Linear Algebra and its Applications 436 (2012) 2653-2664

The Λ_S -Householder matrices

Dennis I. Merino^{a,*}, Agnes T. Paras^b, Terrence Erard D. Teh^b

^a Department of Mathematics, Southeastern Louisiana University, Hammond, LA 70402-0687, USA ^b Institute of Mathematics, University of the Philippines, Diliman, Quezon City 1101, Philippines

ARTICLEINFO

Article history: Received 5 July 2011 Accepted 6 October 2011 Available online 10 November 2011

Submitted by V. Sergeichuk

AMS classification: 15A21 15A23

Keywords: Λ_L -Householder matrices Householder matrices

ABSTRACT

Let $A, S \in M_n(\mathbb{C})$ be given. Suppose that S is nonsingular and Hermitian. Then A is Λ_S -orthogonal if $A^*SA = S$. Let $u \in \mathbb{C}^n$ be such that $u^*Su \neq 0$. The Λ_S -Householder matrix of u is $S_u \equiv I - tuu^*S$, where $t = \frac{2}{u^*Su}$. We show that det $(S_u) = -1$, so that products of Λ_S -Householder matrices have determinant ± 1 . Let $n \ge 2$ and let kbe positive integers with $k \le n$. Set $L_k \equiv I_k \oplus -I_{n-k}$. We show that every Λ_{L_k} -orthogonal matrix having determinant ± 1 can be written as a product of at most $2n + 2 \Lambda_{L_k}$ -Householder matrices. We also determine the possible Jordan Canonical Forms of products of two Λ_{L_k} -Householder matrices.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

We denote by $M_{m,n}$ (\mathbb{F}) the set of *m*-by-*n* matrices with entries in $\mathbb{F} = \mathbb{C}$ or $\mathbb{F} = \mathbb{R}$. When m = n, we set M_n (\mathbb{F}) $\equiv M_{n,n}$ (\mathbb{F}). We denote by \mathbb{F}^n the set of column vectors with entries in \mathbb{F} . For $x \in \mathbb{F}^n$, we set $\langle x \rangle = \{ \alpha x : \alpha \in \mathbb{F} \}$.

Let an integer $n \ge 2$ and a unit vector $v \in \mathbb{C}^n$ be given. The Householder matrix of v is $H_v \equiv I - 2vv^*$. One checks that H_v is Hermitian, unitary, and an involution. Let $v_1 = v$ and extend this to an orthonormal basis of \mathbb{C}^n , say $\{v_1, \ldots, v_n\}$. Set $V = [v_1 \cdots v_n]$, and notice that $V^*H_vV = [-1] \oplus I_{n-1}$. Hence, det $(H_v) = -1$.

Consider $B \equiv \text{diag}(e^{i\theta}, -e^{-i\theta})$, where $\theta \in \mathbb{R}$ and $\theta \neq k\pi$ with k an integer. Then B - I is nonsingular, so that B is not a Householder matrix. Suppose that B is a product of Householder matrices. Because det (B) = -1, we must have that B is a product of an odd number of Householder matrices. That is, if B can be written as a product of Householder matrices, then B can be written as a product of Householder matrices.

* Corresponding author.

0024-3795/\$ - see front matter @ 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2011.10.003

E-mail addresses: dmerino@selu.edu (D.I. Merino), agnes@math.upd.edu.ph (A.T. Paras), tdteh1@upd.edu.ph (T.E.D. Teh).

at least three Householder matrices. This contradicts Theorem 1 in [4], which says that every unitary $U \in M_n(\mathbb{C})$ can be written as a product of at most *n* Householder matrices.

Let $e_i^{(n)} \in \mathbb{C}^n$ be the vector whose *i*th entry is 1 and 0 elsewhere. When the context is clear, we drop the superscript.

Let e_1 , $e_2 \in \mathbb{C}^2$. Set $a = \frac{1}{\sqrt{2}} (e_1 + e_2)$ and set $b = \frac{1}{\sqrt{2}} (e_1 + e^{i\theta}e_2)$. Notice that $C = \text{diag}(e^{i\theta}, e^{-i\theta})$ = $H_a H_b$. Moreover, $B = H_{e_2}C$ is a product of three Householder matrices. Suppose that $n \ge 3$. Let $V = \text{diag}(e^{i\theta_1}, \ldots, e^{i\theta_n})$, where $\theta_1, \ldots, \theta_n \in \mathbb{R}$ and $\theta_1 + \cdots + \theta_n = k\pi$ for some integer k. Let $C = \text{diag}(e^{i\theta}, e^{-i\theta}) \oplus I_{n-2}$ and let $D = \text{diag}(1, e^{i(\theta_1 + \theta_2)}, e^{i\theta_3}, \ldots, e^{i\theta_n})$. Then C can be written as a product of two Householder matrices. An easy induction argument now shows that V can be written as a product of at most 2n - 1 Householder matrices. This confirms Theorem 3 in [4]. In fact, if rank(V - I) = k, then V can be written as a product of at most 2k - 1 Householder matrices.

Let $Q \in M_n(\mathbb{C})$ be unitary and let $v \in \mathbb{C}^n$ be a unit vector. Then $QH_vQ^* = H_{Qv}$. If $U \in M_n(\mathbb{C})$ is unitary with det $(U) = \pm 1$, then there exists a unitary Q such that $QUQ^* = \text{diag}(e^{i\theta_1}, \ldots, e^{i\theta_n})$. Hence, U can be written as a product of at most 2k - 1 Householder matrices, where k = rank(U - I). In particular, U can be written as a product of at most 2n - 1 Householder matrices.

For more discussion on Householder matrices and related topics, see [3–6].

2. Λ_S -Householder matrices

Definition 1. Let $S \in M_n(\mathbb{C})$ be nonsingular. Let $\Lambda_S : M_n(\mathbb{C}) \to M_n(\mathbb{C})$ be given by $\Lambda_S(A) = S^{-1}A^*S$ for every $A \in M_n(\mathbb{C})$. A given $A \in M_n(\mathbb{C})$ is called Λ_S -symmetric if $\Lambda_S(A) = A$; and A is called Λ_S -orthogonal if $\Lambda_S(A) = A^{-1}$.

Notice that $\Lambda_S(AB) = \Lambda_S(B) \Lambda_S(A)$ and that $\Lambda_S(I) = I$. Hence, if A is nonsingular, then $\Lambda_S(A)$ is nonsingular and $(\Lambda_S(A))^{-1} = \Lambda_S(A^{-1})$. When S is Hermitian, then $\Lambda_S(\Lambda_S(A)) = A$ for every $A \in M_n(\mathbb{C})$.

Let $A \in M_n(\mathbb{C})$ be Λ_S -symmetric. Then, [1, Theorem 4.1.7] guarantees that A is similar to a real matrix. Hence, the trace and the determinant of A are both real. If k is a positive integer and if $\alpha \in \mathbb{R}$ is given, then αA^k is Λ_S -symmetric. It follows that if p(x) is a polynomial with real coefficients, then p(A) is also Λ_S -symmetric. If S is Hermitian, then for any $A \in M_n(\mathbb{C})$, the matrices $\Lambda_S(A) A, A\Lambda_S(A)$ and $A + \Lambda_S(A)$ are all Λ_S -symmetric.

Let $A \in M_n(\mathbb{C})$ be Λ_S -orthogonal. Then $A^*SA = S$, so that $|\det(A)| = 1$. If $x \in \mathbb{C}^n$ and if $\langle x, x \rangle_S \equiv x^*Sx$, then $\langle Ax, Ax \rangle_S = \langle x, x \rangle_S$. Moreover, if $\alpha \in \mathbb{C}$ is such that $|\alpha| = 1$, then αA is also Λ_S -orthogonal. Notice that $S = A^{-*}SA^{-1}$, so that A^{-1} is also Λ_S -orthogonal. In addition, the product of two Λ_S -orthogonal matrices is Λ_S -orthogonal. We denote by \mathcal{O}_S the set all Λ_S -orthogonal matrices, and by $S\mathcal{O}_S$ the set of all Λ_S -orthogonal matrices having determinant ± 1 .

Definition 2. Let $S \in M_n(\mathbb{C})$ be nonsingular and Hermitian. Let $0 \neq v \in \mathbb{C}^n$ be given. Then v is *isotropic* with respect to S (or *S*-*isotropic*) if $v^*Sv = 0$. If $v^*Sv \neq 0$, then v is *nonisotropic* with respect to S (or *S*-*nonisotropic*).

Take $S = \text{diag}(1, -1) \in M_2(\mathbb{C})$ and take $u = \left[ae^{i\alpha} ae^{i\beta}\right]^T$. For any $a \in \mathbb{C}$, and for any $\alpha, \beta \in \mathbb{R}$, notice that u is S-isotropic.

Definition 3. Let $S \in M_n(\mathbb{C})$ be nonsingular and Hermitian. Let $x, y \in \mathbb{C}^n$ be given. Then x and y are S-perpendicular if $x^*Sy = 0$. Two subspaces V and W (of \mathbb{C}^n) are S-perpendicular if $v^*Sw = 0$ for all $v \in V$ and all $w \in W$.

If $x, y \in \mathbb{C}^n$ are S-perpendicular, then $\langle x \rangle$ and $\langle y \rangle$ are S-perpendicular. Take $S = \text{diag}(1, -1) \in M_2(\mathbb{C})$, take $v = [a b]^T$, and take $w = [b a]^T$ with $a, b \in \mathbb{R}$. Then v and w are S-perpendicular.

Definition 4. Let $S \in M_n(\mathbb{C})$ be nonsingular and Hermitian. Let $v \in \mathbb{C}^n$ be S-nonisotropic. The Λ_S -Householder matrix of v is $S_v \equiv I - tvv^*S$, where $t = \frac{2}{v^*Sv}$.

Let $S \in M_n(\mathbb{C})$ be nonsingular and Hermitian. If n = 1, then for any $0 \neq v \in \mathbb{C}$, we have $S_v = [-1]$. Conversely, if $S_v = -I$, then $I = \frac{1}{v^*Sv}vv^*S$. Hence, $n = \operatorname{rank}(I) = \operatorname{rank}\left(\frac{1}{v^*Sv}vv^*S\right) = 1$. Thus, $S_v = -I$ if and only if n = 1.

Let $n \ge 2$ be a given integer. Let $v \in \mathbb{C}^n$ be S-nonisotropic. Then $\langle v \rangle_S^{\perp} \equiv \{x \in \mathbb{C}^n : x^*Sv = 0\}$ has dimension n - 1. Now, if $x \in \langle v \rangle$, then $S_v x = -x$. If $x \in \langle v \rangle_S^{\perp}$, then $S_v x = x$.

Proposition 5. Let $S \in M_n(\mathbb{C})$ be nonsingular and Hermitian. Let $u, v \in \mathbb{C}^n$ be S-nonisotropic.

- 1. S_u is Λ_S -symmetric, is Λ_S -orthogonal, and is an involution.
- 2. S_u is diagonalizable and S_u is similar to $I_{n-1} \oplus [-1]$. Hence, $tr(S_u) = n-2$ and $det(S_u) = -1$. If n = 1, then the minimal polynomial of S_u is x + 1. If $n \ge 2$, then the minimal polynomial of S_u is $x^2 1$.
- 3. $S_u = S_v$ if and only if $\langle u \rangle = \langle v \rangle$.
- 4. If u and v are S-perpendicular, then $S_u S_v = S_v S_u$.
- 5. If $P \in \mathcal{O}_S$, then $PS_uP^{-1} = S_{Pu}$.

6. If $n \ge 2$, then the singular values of S_u are 1 (with multiplicity n-2) and $\sqrt{\frac{\mu \pm \sqrt{\mu^2 - 4}}{2}}$, where $\mu = \frac{4(u^*S^2u)u^*u}{(u^*Su)^2} - 2$.

Proof. The first claim can be verified by direct computation. For the second claim, if n = 1, then $S_u = -1$. If $n \ge 2$, then notice that 1 is an eigenvalue of S_u , with an eigenspace of dimension n - 1, and -1 is an eigenvalue of S_u with an eigenspace of dimension 1.

To show the third claim, suppose $S_u = S_v$. Then $-u = S_u u = S_v u = (I - tvv^*S) u = u - t (v^*Su) v$. Notice that $v^*Su \neq 0$, otherwise, u = 0. Now, $u = \frac{tv^*Su}{2}v$ and $\langle u \rangle = \langle v \rangle$. If $\langle u \rangle = \langle v \rangle$, then $v = \alpha u$ for some $0 \neq \alpha \in \mathbb{C}$. Now, $S_v = S_{\alpha u} = I - \frac{2}{(\alpha u)^*S(\alpha u)} (\alpha u) (\alpha u)^* S = S_u$.

The next two claims can be shown by direct computation.

For the last claim, we have

$$\operatorname{rank} (S_u S_u^* - I) = \operatorname{rank} (S_u (S_u^* - S_u)) = \operatorname{rank} (S_u^* - S_u).$$

Now, $S_u^* - S_u = tuu^*S - tSuu^*$ has rank at most 2. Hence, 1 is an eigenvalue of $S_uS_u^*$ with geometric multiplicity at least n - 2. Let α and β be the (possibly) other two eigenvalues of $S_uS_u^*$. Then $1 = \det(S_uS_u^*) = \alpha\beta$. A direct computation now shows that $S_uS_u^* = I - tuu^*S - tSuu^* + \frac{4(u^*S^2u)}{(u^*Su)^2}uu^*$. Taking the trace of both sides, we get $n - 2 + \alpha + \frac{1}{\alpha} = n - 4 + \frac{4(u^*S^2u)u^*u}{(u^*Su)^2}$. Setting $\mu \equiv \frac{4(u^*S^2u)u^*u}{(u^*Su)^2} - 2$, we get $\alpha^2 - \mu\alpha + 1 = 0$, and $\alpha = \frac{\mu \pm \sqrt{\mu^2 - 4}}{2}$. The remaining singular values of S_u are $\sqrt{\frac{\mu \pm \sqrt{\mu^2 - 4}}{2}}$.

2.1. *-Congruence

Let $S, T \in M_n(\mathbb{C})$ be Hermitian matrices. Then S and T are *-congruent ($S = P^*TP$ for some nonsingular P) if and only if they have the same inertia, that is, they have the same number of positive, negative, and zero eigenvalues. If S is nonsingular, then its spectrum contains only positive and negative eigenvalues, that is, S is *-congruent to $L_k \equiv I_k \oplus -I_{n-k}$ for some k = 0, 1, ..., n, and where we make the convention that I_0 is not present.

Let $S, T \in M_n(\mathbb{C})$ be nonsingular Hermitian matrices and suppose that $S = P^*TP$ for some nonsingular P. Suppose that $C \in M_n(\mathbb{C})$ is Λ_S -symmetric, that is, $S^{-1}C^*S = C$. Then, $P^{-1}T^{-1}P^{-*}C^*P^*TP =$

C and $T^{-1}(PCP^{-1})^*T = (PCP^{-1})$, so that PCP^{-1} is Λ_T -symmetric. Conversely, if PCP^{-1} is Λ_T symmetric, then C is Λ_S -symmetric.

A similar calculation also shows that $C \in M_n(\mathbb{C})$ is Λ_S -orthogonal if and only if PCP^{-1} is Λ_T orthogonal.

Theorem 6. Let $S, T \in M_n(\mathbb{C})$ be nonsingular Hermitian matrices. Suppose that $S = P^*TP$ for some nonsingular $P \in M_n(\mathbb{C})$.

1. $C \in M_n(\mathbb{C})$ is Λ_S -symmetric if and only if PCP^{-1} is Λ_T -symmetric.

2. $C \in M_n(\mathbb{C})$ is Λ_S -orthogonal if and only if PCP^{-1} is Λ_T -orthogonal. 3. Let $v \in \mathbb{C}^n$ be S-nonisotropic. Then Pv is T-nonisotropic and $PS_vP^{-1} = T_{Pv}$.

Proof. Suppose that *v* is *S*-nonisotropic. Then $v^*P^*TPv = v^*Sv \neq 0$. Now, $PS_vP^{-1} = P\left(I - \frac{2}{v^*Sv}vv^*S\right)$ $P^{-1} = P\left(I - \frac{2}{v^* P^* T P_V} v v^* P^* T P\right) P^{-1} = I - \frac{2}{(Pv)^* T (Pv)} (Pv) (Pv)^* T = T_{Pv}.$

Let $S \in M_n(\mathbb{C})$ be nonsingular and Hermitian. Then there exists an integer k, with $0 \le k \le n$ such that *S* is *-congruent to L_k . Now, $-L_k$ and L_{n-k} have the same inertia. In fact, if we set $P = \begin{bmatrix} 0 & I_{n-k} \\ I_k & 0 \end{bmatrix}$,

then $P^{-1} = P^*$ and $-L_k = P^*L_{n-k}P$. Let $A \in M_n(\mathbb{C})$ be given. Then $\Lambda_{L_k}(A) = L_k^{-1}A^*L_k =$ $(-L_k)^{-1} A^* (-L_k) = \Lambda_{-L_k} (A).$

Lemma 7. Let $n \ge 2$ be a given integer. Suppose that $0 \le k \le n$ is an integer.

1. If $C \in M_n(\mathbb{C})$ is Λ_{L_k} -symmetric, then C is permutation similar to a $\Lambda_{L_{n-k}}$ -symmetric matrix.

2. If $C \in M_n(\mathbb{C})$ is Λ_{L_k} -orthogonal, then C is permutation similar to a $\Lambda_{L_{n-k}}$ -orthogonal matrix.

Proof. Suppose that $C \in M_n(\mathbb{C})$ is Λ_{L_k} -symmetric. Then C is Λ_{-L_k} -symmetric. Theorem 6 (1) now guarantees that PCP^{-1} is $\Lambda_{L_{n-k}}$ -symmetric.

The second claim can be proven similarly. \Box

3. Product of Λ_S -Householder matrices

Let $S \in M_n$ (\mathbb{C}) be nonsingular and Hermitian. Then there exist an integer k, with $0 \le k \le n$, and a nonsingular $P \in M_n(\mathbb{C})$ such that $S = P^*L_kP$. Suppose that $Q = Q_1Q_2$ is a product of Λ_S -orthogonal matrices Q_1 and Q_2 . Theorem 6 guarantees that $PQP^{-1} = (PQ_1P^{-1})(PQ_2P^{-1})$ is a product of Λ_{L_k} orthogonal matrices.

For now, we let $n \ge 2$, we fix k, and we drop the subscript, that is, we say that $L = L_k$.

Let $Q \in \mathcal{O}_S$ be given. Then $|\det Q| = 1$. Hence, there exists $\alpha \in \mathbb{C}$ such that $\alpha Q \in \mathcal{SO}_S$, that is, det $(\alpha Q) = \pm 1$. Our goal is to determine which elements of SO_S can be written as a product of Λ_{S} -Householder matrices. We are also interested in finding the least number of Λ_{S} -Householder matrices necessary to form such a product. Our approach is to study Λ_L -orthogonal matrices.

3.1. Λ_L -orthogonal matrices

We begin with the following observation.

Lemma 8. Let $S \in M_n(\mathbb{C})$ be nonsingular and Hermitian. Suppose that $S = P^*LP$, where $P \in M_n(\mathbb{C})$ is nonsingular and $L = I_k \oplus -I_{n-k}$ for some integer k with $0 \le k \le n$. Then $A \in \mathcal{O}_S$ can be written as a product of $\Lambda_{\rm S}$ -Householder matrices if and only if PAP⁻¹ can be written as a product of $\Lambda_{\rm L}$ -Householder matrices. Moreover, the minimum number used in both cases are the same.

2656

Let $A \in M_n(\mathbb{C})$ be Λ_L -orthogonal. If A can be written as a product of Λ_L -Householder matrices, then necessarily, det $(A) = \pm 1$. We show that the converse holds, as well.

Suppose that $A = L_{u_1}L_{u_2} \cdots L_{u_m}$ and suppose that such a factorization is minimal. If $\langle u_k \rangle = \langle u_{k+1} \rangle$, then $L_{u_k} = L_{u_{k+1}}$, and since Proposition 5 guarantees that L_u is an involution, we can take away $L_{u_k}L_{u_{k+1}}$ (which is *I*). If $\langle u_k \rangle = \langle u_{k+1} \rangle$ for $t \ge 2$, then $L_{u_k}L_{u_{k+1}} \cdots L_{u_{k+t}} = L_{u_k}L_{u_{k+1}} \cdots L_{u_k} = (L_{u_k}L_{u_{k+1}}L_{u_k}) \cdots (L_{u_k}L_{u_{k+t-1}}L_{u_k})$. Now, for each $l = 1, \ldots, t - 1$, Proposition 5 (5) guarantees that $L_{u_k}L_{u_{k+1}}L_{u_k} = L_{u_k}L_{u_{k+1}}$. This apparent contradiction shows the following.

Lemma 9. Let $u_i \in \mathbb{C}^n$ for i = 1, ..., m. Let $A \in M_n(\mathbb{C})$ be Λ_L -orthogonal. Suppose that $A = L_{u_1}L_{u_2} \cdots L_{u_m}$. If m is minimal, then $\langle u_i \rangle \neq \langle u_j \rangle$ for $i \neq j$.

Let $x, y \in \mathbb{R}^n$ be given, and let D be a nonsingular diagonal matrix in $M_n(\mathbb{R})$. If $x^T D x = y^T D y \neq 0$, then either $(x + y)^T D (x + y) \neq 0$ or $(x - y)^T D (x - y) \neq 0$ [4, Lemma 3]. The following is an analog in the complex case and using D = L.

Lemma 10. Let $x, y \in \mathbb{C}^n$ be such that $x^*Lx = y^*Ly \neq 0$. Then x + y is L-nonisotropic or x - y is L-nonisotropic.

Proof. The assumption assures that $x^*Lx + y^*Ly \neq 0$. Suppose now that both x + y and x - y are *L*-isotropic. Then $(x + y)^* L (x + y) = 0$, so that $\operatorname{Re}(x^*Ly) = -\frac{1}{2} (x^*Lx + y^*Ly)$. Now, we also have $(x - y)^* L (x - y) = 0$, so that $\operatorname{Re}(x^*Ly) = \frac{1}{2} (x^*Lx + y^*Ly)$, a contradiction. \Box

Let $x, y \in \mathbb{C}^n$ be such that $x^*Lx = y^*Ly \neq 0$. Say, w = x + y is *L*-nonisotropic. Suppose that $x^*Ly \in \mathbb{R}$. Now, compute: $L_wx = x - \frac{2}{w^*Lw}ww^*Lx$. Notice that $w^*Lw = 2(x^*Lx + x^*Ly)$. Also, $w^*Lx = x^*Lx + y^*Lx = x^*Lx + x^*Ly$. Hence, $L_wx = -y$.

Conversely, if $L_w x = -y$, then $w\left(1 - \frac{2w^*Lx}{w^*Lw}\right) = 0$, so that $w^*Lw - 2w^*Lx = 0$. Now, $w^*Lw = 2x^*Lx + 2\text{Re}(y^*Lx)$ and $w^*Lx = x^*Lx + y^*Lx$. Hence, $\text{Re}(y^*Lx) = y^*Lx$. Consequently, $x^*Ly \in \mathbb{R}$.

If v = x - y is *L*-nonisotropic, then a similar calculation shows that $L_v x = y$ if and only if $x^* L y \in \mathbb{R}$.

Lemma 11. Let $x, y \in \mathbb{C}^n$ be such that $x^*Lx = y^*Ly \neq 0$. If w = x + y is *L*-nonisotropic, then $L_w x = -y$ if and only if $x^*Ly \in \mathbb{R}$. If v = x - y is *L*-nonisotropic, then $L_y x = y$ if and only if $x^*Ly \in \mathbb{R}$.

It is known that if $x, y \in \mathbb{C}^n$ have the same Euclidean norm, then there exists a unitary U such that Ux = y [1, Problem 4 on page 77]. The following is an analog.

Lemma 12. Let $x, y \in \mathbb{C}^n$ be such that $x^*Lx = y^*Ly \neq 0$. Then there exists a Λ_L -orthogonal P such that Px = y.

Proof. Suppose that $x^*Ly = re^{i\theta}$, where $r, \theta \in \mathbb{R}$. Set $u = e^{i\theta}x$. Then $u^*Lu = y^*Ly \neq 0$. Moreover, $u^*Ly \in \mathbb{R}$. Let w = u + y and let v = u - y. Lemma 10 guarantees that w or v is L-nonisotropic. If w is L-nonisotropic, then Lemma 11 guarantees that $L_w u = -y$. We take $P = -e^{i\theta}L_w$. If v is L-nonisotropic, then Lemma 11 guarantees that $L_v u = y$. We take $P = e^{i\theta}L_v$. \Box

Let $x \in \mathbb{C}^n$ be *L*-nonisotropic. Write $x = [x_i]$. Then $x^*Lx = \sum_{i=1}^k |x_i|^2 - \sum_{i=k+1}^n |x_i|^2 \in \mathbb{R}$. Suppose that $x^*Lx = \alpha^2$, with $\alpha > 0$. Set $e \equiv \alpha e_1$. Then $e^*Le = \alpha^2$. Lemma 12 guarantees that there exists a Λ_L -orthogonal *P* such that x = Pe. Now, $L_x = L_{Pe} = PL_eP^{-1}$. Notice that $L_e = L_{\alpha e_1} = L_{e_1}$ is diagonal.

Suppose that $x^*Lx = -\alpha^2$, with $\alpha > 0$. Set $e \equiv \alpha e_{k+1}$. Then $e^*Le = -\alpha^2$. Lemma 12 guarantees that there exists a Λ_L -orthogonal P such that x = Pe. Now, $L_x = L_{Pe} = PL_eP^{-1}$. Notice that $L_e = L_{\alpha e_{k+1}} = L_{e_{k+1}}$ is diagonal.

Theorem 13. Let $x \in \mathbb{C}^n$ be L-nonisotropic. There exists a Λ_L -orthogonal P such that PL_xP^{-1} is diagonal.

Let $0 \neq x \in \mathbb{C}^n$ be *L*-isotropic. Write $x = \left[x_1^T x_2^T\right]^T$, with $x_1 \in \mathbb{C}^k$. Notice that $0 = x^*Lx = x^*Lx$ Let $0 \neq x \in \mathbb{C}$ be L-isotropic. Write $x = [x_1 x_2]$, with $x_1 \in \mathbb{C}$. Notice that $0 = x Lx = x_1^* x_1 - x_2^* x_2$, so that $||x_1||_2 = ||x_2||_2$. Because $x \neq 0$, we have $x_1 \neq 0$ (and also $x_2 \neq 0$). Let $U_1 \in M_k(\mathbb{C})$ be a unitary such that $U_1 x_1 = ||x_1||_2 e_1^{(k)}$ and let $U_2 \in M_{n-k}(\mathbb{C})$ be a unitary such that $U_2 x_2 = ||x_1||_2 e_1^{(n-k)}$. Set $U = U_1 \oplus U_2$. Then U is Λ_L -orthogonal and $Ux = ||x_1||_2 e_1^{(n)} + ||x_1||_2 e_{k+1}^{(n)}$. Set $H_\beta \equiv \begin{bmatrix} [\cosh \beta] \oplus I_{k-1} & [\sinh \beta] \oplus 0 \\ [\sinh \beta] \oplus 0 & [\cosh \beta] \oplus I_{n-k-1} \end{bmatrix}$, and notice that H_β is Λ_L -orthogonal. Moreover, $H_{\beta}Ux = e^{\beta} ||x_1||_2 e_1^{(n)} + e^{\beta} ||x_1||_2 e_{k+1}^{(n)}.$ Choosing $\beta = -\ln(||x_1||_2)$, we have $H_{\beta}Ux = e_1^{(n)} + e_{k+1}^{(n)}.$

Lemma 14. Let $0 \neq x \in \mathbb{C}^n$ be L-isotropic. Then there exists a Λ_L -orthogonal P such that $Px = e_1^{(n)} + e_{k+1}^{(n)}$.

Let $U \in M_n(\mathbb{C})$ be unitary. If U is block upper triangular, then in fact, U is block diagonal.

Lemma 15. Let $A \in M_n(\mathbb{C})$ be Λ_L -orthogonal. If A is block upper triangular, then A is block diagonal.

Proof. Suppose that $A = \begin{bmatrix} W & X \\ 0 & Y \end{bmatrix}$. Because A is Λ_L -orthogonal, W and Y are both nonsingular. Write $L = D_1 \oplus D_2$ conformal to A. Looking at the (1, 2) entries of the equation $A^*LA = L$, we have $W^*D_1X = 0$. Since both *W* and D_1 are nonsingular, we have X = 0.

3.2. Product of Λ_L -Householder matrices

Let L = diag(1, -1) and let $A \in M_2(\mathbb{C})$ be Λ_L -orthogonal and suppose that $\det(A) = \pm 1$. Let $u = [u_1 \ u_2]^T$ be the first column of A with $u_1 = re^{i\theta}$ and $r, \theta \in \mathbb{R}$. Then $u^*Lu = 1$. Set $e = e^{i\theta}e_1$, so that $u^*Le = r$ and $e^*Le = 1$. Lemma 10 guarantees that w = u + e is L-nonisotropic or that v = u - e is L-nonisotropic. If w is L-nonisotropic, then Lemma 11 guarantees that $L_w u = -e$ and if *v* is *L*-nonisotropic, then Lemma 11 guarantees that $L_{v}u = e$.

Suppose that *w* is *L*-nonisotropic. Then $L_wA = \begin{bmatrix} -e^{i\theta} & b \\ 0 & c \end{bmatrix}$. Lemma 15 ensures that b = 0, and since det(A) = ± 1 , we must have $c = \pm e^{-i\theta}$.

If *v* is *L*-nonisotropic, then $L_v A = \begin{bmatrix} e^{i\theta} & b \\ 0 & c \end{bmatrix}$. Lemma 15 ensures that b = 0, and since det $(A) = \pm 1$,

we must have $c = \pm e^{-i\theta}$.

We look at the number of Λ_L -Householder factors of $X_1 \equiv \text{diag}(e^{i\theta}, e^{-i\theta})$ and $X_2 \equiv \text{diag}(e^{i\theta}, -e^{-i\theta})$. First, notice that for many values of θ , we have $X_1 - I$ and $X_2 - I$ are both nonsingular. Hence, for these values of θ , neither X_1 nor X_2 is Λ_L -Householder. Moreover, since det $(X_1) = 1$, if X_1 can be written as a product of Λ_L -Householder matrices, then the number of such factors must be even. Now, if X_2 can be written as a product of Λ_I -Householder matrices, then the number of factors must be odd and that number must be bigger than or equal to 3.

When $\theta = 0$, we have $X_1 = I = L_t^2$ for any *L*-nonisotropic vector *t* and we have $X_2 = L_{e_2}$. When $\theta = \pi$, we have $X_1 = -I = L_{e_1}L_{e_2}$ and we have $X_2 = L_{e_1}$. Suppose now that $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$. We show that X_1 and X_2 can be written as a product of Λ_L -Householder matrices. Let $u \in \mathbb{C}^2$ be *L*-nonisotropic. Suppose that $u^*Lu > 0$. Set $v = \frac{1}{\sqrt{u^*Lu}}u$ and

notice that $v^*Lv = 1$. Suppose that $u^*Lu < 0$. Set $w = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} u$ and notice that $w^*Lw = -u^*Lu > 0$. Hence, we may assume that $u^*Lu = 1$.

Let
$$u = [re^{i\alpha} se^{i\beta}]^T$$
, where $r, s, \alpha, \beta \in \mathbb{R}$. Then $w = e^{-i\alpha}u \in \langle u \rangle$ and $L_u = L_w$. Hence, we may
rther assume that $u = [r se^{i\theta}]^T$ where $r^2 - s^2 = 1$. Now notice that $L_u = \begin{bmatrix} 1 - 2r^2 & 2rse^{-i\theta} \end{bmatrix}^T$

further assume that $u = \left[r s e^{i\theta}\right]^{t}$, where $r^{2} - s^{2} = 1$. Now, notice that $L_{u} = \left[-2rs e^{i\theta} + 1 + 2s^{2}\right]$. Set $a \equiv 1 - 2r^{2}$ and $b \equiv -2rs$. Then we have $a^{2} - b^{2} = 1$, we have $1 + 2s^{2} = 2r^{2} - 1 = -a$, and we have

$$L_u = \begin{bmatrix} a & -be^{-i\theta} \\ be^{i\theta} & -a \end{bmatrix}.$$

Let $u_1 = [r s e^{i\alpha}]^T$ and let $u_2 = [r s e^{i\beta}]^T$. We look at the product $L_{u_1}L_{u_2}$. A direct computation shows that

$$L_{u_1}L_{u_2}e_1 = \begin{bmatrix} a^2 - b^2 e^{i(\beta - \alpha)} \\ ab \left(e^{i\alpha} - e^{i\beta}\right) \end{bmatrix}.$$

Let $x = \beta - \alpha$ and note that $d \equiv a^2 - b^2 e^{ix} = a^2 - b^2 \cos x - ib^2 \sin x$. Write $d = c \cos y + ic \sin y$, with $c, y \in \mathbb{R}$ and $c \ge 0$. Then $\tan y = \frac{-b^2 \sin x}{a^2 - b^2 \cos x} = \frac{-b^2 \sin x}{1 + b^2 - b^2 \cos x}$, so that $\cot y = -\frac{1 - \cos x}{\sin x} - \frac{1}{b^2 \sin x} = -\tan\left(\frac{x}{2}\right) - \frac{1}{b^2 \sin x}$. For each b, the range of $f(x, b) = -\tan\left(\frac{x}{2}\right) - \frac{1}{b^2 \sin x}$ is $\mathbb{R} \setminus \{0\}$. Now choose $y = \cot^{-1}\left(-\tan\left(\frac{x}{2}\right) - \frac{1}{b^2 \sin x}\right)$ so that $y \in \left(-\frac{\pi}{2}, 0\right) \cup \left(0, \frac{\pi}{2}\right)$, and notice that for each b, the function g (y) = cot y is a bijection from $\left(-\frac{\pi}{2}, 0\right) \cup \left(0, \frac{\pi}{2}\right)$ to $\mathbb{R} \setminus \{0\}$.

Now, $(L_{u_1}L_{u_2}e_1)^* L(L_{u_1}L_{u_2}e_1) = e_1^* Le_1 = 1$. Set $e = e^{iy}e_1$, so that $e^*L(L_{u_1}L_{u_2}e_1) = c \in \mathbb{R}$. Moreover, $e^*Le = 1$. Hence, $w = L_{u_1}L_{u_2}e_1 + e$ is *L*-nonisotropic or $v = L_{u_1}L_{u_2}e_1 - e$ is *L*-nonisotropic.

If w is *L*-nonisotropic, then $L_w L_{u_1} L_{u_2} e_1 = -e$, so that $L_w L_{u_1} L_{u_2} = \begin{bmatrix} -e^{iy} & h \\ 0 & j \end{bmatrix}$. Since $L_w L_{u_1} L_{u_2}$ is Λ_L -orthogonal, we have h = 0 and $j = \pm e^{-iy}$. That is, $Y \equiv \begin{bmatrix} -e^{iy} & 0 \\ 0 & \pm e^{-iy} \end{bmatrix}$ can be written as

a product of three Λ_L -Householder matrices. However, since the determinant of an odd number of Λ_L -Householder matrices is -1, we have $Y = \begin{bmatrix} -e^{iy} & 0 \\ 0 & e^{-iy} \end{bmatrix}$. Now, $X_1 = L_{e_1}Y$ is a product of four

 Λ_L -Householder matrices. Also, X_2 is a product of five Λ_L -Householder matrices. Notice that $Y^2 = \text{diag}(e^{2iy}, e^{-2iy}) = (L_w L_{u_1} L_{u_2})^2$. Proposition 5 (5) guarantees that

$$(L_w L_{u_1} L_{u_2})^2 = L_{L_w u_1} L_{L_w u_2} L_{u_1} L_{u_2}$$

is a product of four Λ_L -Householder matrices. Moreover, diag $(e^{2iy}, -e^{-2iy}) = L_{e_2}Y^2$ is a product of five Λ_L -Householder matrices.

If v is L-nonisotropic, then $L_v L_{u_1} L_{u_2} e_1 = e$, so that $L_v L_{u_1} L_{u_2} = \begin{vmatrix} e^{iy} & h \\ 0 & j \end{vmatrix}$. Since $L_v L_{u_1} L_{u_2}$ is Λ_L -

orthogonal with determinant -1, we have h = 0 and $j = -e^{-iy}$. That is, $Y = \begin{vmatrix} e^{iy} & 0 \\ 0 & -e^{-iy} \end{vmatrix}$. Thus,

 $X_2 = L_v L_{u_1} L_{u_2}$ can be written as a product of three Λ_L -Householder matrices, and $X_1 = L_{e_2} X_2$ is a product of four Λ_L -Householder matrices.

Notice that $X_2^2 = \text{diag}(e^{2iy}, e^{-2iy}) = (L_v L_{u_1} L_{u_2})^2$ is a product of four Λ_L -Householder matrices. Moreover, $\text{diag}(e^{2iy}, -e^{-2iy}) = L_{e_2} X_2^2$ is a product of five Λ_L -Householder matrices.

Suppose that $-\pi < \theta < \pi$. Set $\theta = 2y$. Then diag (e^{2iy}, e^{-2iy}) can be written as a product of four Λ_L -Householder matrices, while diag $(e^{2iy}, -e^{-2iy})$ can be written as a product of five Λ_L -Householder matrices.

Lemma 16. Let L = diag(1, -1). Let $\theta \in \mathbb{R}$ be given. Then $\text{diag}(e^{i\theta}, \pm e^{-i\theta})$ can be written as a product of at most five Λ_L -Householder matrices in $M_2(\mathbb{C})$.

We summarize our results.

Lemma 17. Let $A \in M_2(\mathbb{C})$ be Λ_L -orthogonal. If $det(A) = \pm 1$, then A can be written as a product of at most 6 Λ_L -Householder matrices.

Let $A \in M_n(\mathbb{C})$ be Λ_L -orthogonal with det $(A) = \pm 1$. Suppose that k = 1. We look at the first column of A, say u, and suppose that the first entry of u is $ce^{i\theta}$, with $c, \theta \in \mathbb{R}$. Let $w = u + e^{i\theta}e_1$ and let $v = u - e^{i\theta}e_1$. As before, either w is L-nonisotropic or v is L-nonisotropic. Moreover, $L_w u = -e^{i\theta}e_1$ or $L_v u = e^{i\theta}e_1$. For j = 1, 2, we let $B_j = \begin{bmatrix} 1 & 0 \\ 0 & A_j \end{bmatrix}$ and let $C(a, b, n) \equiv \left(\begin{bmatrix} e^{i(a+b)} & 0 \\ 0 & e^{-i(a+b)} \end{bmatrix} \oplus I_{n-2} \right)$. If w is L-nonisotropic, then we have $L_w A = B_1 C(\theta, \pi, n)$. If v is L-nonisotropic, then we have $L_v A = E_1 C(\theta, \pi, n)$.

If w is 2-holisotropic, then we have $L_{W}x = B_1 C(0, x, n)$. If v is 2-holisotropic, then we have $L_{V}x = B_2 C(\theta, 0, n)$. Notice that B_1 and B_2 have the same forms, and that $C(\theta, \pi, n)$ and $C(\theta, 0, n)$ have the same forms. Hence, it is without loss of generality to assume that v is 2-nonisotropic. Now, $A_1 \in M_{n-1}(\mathbb{C})$ is a unitary matrix having determinant ± 1 , and hence a product of at most 2(n-1) - 1 = 2n - 3 Householder matrices [4, Theorem 1]. Let $H_x = I - 2xx^* \in M_{n-1}(\mathbb{C})$ be a Householder matrix.

Set
$$y = \begin{bmatrix} 0 \ x^T \end{bmatrix}^T \in \mathbb{C}^n$$
. Set $L_y = I - \frac{2}{y^*Ly}yy^*L$. Then $L_y = \begin{bmatrix} 1 \ 0 \\ 0 \ H_x \end{bmatrix}$. Hence, $\begin{bmatrix} 1 \ 0 \\ 0 \ A_1 \end{bmatrix}$ is a product of

at most $2n - 3 \Lambda_L$ -Householder matrices. Let $C = C(\theta, \pi, n)$ or $C = C(\theta, 0, n)$ so that det (C) = 1. Notice that we can write C as a product of at most $4 \Lambda_L$ -Householder matrices. Hence, A is a product of at most $2n + 2 \Lambda_L$ -Householder matrices.

Suppose $k \ge 2$. We look at the first column of *A*, say *u* and suppose that the second entry of *u* is $ce^{i\theta}$, with $c, \theta \in \mathbb{R}$. Let $w = u + e^{i\theta}e_2$ and let $v = u - e^{i\theta}e_2$. Then, either *w* is *L*-nonisotropic or *v* is *L*-nonisotropic. Moreover, $L_w u = -e^{i\theta}e_2$ or $L_v u = e^{i\theta}e_2$.

L-nonisotropic. Moreover, $L_{W^{l}} = -c - c_{2} - c_{2} - c_{2}$ Suppose that w is L-nonisotropic. Then $L_{w}A = \begin{bmatrix} 0 & b^{T} \\ -e^{i\theta} & c^{T} \\ 0 & B \end{bmatrix}$, where $b, c \in \mathbb{C}^{n-1}$ and $B \in M_{(n-2),(n-1)}(\mathbb{C})$. Let $p = \frac{1}{\sqrt{2}} \left(e_{1} + e^{i\theta}e_{2}\right)$. Then $L_{p} = \begin{bmatrix} 0 & -e^{-i\theta} \\ -e^{i\theta} & 0 \end{bmatrix} \oplus I_{n-2}$. Hence, we have $\begin{bmatrix} 1 & d^{T} \end{bmatrix}$

 $L_p L_w A = \begin{bmatrix} 1 & d^T \\ 0 & D \end{bmatrix}$, where $d \in \mathbb{C}^{n-1}$ and $D \in M_{n-1}(\mathbb{C})$. Lemma 15 guarantees that d = 0, so that D

is $\Lambda_{L_{k-1}}$ -orthogonal. If k = 2, then D can be written as a product of $2(n-1) + 2\Lambda_{L_{k-1}}$ -Householder matrices. Thus, A can be written as a product of $2n + 2\Lambda_L$ -Householder matrices. If k > 2, repeat the reduction k - 2 more times. At this time, we have used $2(k-1)\Lambda_L$ -Householder matrices, and we need 2(n-k+1)+2 more. Hence, A can be written as a product of $2n+2\Lambda_L$ -Householder matrices.

If v is *L*-nonisotropic, then a similar calculation shows that A can be written as a product of $2n + 2 \Lambda_L$ -Householder matrices.

2660

Theorem 18. Let $n \ge 2$ and $1 \le k \le n$ be integers. Let $L = I_k \oplus -I_{n-k}$. Let $A \in M_n(\mathbb{C})$ be Λ_L -orthogonal with det $(A) = \pm 1$. Then A can be written as a product of at most $2n + 2 \Lambda_L$ -Householder matrices.

The following is part of Theorem 3 in [4]. We provide a different proof.

Corollary 19. Let $n \ge 2$ and $k \ge 1$ be integers such that $n \ge k$. Let $L = I_k \oplus -I_{n-k}$. Let $A \in M_n(\mathbb{R})$ be Λ_L -orthogonal. Then A can be written as a product of at most $2n - 1 \Lambda_L$ -Householder matrices.

Proof. Let $A \in M_n(\mathbb{R})$ be Λ_L -orthogonal. Because A is real, we have det $(A) = \pm 1$. Suppose $L_pA = B_1C_1(\theta, 0, n)$, where p = w or p = v as in the proof of Theorem 18. Notice that we may take $\theta = 0$ so that $C_1 = I$ and $B_1 = \begin{bmatrix} \pm 1 & 0 \\ 0 & A_1 \end{bmatrix}$. So, far, we have only used $1 \Lambda_L$ -Householder matrix. We apply

induction to show that we can use n - 2 more Λ_L -Householder matrices to reduce A_1 to a diagonal matrix with diagonal entries ± 1 . We only need $n - 2 \Lambda_L$ -Householder matrices because only $1 \Lambda_L$ -Householder matrix is needed to reduce a 2-by-2 matrix to a diagonal. Now, for each diagonal entry that is -1, multiply by L_{e_i} . Hence, every Λ_L -orthogonal A can be written as a product of at most $2n - 1 \Lambda_L$ -Householder matrices. \Box

3.3. Product of two Λ_L -Householder matrices

Let $n \ge 2$ and $k \ge 1$ be given integers with $k \le n$. Let $L_k = I_k \oplus -I_{n-k}$. Let $Q = [q_i] \in M_n(\mathbb{C})$ be Λ_{L_k} -orthogonal. Then $q_i^* L_k q_i = 1$ for i = 1, ..., k, $q_i^* L_k q_i = -1$ for i = k + 1, ..., n, and $q_i^* L_k q_j = 0$ for $i \ne j$.

Definition 20. Let $p \leq n$ be a given positive integer. Then $\{x_1, \ldots, x_p\} \subset \mathbb{C}^n$ is a Λ_{L_k} -orthogonal set if $x_i^* L_k x_j = 0$ for $i \neq j$ and $x_i^* L_k x_i = \pm 1$ for $i = 1, \ldots, p$.

Let $A = \{x_1, \ldots, x_p\} \subset \mathbb{C}^n$ be a Λ_{L_k} -orthogonal set. Let $y = \alpha_1 x_1 + \cdots + \alpha_p x_p = 0$. Then, for each $i = 1, \ldots, p$, we have $0 = x_i^* L_k y = \pm \alpha_i$, so that $\alpha_i = 0$. Hence, A is linearly independent. Let $Q \in M_n(\mathbb{C})$ be Λ_{L_k} -orthogonal. One checks that $QA = \{Qx_1, \ldots, Qx_p\}$ is also a Λ_{L_k} -orthogonal set. Suppose that $x_i^* L_k x_i = 1$ for $i = 1, \ldots, q$ and that $x_i^* L_k x_i = -1$ for $i = q + 1, \ldots, p$. Set $B = [x_1 \cdots x_p]$. Lemma 12 guarantees that there exists a Λ_{L_k} -orthogonal P such that $Px_1 = e_1^{(n)}$. Because PA is a Λ_{L_k} -orthogonal set, we must have $PB = \begin{bmatrix} 1 & 0 \\ 0 & B_1 \end{bmatrix}$, where $B_1 = \begin{bmatrix} b_i^{(1)} \end{bmatrix} \in M_{(n-1),(p-1)}(\mathbb{C})$ and

 $\left\{b_1^{(1)},\ldots,b_{p-1}^{(1)}
ight\}$ is a $\Lambda_{L_{k-1}}$ -orthogonal set.

If k = 1, then B_1 has orthonormal columns. Extend $\{b_1^{(1)}, \ldots, b_{p-1}^{(1)}\}$ to an orthonormal basis of \mathbb{C}^{n-1} , say $\{c_1, \ldots, c_{n-p}\} \cup \{b_1^{(1)}, \ldots, b_{p-1}^{(1)}\}$. Set $C_1 = [c_i]$ and set $C = [B_1 C_1]$. Then $C \in M_{n-1} (\mathbb{C})$ is unitary. Moreover, $D \equiv [1] \oplus C$ is Λ_{L_k} -orthogonal. Let $P^{-1}D = [y_i]$. Notice that $y_i = x_i$ for $i = 1, \ldots, p$. Moreover, we have extended A to a Λ_{L_k} -orthogonal basis of \mathbb{C}^n .

If
$$k > 1$$
, then there exists a $\Lambda_{L_{k-1}}$ -orthogonal $Q_1 \in M_{n-1}(\mathbb{C})$ such that $Q_1B_1 = \begin{bmatrix} 1 & 0 \\ 0 & B_2 \end{bmatrix}$, where $B_2 = \begin{bmatrix} b_i^{(2)} \end{bmatrix} \in M_{(n-2),(p-2)}(\mathbb{C})$ and $\{b_1^{(2)}, \ldots, b_{p-2}^{(2)}\}$ is a $\Lambda_{L_{k-2}}$ -orthogonal set. Set $P_2 = [1] \oplus Q_1$ and notice that P_2 is Λ_{L_k} -orthogonal and that $P_2PB = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & B_2 \end{bmatrix}$. Continue the reduction un-

til i = q, and let $T = P_q \cdots P_2 P$. Then $TB = \begin{bmatrix} I_q & 0 \\ 0 & C \end{bmatrix}$, where $C = [c_i] \in M_{(n-q),(p-q)}(\mathbb{C})$ and $\{c_1, \ldots, c_{p-q}\}$ is a $\Lambda_{L_{k-q}}$ -orthogonal set. Notice that necessarily, $q \leq k$. Otherwise, we have $e_q^* L_k e_q = -1$, but $(TB)^* L_k (TB) = B^* L_k B = I_q \oplus -I_{p-q}$ implies $e_q^* L_k e_q = 1$. Now, $c_i^* L_{k-q} c_j = 0$ for $i \neq j$ and $c_i^* L_{k-q} c_i = -1$ for $i = 1, \ldots, p-q$. There exists a $\Lambda_{L_{k-q}}$ -orthogonal $S \in M_{n-q}(\mathbb{C})$ such that $Sc_1 = e_{n-q}^{(n-q)}$. Then $SC = \begin{bmatrix} C_1 & 0 \\ 0 & 1 \end{bmatrix}$. Let $N_1 = I_q \oplus S$. Then N_1 is Λ_{L_k} -orthogonal. Moreover, $C_1 = [f_i] \in M_{(n-q-1),(p-q-1)}(\mathbb{C})$ and $\{f_1, \ldots, f_{p-q-1}\}$ is a $\Lambda_{L_{k-q}}$ -orthogonal set. Here, $L_{k-q} = I_{k-q} \oplus -I_{n-k-1}$. Now, there exists $\Lambda_{L_{k-q}}$ -orthogonal R_1 such that $R_1C_1 = \begin{bmatrix} C_2 & 0 \\ 0 & 1 \end{bmatrix}$. Set $S_2 = R_1 \oplus [1]$ and set $N_2 = I_q \oplus S_2$. Continue the reduction until i = p - q, and let $W = N_{p-q} \cdots N_1$. Necessarily, $p - q \leq n - k$ and

$$WTB = \begin{bmatrix} I_q & 0\\ 0 & 0\\ 0 & I_{p-q} \end{bmatrix}.$$

Let M = WT, and let $M^{-1} = [n_i]$. Set $F = [n_{q+1} \cdots n_{n-p+q}]$, set $E_1 = [x_1 \cdots x_q]$, set $E_2 = [x_{q+1} \cdots x_p]$, and set $D = [E_1 F E_2]$. Then MD = I, so that $D = M^{-1}$. Now, notice that M is Λ_{L_k} -orthogonal, so that M^{-1} is also Λ_{L_k} -orthogonal. Hence, we have extended A to a Λ_{L_k} -orthogonal basis of \mathbb{C}^n .

Theorem 21. Let $A = \{x_1, \ldots, x_p\} \subset \mathbb{C}^n$ be a Λ_{L_k} -orthogonal set. Then A is linearly independent. Suppose that $x_i^* L_k x_i = 1$ for $i = 1, \ldots, q$ and $x_i^* L_k x_i = -1$ for $i = q + 1, \ldots, p$. Then $q \leq k$ and $p - q \leq n - k$. Moreover, A can be extended to a Λ_{L_k} -orthogonal basis of \mathbb{C}^n .

Let $A \in M_n(\mathbb{C})$ be a product of two Λ_{L_k} -Householder matrices, say $A = L_u L_v$, where $u, v \in \mathbb{C}^n$. Then rank $(A - I) = \operatorname{rank}(L_u(L_v - L_u)) = \operatorname{rank}(L_v - L_u) \leq 2$. If rank $(L_u - L_v) = 0$, then $L_v = L_u$ and A = I. Suppose that rank $(A - I) \neq 0$. Theorem 45 of [2] guarantees that the Jordan Canonical Form of A contains only blocks of the form (1) $J_k(\lambda) \oplus J_k(\frac{1}{\lambda})$, where $|\lambda| > 1$ and any k, and (2) $J_k(e^{i\theta})$, where $\theta \in \mathbb{R}$ and any k. If the Jordan Canonical Form of A contains blocks of the form (1), then λ must be real. Since rank $(A - I) \leq 2$, we must have k = 1, that is, A is similar to diag $(\lambda, \frac{1}{\lambda}) \oplus I_{n-2}$. If the Jordan Canonical Form of A contains blocks of the form (2) and if $\theta \neq k\pi$, where k is an integer, then the Jordan Canonical Form of A must also contain $J_k(e^{-i\theta})$. In this case, we must have k = 1. If -1 is an eigenvalue of A, then A is similar to $-I_2 \oplus I_{n-2}$ or A is similar to $J_2(-1) \oplus I_{n-2}$. If 1 is the only eigenvalue of A, then A is similar to $J_2(1) \oplus I_{n-2}$ or A is similar to $J_3(1) \oplus I_{n-3}$.

It is without loss of generality to assume that $u^*L_k u = \pm 1$ and that $v^*L_k v = \pm 1$. We look at these cases.

Case 1. $u^*L_k u = v^*L_k v = 1$. There exists a Λ_{L_k} -orthogonal *P* such that $Pu = e_1$. Then $PAP^{-1} = L_{e_1}L_{Pv}$. Let $Pv = [a_i]_{i=1}^n$, let $z = [a_i]_{i=2}^n$.

Suppose that k = 1. If z = 0, then $Pv = a_1e_1$ and $|a_1| = 1$, so that $L_{Pv} = L_{e_1}$ and A = I, a contradiction. Hence, $z \neq 0$. Let $||z||_2 = b$. Then, there exists a unitary $Q \in M_{n-1}(\mathbb{C})$ such that $Qz = be_1^{(n-1)}$. Set $P_1 = [1] \oplus Q$, so that P_1 is Λ_{L_k} -orthogonal. Moreover, $P_1e_1 = e_1$ and $P_1Pv = a_1e_1 + be_2$. A direct computation shows that

$$P_1 PAP^{-1}P_1^{-1} = L_{e_1}L_{a_1e_1+be_2} = \begin{bmatrix} 2 |a_1|^2 - 1 & -2a_1b \\ -2\overline{a_1}b & 1+2b^2 \end{bmatrix} \oplus I_{n-2}.$$

Here, we have $|a_1|^2 - b^2 = 1$ since $v^* L_k v = 1$ and $P_1 P$ is Λ_{L_k} -orthogonal. Let $\alpha = 1 + 2b^2$. Then the eigenvalues of *A* are the two positive numbers $\alpha \pm \sqrt{\alpha^2 - 1}$ and 1.

Suppose that $k \ge 2$. Notice that if $\{u, v\}$ is a Λ_{L_k} -orthogonal set, then $a_1 = 0$. Moreover, $z^*L_{k-1}z =$ 1, so that there exists a $\Lambda_{L_{k-1}}$ -orthogonal Q such that $Qz = e_1^{(n-1)}$. Set $P_1 = [1] \oplus Q$, so that P_1 is Λ_{L_k} -orthogonal. Moreover, $P_1e_1 = e_1$ and $P_1Pv = e_2$. In this case, $P_1PAPP_1^{-1} = L_{e_1}L_{e_2} = -l_2 \oplus l_{n-2}$. Suppose that $\{u, v\}$ is not a Λ_{L_k} -orthogonal set. We have two subcases: z is L_{k-1} -isotropic or z is L_{k-1} -nonisotropic.

Suppose that *z* is L_{k-1} -isotropic. Notice that $n \ge 3$, otherwise, z = 0 and A = I. Now, $|a_1| = 1$, say, $a_1 = e^{i\theta}$, where $\theta \in \mathbb{R}$. Lemma 14 guarantees that there exists a $\Lambda_{L_{k-1}}$ -orthogonal Q such that $Qz = e_1^{(n-1)} + e_k^{(n-1)}$. Set $P_1 = [1] \oplus Q$, so that P_1 is Λ_{L_k} -orthogonal. Moreover, $P_1e_1 = e_1$ and $P_1Pv = e^{i\theta}e_1 + e_2 + e_{k+1}$. A direct calculation shows that

$$P_1 P A P^{-1} P_1^{-1} = \begin{bmatrix} 1 & 2e^{i\theta} & 0 & -2e^{i\theta} & 0 \\ -2e^{-i\theta} & -1 & 0 & 2 & 0 \\ 0 & 0 & I_{k-2} & 0 & 0 \\ -2e^{-i\theta} & -2 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & I_{n-k-1} \end{bmatrix}.$$

Let $A_1 = \begin{bmatrix} 1 & 2e^{i\theta} & -2e^{i\theta} \\ -2e^{-i\theta} & -1 & 2 \\ -2e^{-i\theta} & -2 & 3 \end{bmatrix}$. Then, notice that $(A_1 - I)^2$ has rank 1 and that $(A_1 - I)^3 = 0$.

Hence, in this case, *A* is similar to $J_3(1) \oplus I_{n-3}$.

Suppose that *z* is L_{k-1} -nonisotropic. We have two subcases: $z^*L_{k-1}z > 0$ and $z^*L_{k-1}z < 0$. Suppose that $b^2 = z^* L_{k-1} z > 0$, with b > 0. There exists a $\Lambda_{L_{k-1}}$ -orthogonal Q such that $Qz = be_1^{(n-1)}$. Set $P_1 = [1] \oplus Q$, and notice that $P_1e_1 = e_1$ and that $P_1Pv = a_1e_1 + be_2$. Here, we have $|a_1|^2 + b^2 = 1$. In this case, we have

$$P_1 P A P^{-1} P_1^{-1} = \begin{bmatrix} 2 |a_1|^2 - 1 & -2a_1b \\ -2\overline{a_1}b & 1 - 2b^2 \end{bmatrix} \oplus I_{n-2}.$$

Let $\alpha = 1 - 2b^2$. Because $|\alpha| < 1$, the eigenvalues of *A* are $\alpha \pm i\sqrt{1 - \alpha^2}$ and 1.

Suppose that $-b^2 = z^* L_{k-1} z < 0$, with b > 0. There exists a $\Lambda_{L_{k-1}}$ -orthogonal Q such that $Qz = be_k^{(n-1)}$. Set $P_1 = [1] \oplus Q$, and notice that $P_1e_1 = e_1$ and that $P_1Pv = a_1e_1 + be_{k+1}$. Here, we have $|a_1|^2 - b^2 = 1$. In this case, we have

$$P_1 P A P^{-1} P_1^{-1} = \begin{bmatrix} 2 |a_1|^2 - 1 & 0 & -2a_1b & 0 \\ 0 & I_{k-1} & 0 & 0 \\ -2\overline{a_1}b & 0 & 1 + 2b^2 & 0 \\ 0 & 0 & 0 & I_{n-k-1} \end{bmatrix}$$

Let $\alpha = 1 + 2b^2$. Then the eigenvalues of *A* are $\alpha \pm \sqrt{\alpha^2 - 1}$ and 1.

Case 2. $u^*L_ku = v^*L_kv = -1$. Then $u^*(-L_k)u = 1$. Set $P = \begin{bmatrix} 0 & I_{n-k} \\ I_k & 0 \end{bmatrix}$. Then $P(-L_k)P^T = L_{n-k}$. Set x = Pu and set y = Pv. Then $x^*L_{n-k}x = y^*L_{n-k}y = 1$.

Case 3. $u^*L_k u = 1$ and $v^*L_k v = -1$. There exists a Λ_{L_k} -orthogonal P such that $Pu = e_1$. Then $PAP^{-1} = L_{e_1}L_{Pv}$. Let $Pv = [a_i]_{i=1}^n$, let $z = [a_i]_{i=2}^n$. Suppose that k = 1. Suppose further that $\{u, v\}$ is a Λ_{L_k} -orthogonal set. Then $a_1 = 0$ and $||z||_2 = 1$,

Suppose that k = 1. Suppose further that $\{u, v\}$ is a Λ_{L_k} -orthogonal set. Then $a_1 = 0$ and $||z||_2 = 1$, so that there exists a unitary $Q \in M_{n-1}(\mathbb{C})$ such that $Qz = e_1^{(n-1)}$. Set $P_1 = [1] \oplus Q$ and notice that $P_1PAP^{-1}P_1^{-1} = -I_2 \oplus I_{n-2}$.

Suppose that $\{u, v\}$ is not a Λ_{L_k} -orthogonal set. Let $b = ||z||_2$. Then $|a_1|^2 - b^2 = 1$. Notice that $b \neq 0$, otherwise, $v^*L_kv = 1$. Now, there exists a unitary $Q \in M_{n-1}(\mathbb{C})$ such that $Qz = be_1^{(n-1)}$. Set $P_1 = [1] \oplus Q$, and notice that $P_1e_1 = e_1$ and $P_1Pv = a_1e_1 + be_2$. One checks that

$$P_1 P A P^{-1} P_1^{-1} = \begin{bmatrix} -1 - 2 |a_1|^2 & 2a_1 b \\ 2\overline{a_1} b & 1 - 2b^2 \end{bmatrix} \oplus I_{n-2}$$

Set $\alpha = 1 + 2b^2$. Then, the eigenvalues of *A* are $-\alpha \pm \sqrt{\alpha^2 - 1}$ and 1.

Suppose that $k \ge 2$. Suppose further that $\{u, v\}$ is a Λ_{L_k} -orthogonal set. Then $a_1 = 0$ and $z^*L_{k-1}z = -1$, so that there exists a $\Lambda_{L_{k-1}}$ -orthogonal $Q \in M_{n-1}$ (\mathbb{C}) such that $Qz = e_k^{(n-1)}$. Set $P_1 = [1] \oplus Q$ and notice that $P_1e_1 = e_1$, and that $P_1Pv = e_{k+1}$. In this case, $P_1PAP^{-1}P_1^{-1} = [-1] \oplus I_{k-1} \oplus [-1] \oplus I_{n-k-1}$, so that A is similar to $-I_2 \oplus I_{n-2}$.

Suppose that $\{u, v\}$ is not a Λ_{L_k} -orthogonal set. Notice that z is not L_{k-1} -isotropic, otherwise, we have $-1 = |a_1|^2 + z^* L_{k-1} z = |a_1|^2$. Moreover, $z^* L_{k-1} z = -1 - |a_1|^2 < 0$. Let $b = \sqrt{1 + |a_1|^2}$. There exists a $\Lambda_{L_{k-1}}$ -orthogonal $Q \in M_{n-1}$ (\mathbb{C}) such that $Qz = be_k^{(n-1)}$. Set $P_1 = [1] \oplus Q$, and notice that $P_1e_1 = e_1$ and that $P_1Pv = a_1e_1 + be_{k+1}$. Then,

$$P_1 PAP^{-1}P_1^{-1} = \begin{bmatrix} -1 - 2 |a_1|^2 & 0 & 2a_1b & 0 \\ 0 & I_{k-1} & 0 & 0 \\ 2\overline{a_1}b & 0 & 1 - 2b^2 & 0 \\ 0 & 0 & 0 & I_{n-k-1} \end{bmatrix}.$$

Set $\alpha = 2b^2 - 1 = 1 + 2|a_1|^2$. The eigenvalues of *A* are the two real numbers $-\alpha \pm \sqrt{\alpha^2 - 1}$ and 1. **Case 4.** $u^*L_k u = -1$ and $v^*L_k v = 1$. Consider instead $-L_k$.

We summarize our results. Notice that neither $J_2(1)$ nor $J_2(-1)$ is a possible Jordan block of a product of two Λ_{L_k} -Householder matrices.

Theorem 22. Let $n \ge 2$ and $k \ge 1$ be given integers. Let $A \in M_n(\mathbb{C})$ be given. Suppose that A is a product of two Λ_{L_k} -Householder matrices. Then A is similar to only one of the following:

1. $\operatorname{diag}(\lambda, \frac{1}{\lambda}) \oplus I_{n-2}$, where $\lambda \in \mathbb{R}$ and $|\lambda| \ge 1$, 2. $\operatorname{diag}(e^{i\theta}, e^{-i\theta}) \oplus I_{n-2}$, where $\theta \in \mathbb{R}$, or 3. $J_3(1) \oplus I_{n-3}$.

References

- [1] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, New York, NY, 1985.
- [2] R.A. Horn, D.I. Merino, D. Serre, The orthogonal groups (preprint, private communication with the authors).
- [3] P. Scherk, On the decomposition of orthogonalities into symmetries, Proc. Amer. Math. Soc. 4 (1950) 481-491.
- [4] F. Uhlig, Constructive ways for generating (generalized) real orthogonal matrices as products of (generalized) symmetries, Linear Algebra Appl. 332/334 (2001) 459–467.
- [5] D.S. Mackey, N. Mackey, F. Tisseur, G-reflectors: analogues of Householder transformations in scalar product spaces, Linear Algebra Appl. 385 (2004) 187–213.
- [6] A. Mostafazadeh, Pseudo-unitary operators and pseudo-unitary dynamics, J. Math. Phys. 45 (2003) 932-946.

2664