with x1 ∈ Ck . Notice that 0 = x∗Lx =

x∗
1x1 − x∗

2x2, so that ||x1||2 = ||x2||2. Because x �= 0, we have x1 �= 0 (and also x2 �= 0). Let

U1 ∈ Mk (C) be a unitary such that U1x1 = ||x1||2 e(k)1 and let U2 ∈ Mn−k (C) be a unitary such that

U2x2 = ||x1||2 e(n−k)
1 . SetU = U1 ⊕U2. ThenU is�L-orthogonal andUx = ||x1||2 e(n)1 +||x1||2 e(n)k+1.

Set Hβ ≡
⎡
⎣ [coshβ] ⊕ Ik−1 [sinhβ] ⊕ 0

[sinhβ] ⊕ 0 [coshβ] ⊕ In−k−1

⎤
⎦, and notice that Hβ is �L-orthogonal. Moreover,

HβUx = eβ ||x1||2 e(n)1 + eβ ||x1||2 e(n)k+1. Choosing β = − ln (||x1||2), we have HβUx = e
(n)
1 + e

(n)
k+1.

Lemma14. Let0 �= x ∈ Cn be L-isotropic. Then there exists a�L-orthogonal P such that Px = e
(n)
1 +e

(n)
k+1.

Let U ∈ Mn (C) be unitary. If U is block upper triangular, then in fact, U is block diagonal.

Lemma 15. Let A ∈ Mn (C) be �L-orthogonal. If A is block upper triangular, then A is block diagonal.

Proof. Suppose that A =
⎡
⎣ W X

0 Y

⎤
⎦. Because A is �L-orthogonal, W and Y are both nonsingular.

Write L = D1 ⊕ D2 conformal to A. Looking at the (1, 2) entries of the equation A∗LA = L, we have

W∗D1X = 0. Since both W and D1 are nonsingular, we have X = 0. �

3.2. Product of �L-Householder matrices

Let L = diag(1, −1) and let A ∈ M2 (C) be �L-orthogonal and suppose that det(A) = ±1. Let

u = [u1 u2]
T be the first column of A with u1 = reiθ and r, θ ∈ R. Then u∗Lu = 1. Set e = eiθ e1,

so that u∗Le = r and e∗Le = 1. Lemma 10 guarantees that w = u + e is L-nonisotropic or that

v = u − e is L-nonisotropic. If w is L-nonisotropic, then Lemma 11 guarantees that Lwu = −e and if

v is L-nonisotropic, then Lemma 11 guarantees that Lvu = e.

Suppose that w is L-nonisotropic. Then LwA =
⎡
⎣ −eiθ b

0 c

⎤
⎦. Lemma 15 ensures that b = 0, and

since det(A) = ±1, we must have c = ±e−iθ .

If v is L-nonisotropic, then LvA =
⎡
⎣ eiθ b

0 c

⎤
⎦. Lemma 15 ensures that b = 0, and since det(A) = ±1,

we must have c = ±e−iθ .

We lookat thenumberof�L-Householder factorsofX1 ≡diag
(
eiθ , e−iθ

)
andX2 ≡diag

(
eiθ , −e−iθ

)
.

First, notice that formany values of θ , we have X1 − I and X2 − I are both nonsingular. Hence, for these

values of θ , neither X1 nor X2 is �L-Householder. Moreover, since det (X1) = 1, if X1 can be written

as a product of �L-Householder matrices, then the number of such factors must be even. Now, if X2

can be written as a product of �L-Householder matrices, then the number of factors must be odd and

that number must be bigger than or equal to 3.

When θ = 0, we have X1 = I = L2t for any L-nonisotropic vector t and we have X2 = Le2 .

When θ = π , we have X1 = −I = Le1Le2 and we have X2 = Le1 .

Suppose now that −π
2

< θ < π
2
. We show that X1 and X2 can be written as a product of �L-

Householder matrices. Let u ∈ C2 be L-nonisotropic. Suppose that u∗Lu > 0. Set v = 1√
u∗Luu and

notice that v∗Lv = 1. Suppose that u∗Lu < 0. Setw =
⎡
⎣ 0 1

1 0

⎤
⎦ u and notice thatw∗Lw = −u∗Lu > 0.

Hence, we may assume that u∗Lu = 1.
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Let u =
[
reiα seiβ

]T
, where r, s, α, β ∈ R. Then w = e−iαu ∈ 〈u〉 and Lu = Lw . Hence, we may

further assume that u =
[
r seiθ

]T
, where r2 − s2 = 1. Now, notice that Lu =

⎡
⎣ 1 − 2r2 2rse−iθ

−2rseiθ 1 + 2s2

⎤
⎦.

Set a ≡ 1 − 2r2 and b ≡ −2rs. Then we have a2 − b2 = 1, we have 1 + 2s2 = 2r2 − 1 = −a, and

we have

Lu =
⎡
⎣ a −be−iθ

beiθ −a

⎤
⎦ .

Let u1 =
[
r seiα

]T
and let u2 =

[
r seiβ

]T
. We look at the product Lu1Lu2 . A direct computation

shows that

Lu1Lu2e1 =
⎡
⎣ a2 − b2ei(β−α)

ab
(
eiα − eiβ

)
⎤
⎦ .

Let x = β − α and note that d ≡ a2 − b2eix = a2 − b2 cos x − ib2 sin x. Write d = c cos y + ic sin y,

with c, y ∈ R and c � 0. Then tan y = −b2 sin x

a2−b2 cos x
= −b2 sin x

1+b2−b2 cos x
, so that cot y = − 1−cos x

sin x
− 1

b2 sin x
=

− tan
(
x
2

)
− 1

b2 sin x
. For each b, the range of f (x, b) = − tan

(
x
2

)
− 1

b2 sin x
is R� {0}. Now choose

y = cot−1
(
− tan

(
x
2

)
− 1

b2 sin x

)
so that y ∈

(
−π

2
, 0

)
∪

(
0, π

2

)
, and notice that for each b, the

function g (y) = cot y is a bijection from
(
−π

2
, 0

)
∪

(
0, π

2

)
to R� {0}.

Now,
(
Lu1Lu2e1

)∗
L

(
Lu1Lu2e1

) = e∗
1Le1 = 1. Set e = eiye1, so that e∗L

(
Lu1Lu2e1

) = c ∈ R.

Moreover, e∗Le = 1. Hence,w = Lu1Lu2e1 + e is L-nonisotropic or v = Lu1Lu2e1 − e is L-nonisotropic.

If w is L-nonisotropic, then LwLu1Lu2e1 = −e, so that LwLu1Lu2 =
⎡
⎣ −eiy h

0 j

⎤
⎦. Since LwLu1Lu2

is �L-orthogonal, we have h = 0 and j = ±e−iy. That is, Y ≡
⎡
⎣ −eiy 0

0 ±e−iy

⎤
⎦ can be written as

a product of three �L-Householder matrices. However, since the determinant of an odd number of

�L-Householder matrices is −1, we have Y =
⎡
⎣ −eiy 0

0 e−iy

⎤
⎦. Now, X1 = Le1Y is a product of four

�L-Householder matrices. Also, X2 is a product of five �L-Householder matrices.

Notice that Y2 = diag
(
e2iy, e−2iy

)
= (

LwLu1Lu2
)2
. Proposition 5 (5) guarantees that

(
LwLu1Lu2

)2 = LLwu1LLwu2Lu1Lu2

is a product of four �L-Householder matrices. Moreover, diag
(
e2iy, − e−2iy

)
= Le2Y

2 is a product of

five �L-Householder matrices.

If v is L-nonisotropic, then LvLu1Lu2e1 = e, so that LvLu1Lu2 =
⎡
⎣ eiy h

0 j

⎤
⎦. Since LvLu1Lu2 is �L-

orthogonal with determinant −1, we have h = 0 and j = −e−iy. That is, Y =
⎡
⎣ eiy 0

0 −e−iy

⎤
⎦. Thus,

X2 = LvLu1Lu2 can be written as a product of three �L-Householder matrices, and X1 = Le2X2 is a

product of four �L-Householder matrices.
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Notice that X2
2 = diag

(
e2iy, e−2iy

)
= (

LvLu1Lu2
)2

is a product of four �L-Householder matrices.

Moreover, diag
(
e2iy, − e−2iy

)
= Le2X

2
2 is a product of five �L-Householder matrices.

Suppose that −π < θ < π . Set θ = 2y. Then diag
(
e2iy, e−2iy

)
can be written as a product

of four �L-Householder matrices, while diag
(
e2iy, − e−2iy

)
can be written as a product of five �L-

Householder matrices.

Lemma 16. Let L = diag(1, −1). Let θ ∈ R be given. Then diag
(
eiθ , ± e−iθ

)
can bewritten as a product

of at most five �L-Householder matrices in M2 (C).

We summarize our results.

Lemma 17. Let A ∈ M2 (C) be �L-orthogonal. If det(A) = ±1, then A can be written as a product of at

most 6 �L-Householder matrices.

Let A ∈ Mn (C) be �L-orthogonal with det (A) = ±1. Suppose that k = 1. We look at the first

column of A, say u, and suppose that the first entry of u is ceiθ , with c, θ ∈ R. Letw = u+eiθ e1 and let

v = u− eiθ e1. As before, eitherw is L-nonisotropic or v is L-nonisotropic. Moreover, Lwu = −eiθ e1 or

Lvu = eiθ e1. For j = 1, 2, we let Bj =
⎡
⎣ 1 0

0 Aj

⎤
⎦ and let C (a, b, n) ≡

⎛
⎝

⎡
⎣ ei(a+b) 0

0 e−i(a+b)

⎤
⎦ ⊕ In−2

⎞
⎠.

If w is L-nonisotropic, then we have LwA = B1C (θ, π, n). If v is L-nonisotropic, then we have LvA =
B2C (θ, 0, n). Notice that B1 and B2 have the same forms, and that C (θ, π, n) and C (θ, 0, n) have

the same forms. Hence, it is without loss of generality to assume that v is L-nonisotropic. Now, A1 ∈
Mn−1 (C) is a unitary matrix having determinant±1, and hence a product of at most 2 (n − 1)− 1 =
2n−3Householdermatrices [4, Theorem 1]. LetHx = I−2xx∗ ∈ Mn−1 (C) be a Householdermatrix.

Set y =
[
0 xT

]T ∈ Cn. Set Ly = I − 2
y∗Ly yy

∗L. Then Ly =
⎡
⎣ 1 0

0 Hx

⎤
⎦. Hence,

⎡
⎣ 1 0

0 A1

⎤
⎦ is a product of

at most 2n − 3 �L-Householder matrices. Let C = C (θ, π, n) or C = C (θ, 0, n) so that det (C) = 1.

Notice that we can write C as a product of at most 4 �L-Householder matrices. Hence, A is a product

of at most 2n + 2 �L-Householder matrices.

Suppose k � 2. We look at the first column of A, say u and suppose that the second entry of u is

ceiθ , with c, θ ∈ R. Let w = u + eiθ e2 and let v = u − eiθ e2. Then, either w is L-nonisotropic or v is

L-nonisotropic. Moreover, Lwu = −eiθ e2 or Lvu = eiθ e2.

Suppose that w is L-nonisotropic. Then LwA =

⎡
⎢⎢⎢⎣

0 bT

−eiθ cT

0 B

⎤
⎥⎥⎥⎦, where b, c ∈ Cn−1 and B ∈

M(n−2),(n−1) (C). Let p = 1√
2

(
e1 + eiθ e2

)
. Then Lp =

⎡
⎣ 0 −e−iθ

−eiθ 0

⎤
⎦ ⊕ In−2. Hence, we have

LpLwA =
⎡
⎣ 1 dT

0 D

⎤
⎦, where d ∈ Cn−1 and D ∈ Mn−1 (C). Lemma 15 guarantees that d = 0, so that D

is �Lk−1
-orthogonal. If k = 2, then D can be written as a product of 2 (n − 1) + 2 �Lk−1

-Householder

matrices. Thus, A can be written as a product of 2n+ 2�L-Householder matrices. If k > 2, repeat the

reduction k − 2 more times. At this time, we have used 2 (k − 1) �L-Householder matrices, and we

need 2 (n − k + 1)+2more. Hence,A can bewritten as a product of 2n+2�L-Householdermatrices.

If v is L-nonisotropic, then a similar calculation shows that A can be written as a product of 2n + 2

�L-Householder matrices.
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Theorem 18. Let n � 2 and 1 � k � n be integers. Let L = Ik ⊕ −In−k. Let A ∈ Mn (C) be �L-

orthogonal with det (A) = ±1. Then A can be written as a product of at most 2n + 2 �L-Householder

matrices.

The following is part of Theorem 3 in [4]. We provide a different proof.

Corollary 19. Let n � 2 and k � 1 be integers such that n � k. Let L = Ik ⊕ −In−k. Let A ∈ Mn (R)
be �L-orthogonal. Then A can be written as a product of at most 2n − 1 �L-Householder matrices.

Proof. Let A ∈ Mn (R) be �L-orthogonal. Because A is real, we have det (A) = ±1. Suppose LpA =
B1C1 (θ, 0, n), where p = w or p = v as in the proof of Theorem 18. Notice that we may take θ = 0

so that C1 = I and B1 =
⎡
⎣ ±1 0

0 A1

⎤
⎦. So, far, we have only used 1 �L-Householder matrix. We apply

induction to show that we can use n − 2 more �L-Householder matrices to reduce A1 to a diagonal

matrix with diagonal entries ±1. We only need n − 2 �L-Householder matrices because only 1 �L-

Householder matrix is needed to reduce a 2-by-2 matrix to a diagonal. Now, for each diagonal entry

that is−1, multiply by Lei . Hence, every�L-orthogonal A can bewritten as a product of atmost 2n−1

�L-Householder matrices. �

3.3. Product of two �L-Householder matrices

Let n � 2 and k � 1 be given integers with k � n. Let Lk = Ik ⊕ −In−k . Let Q = [qi] ∈ Mn (C) be
�Lk -orthogonal. Then q∗

i Lkqi = 1 for i = 1, . . . , k, q∗
i Lkqi = −1 for i = k + 1, . . . , n, and q∗

i Lkqj = 0

for i �= j.

Definition 20. Let p � n be a given positive integer. Then
{
x1, . . . , xp

} ⊂ Cn is a �Lk -orthogonal set

if x∗
i Lkxj = 0 for i �= j and x∗

i Lkxi = ±1 for i = 1, . . . , p.

Let A = {
x1, . . . , xp

} ⊂ Cn be a �Lk -orthogonal set. Let y = α1x1 + · · · + αpxp = 0. Then,

for each i = 1, . . . , p, we have 0 = x∗
i Lky = ±αi, so that αi = 0. Hence, A is linearly independent.

Let Q ∈ Mn (C) be �Lk -orthogonal. One checks that QA = {
Qx1, . . . ,Qxp

}
is also a �Lk -orthogonal

set. Suppose that x∗
i Lkxi = 1 for i = 1, . . . , q and that x∗

i Lkxi = −1 for i = q + 1, . . . , p. Set B =[
x1 · · · xp

]
. Lemma 12 guarantees that there exists a�Lk -orthogonal P such that Px1 = e

(n)
1 . Because

PA is a �Lk -orthogonal set, we must have PB =
⎡
⎣ 1 0

0 B1

⎤
⎦, where B1 =

[
b
(1)
i

]
∈ M(n−1),(p−1) (C) and

{
b
(1)
1 , . . . , b

(1)
p−1

}
is a �Lk−1

-orthogonal set.

If k = 1, then B1 has orthonormal columns. Extend
{
b
(1)
1 , . . . , b

(1)
p−1

}
to an orthonormal basis of

Cn−1, say
{
c1, . . . , cn−p

} ∪
{
b
(1)
1 , . . . , b

(1)
p−1

}
. Set C1 = [ci] and set C = [B1 C1]. Then C ∈ Mn−1 (C)

is unitary. Moreover, D ≡ [1] ⊕ C is �Lk -orthogonal. Let P−1D = [yi]. Notice that yi = xi for

i = 1, . . . , p. Moreover, we have extended A to a �Lk -orthogonal basis of Cn.

If k > 1, then there exists a �Lk−1
-orthogonal Q1 ∈ Mn−1 (C) such that Q1B1 =

⎡
⎣ 1 0

0 B2

⎤
⎦, where

B2 =
[
b
(2)
i

]
∈ M(n−2),(p−2) (C) and

{
b
(2)
1 , . . . , b

(2)
p−2

}
is a �Lk−2

-orthogonal set. Set P2 = [1] ⊕ Q1

and notice that P2 is �Lk -orthogonal and that P2PB =

⎡
⎢⎢⎢⎣
1 0 0

0 1 0

0 0 B2

⎤
⎥⎥⎥⎦. Continue the reduction un-
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til i = q, and let T = Pq · · · P2P. Then TB =
⎡
⎣ Iq 0

0 C

⎤
⎦, where C = [ci] ∈ M(n−q),(p−q) (C)

and
{
c1, . . . , cp−q

}
is a �Lk−q

-orthogonal set. Notice that necessarily, q � k. Otherwise, we have

e∗
qLkeq = −1, but (TB)∗ Lk (TB) = B∗LkB = Iq ⊕ −Ip−q implies e∗

qLkeq = 1. Now, c∗
i Lk−qcj = 0 for

i �= j and c∗
i Lk−qci = −1 for i = 1, . . . , p − q. There exists a �Lk−q

-orthogonal S ∈ Mn−q (C)

such that Sc1 = e
(n−q)
n−q . Then SC =

⎡
⎣ C1 0

0 1

⎤
⎦. Let N1 = Iq ⊕ S. Then N1 is �Lk -orthogonal.

Moreover, C1 = [fi] ∈ M(n−q−1),(p−q−1) (C) and
{
f1, . . . , fp−q−1

}
is a �Lk−q

-orthogonal set. Here,

Lk−q = Ik−q ⊕ −In−k−1. Now, there exists �Lk−q
-orthogonal R1 such that R1C1 =

⎡
⎣ C2 0

0 1

⎤
⎦. Set

S2 = R1 ⊕ [1] and set N2 = Iq ⊕ S2. Continue the reduction until i = p− q, and letW = Np−q · · ·N1.

Necessarily, p − q � n − k and

WTB =
⎡
⎢⎢⎣
Iq 0

0 0

0 Ip−q

⎤
⎥⎥⎦ .

Let M = WT , and let M−1 = [ni]. Set F = [
nq+1 · · · nn−p+q

]
, set E1 = [

x1 · · · xq
]
, set E2 =[

xq+1 · · · xp
]
, and set D = [E1 F E2]. Then MD = I, so that D = M−1. Now, notice that M is �Lk -

orthogonal, so thatM−1 is also�Lk -orthogonal. Hence, we have extended A to a�Lk -orthogonal basis

of Cn.

Theorem 21. Let A = {
x1, . . . , xp

} ⊂ Cn be a �Lk -orthogonal set. Then A is linearly independent.

Suppose that x∗
i Lkxi = 1 for i = 1, . . . , q and x∗

i Lkxi = −1 for i = q + 1, . . . , p. Then q � k and

p − q � n − k. Moreover, A can be extended to a �Lk -orthogonal basis of C
n.

Let A ∈ Mn (C) be a product of two �Lk -Householder matrices, say A = LuLv, where u, v ∈ Cn.

Then rank(A − I) = rank(Lu (Lv − Lu)) = rank(Lv − Lu) � 2. If rank(Lu − Lv) = 0, then Lv = Lu and

A = I. Suppose that rank(A − I) �= 0. Theorem 45 of [2] guarantees that the Jordan Canonical Form

of A contains only blocks of the form (1) Jk (λ) ⊕ Jk

(
1

λ

)
, where |λ| > 1 and any k, and (2) Jk

(
eiθ

)
,

where θ ∈ R and any k. If the Jordan Canonical Form of A contains blocks of the form (1), then λmust

be real. Since rank(A − I) � 2, we must have k = 1, that is, A is similar to diag
(
λ, 1

λ

)
⊕ In−2. If the

Jordan Canonical Form of A contains blocks of the form (2) and if θ �= kπ , where k is an integer, then

the Jordan Canonical Form of A must also contain Jk

(
e−iθ

)
. In this case, we must have k = 1. If −1

is an eigenvalue of A, then A is similar to −I2 ⊕ In−2 or A is similar to J2 (−1) ⊕ In−2. If 1 is the only

eigenvalue of A, then A is similar to J2 (1) ⊕ In−2 or A is similar to J3 (1) ⊕ In−3.

It is without loss of generality to assume that u∗Lku = ±1 and that v∗Lkv = ±1. We look at these

cases.

Case 1. u∗Lku = v∗Lkv = 1. There exists a �Lk -orthogonal P such that Pu = e1. Then PAP−1 =
Le1LPv. Let Pv = [ai]

n
i=1, let z = [ai]

n
i=2.

Suppose that k = 1. If z = 0, then Pv = a1e1 and |a1| = 1, so that LPv = Le1 and A = I,

a contradiction. Hence, z �= 0. Let ||z||2 = b. Then, there exists a unitary Q ∈ Mn−1 (C) such

that Qz = be
(n−1)
1 . Set P1 = [1] ⊕ Q , so that P1 is �Lk -orthogonal. Moreover, P1e1 = e1 and

P1Pv = a1e1 + be2. A direct computation shows that

P1PAP
−1P

−1
1 = Le1La1e1+be2 =

⎡
⎣ 2 |a1|2 − 1 −2a1b

−2a1b 1 + 2b2

⎤
⎦ ⊕ In−2.
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Here, we have |a1|2 − b2 = 1 since v∗Lkv = 1 and P1P is �Lk -orthogonal. Let α = 1 + 2b2. Then the

eigenvalues of A are the two positive numbers α ± √
α2 − 1 and 1.

Suppose that k � 2. Notice that if {u, v} is a�Lk -orthogonal set, then a1 = 0. Moreover, z∗Lk−1z =
1, so that there exists a �Lk−1

-orthogonal Q such that Qz = e
(n−1)
1 . Set P1 = [1] ⊕ Q , so that P1 is

�Lk -orthogonal. Moreover, P1e1 = e1 and P1Pv = e2. In this case, P1PAPP
−1
1 = Le1Le2 = −I2 ⊕ In−2.

Suppose that {u, v} is not a �Lk -orthogonal set. We have two subcases: z is Lk−1-isotropic or z is

Lk−1-nonisotropic.

Suppose that z is Lk−1-isotropic. Notice that n � 3, otherwise, z = 0 and A = I. Now, |a1| = 1,

say, a1 = eiθ , where θ ∈ R. Lemma 14 guarantees that there exists a �Lk−1
-orthogonal Q such that

Qz = e
(n−1)
1 + e

(n−1)
k . Set P1 = [1] ⊕ Q , so that P1 is �Lk -orthogonal. Moreover, P1e1 = e1 and

P1Pv = eiθ e1 + e2 + ek+1. A direct calculation shows that

P1PAP
−1P

−1
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2eiθ 0 −2eiθ 0

−2e−iθ −1 0 2 0

0 0 Ik−2 0 0

−2e−iθ −2 0 3 0

0 0 0 0 In−k−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Let A1 =

⎡
⎢⎢⎢⎣

1 2eiθ −2eiθ

−2e−iθ −1 2

−2e−iθ −2 3

⎤
⎥⎥⎥⎦. Then, notice that (A1 − I)2 has rank 1 and that (A1 − I)3 = 0.

Hence, in this case, A is similar to J3 (1) ⊕ In−3.

Suppose that z is Lk−1-nonisotropic. We have two subcases: z∗Lk−1z > 0 and z∗Lk−1z < 0.

Suppose that b2 = z∗Lk−1z > 0, with b > 0. There exists a �Lk−1
-orthogonal Q such that

Qz = be
(n−1)
1 . Set P1 = [1] ⊕ Q , and notice that P1e1 = e1 and that P1Pv = a1e1 + be2. Here, we

have |a1|2 + b2 = 1. In this case, we have

P1PAP
−1P

−1
1 =

⎡
⎣ 2 |a1|2 − 1 −2a1b

−2a1b 1 − 2b2

⎤
⎦ ⊕ In−2.

Let α = 1 − 2b2. Because |α| < 1, the eigenvalues of A are α ± i
√

1 − α2 and 1.

Suppose that −b2 = z∗Lk−1z < 0, with b > 0. There exists a �Lk−1
-orthogonal Q such that

Qz = be
(n−1)
k . Set P1 = [1] ⊕ Q , and notice that P1e1 = e1 and that P1Pv = a1e1 + bek+1. Here, we

have |a1|2 − b2 = 1. In this case, we have

P1PAP
−1P

−1
1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 |a1|2 − 1 0 −2a1b 0

0 Ik−1 0 0

−2a1b 0 1 + 2b2 0

0 0 0 In−k−1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Let α = 1 + 2b2. Then the eigenvalues of A are α ± √
α2 − 1 and 1.

Case 2. u∗Lku = v∗Lkv = −1. Then u∗ (−Lk) u = 1. Set P =
⎡
⎣ 0 In−k

Ik 0

⎤
⎦. Then P (−Lk) P

T = Ln−k .

Set x = Pu and set y = Pv. Then x∗Ln−kx = y∗Ln−ky = 1.
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Case 3. u∗Lku = 1 and v∗Lkv = −1. There exists a �Lk -orthogonal P such that Pu = e1. Then

PAP−1 = Le1LPv. Let Pv = [ai]
n
i=1, let z = [ai]

n
i=2.

Suppose thatk = 1. Suppose further that {u, v} is a�Lk -orthogonal set. Thena1 = 0and ||z||2 = 1,

so that there exists a unitary Q ∈ Mn−1 (C) such that Qz = e
(n−1)
1 . Set P1 = [1] ⊕ Q and notice that

P1PAP
−1P

−1
1 = −I2 ⊕ In−2.

Suppose that {u, v} is not a �Lk -orthogonal set. Let b = ||z||2. Then |a1|2 − b2 = 1. Notice that

b �= 0, otherwise, v∗Lkv = 1. Now, there exists a unitary Q ∈ Mn−1 (C) such that Qz = be
(n−1)
1 . Set

P1 = [1] ⊕ Q , and notice that P1e1 = e1 and P1Pv = a1e1 + be2. One checks that

P1PAP
−1P

−1
1 =

⎡
⎣ −1 − 2 |a1|2 2a1b

2a1b 1 − 2b2

⎤
⎦ ⊕ In−2.

Set α = 1 + 2b2. Then, the eigenvalues of A are −α ± √
α2 − 1 and 1.

Suppose thatk � 2. Suppose further that {u, v} is a�Lk -orthogonal set. Thena1 = 0and z∗Lk−1z =
−1, so that there exists a�Lk−1

-orthogonalQ ∈ Mn−1 (C) such thatQz = e
(n−1)
k . Set P1 = [1]⊕Q and

notice that P1e1 = e1, and that P1Pv = ek+1. In this case, P1PAP
−1P

−1
1 = [−1]⊕Ik−1⊕[−1]⊕In−k−1,

so that A is similar to −I2 ⊕ In−2.

Suppose that {u, v} is not a �Lk -orthogonal set. Notice that z is not Lk−1-isotropic, otherwise, we

have −1 = |a1|2 + z∗Lk−1z = |a1|2. Moreover, z∗Lk−1z = −1 − |a1|2 < 0. Let b =
√
1 + |a1|2.

There exists a �Lk−1
-orthogonal Q ∈ Mn−1 (C) such that Qz = be

(n−1)
k . Set P1 = [1] ⊕ Q , and notice

that P1e1 = e1 and that P1Pv = a1e1 + bek+1. Then,

P1PAP
−1P

−1
1 =

⎡
⎢⎢⎢⎢⎢⎣

−1 − 2 |a1|2 0 2a1b 0

0 Ik−1 0 0

2a1b 0 1 − 2b2 0

0 0 0 In−k−1

⎤
⎥⎥⎥⎥⎥⎦
.

Set α = 2b2 − 1 = 1+ 2 |a1|2. The eigenvalues of A are the two real numbers−α ± √
α2 − 1 and 1.

Case 4. u∗Lku = −1 and v∗Lkv = 1. Consider instead −Lk .

We summarize our results. Notice that neither J2 (1) nor J2 (−1) is a possible Jordan block of a

product of two �Lk -Householder matrices.

Theorem 22. Let n � 2 and k � 1 be given integers. Let A ∈ Mn (C) be given. Suppose that A is a

product of two �Lk -Householder matrices. Then A is similar to only one of the following:

1. diag
(
λ, 1

λ

)
⊕ In−2, where λ ∈ R and |λ| � 1,

2. diag
(
eiθ , e−iθ

)
⊕ In−2, where θ ∈ R, or

3. J3 (1) ⊕ In−3.
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