Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

Linear Algebra and its Applications 436 (2012) 2653-2664

Contents lists available at SciVerse ScienceDirect

Linear Algebra and its Applications Ropiications

o5

ELSEVIE journal homepage: www.elsevier.com/locate/laa

The Ag-Householder matrices

Dennis I. Merino ®*, Agnes T. Paras b Terrence Erard D. TehP

4 Department of Mathematics, Southeastern Louisiana University, Hammond, LA 70402-0687, USA
Institute of Mathematics, University of the Philippines, Diliman, Quezon City 1101, Philippines

ARTICLE INFO ABSTRACT
Article history: Let A,S € M, (C) be given. Suppose that S is nonsingular and
Received 5 July 2011 Hermitian. ThenAis As-orthogonal if A*SA = S. Letu € C" be such
Accepted 6 October 2011 that u*Su # 0. The As-Householder matrix of uis S, = I — tuu*S,
Available online 10 November 2011 where t = uzﬁ We show that det (S,) = —1, so that products of
Submitted by V. Sergeichuk As-Householder matrices have determinant +1. Letn > 2 and let k
AMS classification: be positive integers with k < n. Set Ly = I 69 —Ih_k. We show.that
15A21 every A, -orthogonal matrix having determinant 4-1 can be written
15A23 as a product of at most 2n + 2 Ay, -Householder matrices. We also
determine the possible Jordan Canonical Forms of products of two
Keywords: Ap,-Householder matrices.
A -Householder matrices © 2011 Elsevier Inc. All rights reserved.

Householder matrices

1. Introduction

We denote by My, , (IF) the set of m-by-n matrices with entries in F = Cor F = R. Whenm = n,
we set M, (FF) = My, (FF). We denote by [F" the set of column vectors with entries in [F. Forx € ",
we set (x) = {ax : o € F}.

Let an integer n > 2 and a unit vector v € C" be given. The Householder matrix of v is H, =
I —2vv*. One checks that H, is Hermitian, unitary, and an involution. Let vi = v and extend this to an
orthonormal basis of C", say {vq, ..., vp}. SetV = [vq --- v,],and notice that V*H,V = [—1]DI,_1.
Hence, det (H,) = —1.

Consider B = diag(eie, —e_ie), where 6 € R and 6 # km with k an integer. Then B — [ is

nonsingular, so that Bis not a Householder matrix. Suppose that Bis a product of Householder matrices.
Because det (B) = —1, we must have that B is a product of an odd number of Householder matrices.
That is, if B can be written as a product of Householder matrices, then B can be written as a product of
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at least three Householder matrices. This contradicts Theorem 1 in [4], which says that every unitary
U € M, (C) can be written as a product of at most n Householder matrices.

Let el-(") € C" be the vector whose ith entry is 1 and 0 elsewhere. When the context is clear, we
drop the superscript.
1

2 _ 1 _ 1 i0 . — i ,—if
Leter, e; € C*. Seta = 7 (e1 + ez)andsetb = 7 (e1 +e ez). Notice thatC —dlag(e , e )

= HgHp. Moreover, B = H,,C is a product of three Householder matrices. Suppose thatn > 3. Let
V = diag(e'gl, R eie"), where 01, ...,0, € Rand 6#; + --- + 6, = km for some integer k. Let

C = diag(eie, e_ie) @ I,— and let D = diag(l, el +62) it ei(’“). Then C can be written
as a product of two Householder matrices. An easy induction argument now shows that V can be
written as a product of at most 2n — 1 Householder matrices. This confirms Theorem 3 in [4]. In fact,
ifrank(V — I) = k, then V can be written as a product of at most 2k — 1 Householder matrices.

Let Q € My (C) be unitary and let v € C" be a unit vector. Then QH,Q* = Hg. If U € M, (C)

is unitary with det (U) = =1, then there exists a unitary Q such that QUQ* = diag(eiel, R eien).
Hence, U can be written as a product of at most 2k — 1 Householder matrices, where k = rank(U — I).

In particular, U can be written as a product of at most 2n — 1 Householder matrices.
For more discussion on Householder matrices and related topics, see [3-6].

2. As-Householder matrices

Definition 1. Let S € M, (C) be nonsingular. Let As : M, (C) — M, (C) be given by As (A) =
S~1A*S for every A € M, (C). A given A € M, (C) is called Ag-symmetric if As (A) = A; and A is
called Ag-orthogonal if Ag (A) = A~.

Notice that As (AB) = As (B) As (A) and that As (I) = I. Hence, if A is nonsingular, then Ag (A)
is nonsingular and (As (A)) ™! = As (A_l). When S is Hermitian, then As (As (A)) = A for every
A€ M, (C).

Let A € M, (C) be Ag-symmetric. Then, [1, Theorem 4.1.7] guarantees that A is similar to a real
matrix. Hence, the trace and the determinant of A are both real. If k is a positive integer and if« € R
is given, then aAis As-symmetric. It follows that if p (x) is a polynomial with real coefficients, then
p (A) is also As-symmetric. If S is Hermitian, then for any A € M, (C), the matrices As (A) A, AAs (A)
and A 4+ As (A) are all As-symmetric.

Let A € M, (C) be Ag-orthogonal. Then A*SA = S, so that |det (A)|] = 1. Ifx € C" and if
(x, X)s = x*Sx, then (Ax, Ax)s = (x, x)s. Moreover, if @ € C is such that |¢| = 1, then «A is also
As-orthogonal. Notice that S = A™*SA™!, so that A=! is also Ag-orthogonal. In addition, the product
of two As-orthogonal matrices is Ag-orthogonal. We denote by Os the set all As-orthogonal matrices,
and by SOgs the set of all Ag-orthogonal matrices having determinant 4-1.

Definition 2. Let S € M, (C) be nonsingular and Hermitian. Let 0 # v € C" be given. Then v is
isotropic with respect to S (or S-isotropic) if v*Sv = 0. If v*Sv # 0, then v is nonisotropic with respect
to S (or S-nonisotropic).

. . T
Take S = diag(1, —1) € M, (C) and take u = [ae“" ae’ﬂ] . Foranya € C, and forany o, 8 € R,
notice that u is S-isotropic.

Definition 3. LetS € M, (C) be nonsingular and Hermitian. Letx, y € C" be given. Then x and y are
S-perpendicular if x*Sy = 0. Two subspaces V and W (of C") are S-perpendicular if v*Sw = 0 for all
veVandallw e W.

If x,y € C" are S-perpendicular, then (x) and (y) are S-perpendicular. Take S = diag(1, —1) €
M, (C), take v = [a b]", and take w = [b a]” with a, b € R. Then v and w are S-perpendicular.
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Definition 4. Let S € M, (C) be nonsingular and Hermitian. Let v € C" be S-nonisotropic. The
As-Householder matrix of vis S, = I — tvv*S, where t =

v*Sv®

Let S € M, (C) be nonsingular and Hermitian. If n = 1, then for any 0 # v € C, we have
Sy = [—1]. Conversely, if S, = —I, thenI = v*]SVvv*S. Hence, n = rank(l) = rank(v*]SVvv*S) =1
Thus, S, = —Iifand only ifn = 1.

Letn > 2 be a given integer. Let v € C" be S-nonisotropic. Then (v)sL = {x € C": x*Sv = 0} has
dimension n — 1. Now, ifx € (v), then S,x = —x. Ifx € (v)é‘, then Syx = x.

Proposition 5. Let S € M, (C) be nonsingular and Hermitian. Let u, v € C" be S-nonisotropic.

1. S, is As-symmetric, is As-orthogonal, and is an involution.
2. S, is diagonalizable and S, is similar to I,_1 & [—1]. Hence, tr(S;) = n — 2 and det(Sy) = —1. If
n = 1, then the minimal polynomial of Sy is x + 1. Ifn > 2, then the minimal polynomial of S, is
2
xt —1.

3. Sy =Sy ifand only if (u) = (v).
4. Ifu and v are S-perpendicular, then S,,S, = S,S,.
5. IfP € Og, then PSP~ = Sp,.
/12—
6. If n > 2, then the singular values of S, are 1 (with multiplicity n — 2) and / w, where
_4(ustu)utu
- wsw? 2.

Proof. The first claim can be verified by direct computation. For the second claim, if n = 1, then
Sy = —1. If n > 2, then notice that 1 is an eigenvalue of S,;, with an eigenspace of dimension n — 1,
and —1 is an eigenvalue of S, with an eigenspace of dimension 1.

To show the third claim, suppose S, = S,. Then —u = S,u = S,u = (I — tvww*S)u = u—t (v*Su) v.

Notice that v*Su # 0, otherwise, u = 0. Now, u = “’*%v and (u) = (v). If (u) = (v), thenv = au

forsome 0 # o € C. Now, S, = Spy =1 — m (au) (au)*S = S,,.
The next two claims can be shown by direct computation.
For the last claim, we have

rank (S,S;; — I) = rank (S (S;; — Su)) = rank (S;; — Sy) .

Now, S, — S, = tuu*S — tSuu™ has rank at most 2. Hence, 1 is an eigenvalue of 5,,S;; with geometric
multiplicity at least n — 2. Let o and 8 be the (possibly) other two eigenvalues of S,;S;;. Then 1 =

* Q2
det (S,S}) = aB. A direct computation now shows that S,S; = I — tuu*S — tSuu* + 4((;5511)';) *
. . _ 1_ 4(u*S?u)u*u . _ 4uStu)utu
Taking the trace of both sides, we get n 24+a+, =n 4—}—7@*5“)2 . Setting u = e 2,

I /u2—
wegeto? —pua+1=0,ando = %. The remaining singular values of S, are pEN A 2“ ‘o

2.1. x-Congruence

Let S, T € M, (C) be Hermitian matrices. Then S and T are *-congruent (S = P*TP for some
nonsingular P) if and only if they have the same inertia, that is, they have the same number of positive,
negative, and zero eigenvalues. IfSisnonsingular, then its spectrum contains only positive and negative
eigenvalues, that is, S is x-congruent to Ly, = I, & —I,—j for some k = 0, 1, ..., n, and where we
make the convention that Iy is not present.

LetS, T € M, (C) be nonsingular Hermitian matrices and suppose that S = P*TP for some nonsin-
gular P. Suppose that C € M,, (C) is As-symmetric, that is, S™'C*S = C. Then, P! T'P*C*P*TP =
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Cand T7! (PCP_l)* T = (PCP_l), so that PCP~! is Ap-symmetric. Conversely, if PCP~! is Ap-
symmetric, then C is As-symmetric.

A similar calculation also shows that C € M, (C) is As-orthogonal if and only if PCP™is Ar-
orthogonal.

Theorem 6. Let S, T € M, (C) be nonsingular Hermitian matrices. Suppose that S = P*TP for some
nonsingular P € M, (C).

1. C € My (C) is Ag-symmetric if and only if PCP~1 is Ap-symmetric.
2. C € M, (C) is Ag-orthogonal if and only if PCP~! is Ar-orthogonal.
3. Letv € C" be S-nonisotropic. Then Pv is T-nonisotropic and PS,P~! = Tp,.

Proof. Suppose that v is S-nonisotropic. Then v*P*TPv = v*Sv # 0. Now, PS,P~! = P (I -2 vv*S)

v*Svy
-1 _ 2 -1 _ 2 _
P =P (I = sz W' P TP) Pl =1 — s (PV) (PV)* T = Tpy. O

LetS € My, (C) be nonsingular and Hermitian. Then there exists an integer k, with 0 < k < nsuch

I, O
then P! = P* and —Ly = P*L,_P. Let A € M, (C) be given. Then Ar, (A) = Lk_lA*L,< =
(L)™' AT (L) = A, (A).

In—j
that S is #-congruent to Ly. Now, —Lj and L, have the same inertia. In fact, if we set P = |: T } ,

Lemma 7. Letn > 2 be a given integer. Suppose that 0 < k < nis an integer.

1. IfC € My, (C) is Ap,-symmetric, then C is permutation similar to a A, ,-Ssymmetric matrix.
2. IfC € My, (C) is Ay, -orthogonal , then C is permutation similar to a Ay, _, -orthogonal matrix.

Proof. Suppose that C € M, (C) is Ay, -symmetric. Then C is A _j,-symmetric. Theorem 6 (1) now
guarantees that PCP~ ! is Ay, ,-symmetric.
The second claim can be proven similarly. [J

3. Product of Ag-Householder matrices

LetS € My, (C) be nonsingular and Hermitian. Then there exist an integer k, with 0 < k < n,and a
nonsingular P € M, (C) such that S = P*L;P. Suppose that Q = Q;Q; is a product of As-orthogonal

matrices Q and Q,. Theorem 6 guarantees that pop~! = (PQ1P_1) (PQzP_l) is a product of Ap,-

orthogonal matrices.

For now, we let n > 2, we fix k, and we drop the subscript, that is, we say that L = L.

Let Q € Os be given. Then |det Q| = 1. Hence, there exists « € C such that «Q € SOs, that
is, det (@Q) = =1. Our goal is to determine which elements of SOs can be written as a product
of As-Householder matrices. We are also interested in finding the least number of As-Householder
matrices necessary to form such a product. Our approach is to study A;-orthogonal matrices.

3.1. Ar-orthogonal matrices

We begin with the following observation.
Lemma 8. LetS € M, (C) be nonsingular and Hermitian. Suppose that S = P*LP, where P € M, (C) is
nonsingular and L = Iy & —I,— for some integer k with 0 < k < n. Then A € Os can be written as a

product of As-Householder matrices if and only if PAP™! can be written as a product of A;-Householder
matrices. Moreover, the minimum number used in both cases are the same.
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Let A € M, (C) be Aj-orthogonal. If A can be written as a product of A;-Householder matrices,
then necessarily, det (A) = 4=1. We show that the converse holds, as well.

Suppose that A = Ly, Ly, - - - Ly,,and suppose that such a factorization is minimal. If {ux) = (ur+1),
then L,, = Ly, and since Proposition 5 guarantees that L, is an involution, we can take away
Ly Luy,, (which is I). If (ug) = (upye) for ¢ = 2, then Ly Ly, -+ Ly, = Lyl - Ly =
(LukLumLuk) e (LUkLUk+r—1LUk)' Now, for each ! = 1,...,t — 1, Proposition 5 (5) guarantees that
Ly Ly Ly, = Lw, where each w; = Ly, ;. This apparent contradiction shows the following.

Lemma 9. Letu; € C"fori = 1,...,m. Let A € M, (C) be Aj-orthogonal. Suppose that A =
Ly Ly, « - - Ly, Ifmis minimal, then (u;) # (uj) fori # j.

Letx, y € R™ be given, and let D be a nonsingular diagonal matrix in M, (R). If x"Dx = y"Dy # 0,
then either (x +y)T D (x +y) % 0or (x — y)" D (x — y) # 0[4, Lemma 3]. The following is an analog
in the complex case and using D = L.

Lemma 10. Let x,y € C" be such that x*Lx = y*Ly # 0. Then x + y is L-nonisotropic or x — y is
L-nonisotropic.

Proof. The assumption assures that x*Lx + y*Ly # 0. Suppose now that both x + y and x — y are
L-isotropic. Then (x +y)*L (x +y) = 0, so that Re(x*Ly) = —% (x*Lx + y*Ly). Now, we also have
(x —y)*L(x —y) = 0,sothat Re(x*Ly) = % (x*Lx 4 y*Ly), a contradiction. O

Let x,y € C" be such that x*Lx = y*Ly # 0. Say, w = x + y is L-nonisotropic. Suppose that
x*Ly € R. Now, compute: Lyx = x — ﬁww*bc. Notice that w*Lw = 2 (x*Lx + x*Ly). Also,
w*Lx = x*Lx + y*Lx = x*Lx + x*Ly. Hence, L,x = —y.

Conversely, if L,x = —y, then w (1 — ?N""LLVC) = 0, so that w*Lw — 2w*Lx = 0. Now, w*Llw =
2x*Lx + 2Re(y*Lx) and w*Lx = x*Lx 4+ y*Lx. Hence, Re(y*Lx) = y*Lx. Consequently, x*Ly € R.
If v = x — y is L-nonisotropic, then a similar calculation shows that L,x = y if and only if x*Ly € R.

Lemma 11. Letx,y € C" be such that x*Lx = y*Ly # 0. Ifw = x+ y is L-nonisotropic, then L,x = —y
ifand only ifx*Ly € R. Ifv = x — y is L-nonisotropic, then L,x = y if and only ifx*Ly € R.

It is known that if x, y € C™ have the same Euclidean norm, then there exists a unitary U such that
Ux = y [1, Problem 4 on page 77]. The following is an analog.

Lemma 12. Letx,y € C" be such that x*Lx = y*Ly # 0. Then there exists a A-orthogonal P such that
Px =y.

Proof. Suppose that x*Ly = rel’, wherer, 8 € R. Set u = e!’x. Then u*Lu = y*Ly # 0. Moreover,
u'ly € R. Letw = u+yandletv = u—y. Lemma 10 guarantees that w or v is L-nonisotropic. If w is
L-nonisotropic, then Lemma 11 guarantees that L,u = —y. Wetake P = —eL,,. Ifvis L-nonisotropic,
then Lemma 11 guarantees that L,u = y. We take P = e?L,. O

Let x € C" be L-nonisotropic. Write x = [x;]. Then x*Lx = ZL] x> — Tk x> € R.
Suppose that x*Lx = a?, witha > 0. Sete = «e;. Then e*Le = «?. Lemma 12 guarantees that there
exists a Aj-orthogonal P such that x = Pe. Now, Ly = Lp, = PL.P~!. Notice that L, = Lye, = Le, is
diagonal.

Suppose that x*Ix = —a?, withae > 0. Sete = aek+1. Then e*le = —a?. Lemma 12
guarantees that there exists a Aj-orthogonal P such that x = Pe. Now, Ly = Lp. = PL.P~'. Notice
that Le = Lyey,, = Le,, is diagonal.

Theorem 13. Letx € C" be L-nonisotropic. There exists a Aj-orthogonal P such that PL,P~! is diagonal.
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T
Let 0 # x € C" be L-isotropic. Write x = [x{ xg] , with x; € CK. Notice that 0 = x*Ix =

X]X1 — XX, so that [[x1]|, = |[|xz2]l,. Because x # 0, we have x; # 0 (and also x, # 0). Let
Uy € My (C) be a unitary such that Uix; = ||x1]], egk) and let Uy € My—i (C) be a unitary such that
Uxxy = ||x1]l, egn_k) . SetU = U; @ U,. Then U is Aj-orthogonal and Ux = ||x1], e§”) +Ix11l2 6,5'21.

|:[coshﬂ] @®l; [sinhB]®0
Set Hﬁ = )
[sinh ] ® 0 [cosh B] D Ih—k—1

HgUx = eP 1% 1P eﬁ”) +ef [1x11]2 e,(:z]. Choosing B = — In (||x1]],), we have HgUx = eﬁ”) + e,(ﬁgl.

:|, and notice that Hg is Ap-orthogonal. Moreover,

Lemma14. LetO # x € C" beL-isotropic. Then there exists a A -orthogonal P such that Px = e§”) +e,(<'21.

Let U € M, (C) be unitary. If U is block upper triangular, then in fact, U is block diagonal.

Lemma 15. Let A € M, (C) be A;-orthogonal. If A is block upper triangular, then A is block diagonal.

W X
Proof. Suppose that A = { :| Because A is Aj-orthogonal, W and Y are both nonsingular.
oY

Write L = D1 @ D, conformal to A. Looking at the (1, 2) entries of the equation A*LA = L, we have
W*D1X = 0. Since both W and D are nonsingular, we have X = 0. [

3.2. Product of Ap-Householder matrices

Let L = diag(1, —1) and let A € M, (C) be Aj-orthogonal and suppose that det(A) = +1. Let
u = [ug uz]" be the first column of A with u; = re andr, 0 € R. Thenu*Lu = 1. Sete = e?ey,
so that u*Le = r and e*Le = 1. Lemma 10 guarantees that w = u + e is L-nonisotropic or that
v = u — e is L-nonisotropic. If w is L-nonisotropic, then Lemma 11 guarantees that L, u = —e and if

v is L-nonisotropic, then Lemma 11 guarantees that L,u = e.
i0
—e% b

Suppose that w is L-nonisotropic. Then L,A = {
0 ¢

:|. Lemma 15 ensures that b = 0, and

since det(A) = +1, we must have ¢ = fe~ .
e b

If vis L-nonisotropic, then L,A = |:
0 c

:|. Lemma 15 ensures that b = 0, and since det(A) = +£1,
we must have ¢ = e~

We look at the number of A -Householder factors of X; = diag (eie , e’ie) andX, = diag(eie , —e’ie).
First, notice that for many values of 8, we have X; — I and X, — I are both nonsingular. Hence, for these
values of 6, neither X; nor X, is A;-Householder. Moreover, since det (X;) = 1, if X; can be written
as a product of Aj-Householder matrices, then the number of such factors must be even. Now, if X,
can be written as a product of A;-Householder matrices, then the number of factors must be odd and
that number must be bigger than or equal to 3.

When 6 = 0, we have X; =1 = Lt2 for any L-nonisotropic vector t and we have X, = L,,.

When 0 = 7, we have X; = —I = L, L, and we have X, = L,.

Suppose now that —% < 0 < Z. We show that X; and X; can be written as a product of A;-

o
Householder matrices. Let u € C? be L-nonisotropic. Suppose that u*Lu > 0. Setv = JJ»W” and

01
notice that v*Lv = 1. Suppose that u*Lu < 0. Setw = { } u and notice that w*Lw = —u*Lu > 0.
10

Hence, we may assume that u*Lu = 1.



D.I. Merino et al. / Linear Algebra and its Applications 436 (2012) 2653-2664 2659

T )

Letu = [re"" se'ﬁ] ,wherer,s,«, 8 € R. Thenw = e "“u € (u) and L, = L,. Hence, we may
1—2r% 2rse™

—2rset? 1 4 252 .

Seta=1— 2r2 and b = —2rs. Then we have a® — b*> = 1, we have 1 + 252 = 2r2 — 1 = —q, and
we have

_|a —be™1?
b= bel? —a ’

AT T
Let uy = [r se“"] and let uy = [r self } . We look at the product L, L,,. A direct computation
shows that

@ — p2ei(B—a)
Ly, L = .
uy bz €1 ab (eia _ elﬂ)

AT
further assume that u = [r se’g] , where > — s> = 1. Now, notice that L, =

Letx = B — « and note thatd = a? — b%e® = a® — b? cos x — ib® sinx. Write d = ccosy + icsiny,

: __—b*sinx __ —b? sinx _ _1—cosx _ 1 _
withc,y € Randc > 0. Thentany = R cosx = 1+b2—b2c05x'50thatC0ty = Sinx Peng =
— tan (%) - lﬂ;ﬁx' For each b, the range of f (x, b) = — tan (%) - slmx is R\_{0}. Now choose
y = cot™! (— tan (%) -7 Slmx) sothaty € (—%, O) U (0, %) and notice that for each b, the

function g (y) = coty is a bijection from (—%, 0) U (0, %) to R\_{0}.

Now, (Ly,Ly,e1)* L (Ly,Li,e1) = eijle; = 1. Sete = eVey, so that e*L (Ly,Ly,e;) = ¢ € R.
Moreover, e*Le = 1. Hence,w = Ly, L, e; + e is L-nonisotropic or v = Ly, L,,e1 — e is L-nonisotropic.

If w is L-nonisotropic, then LyLy, Ly,e1 = —e, so that Ly Ly Ly, = |: _:y h:| Since LyLy, Ly,
J
. —e¥ 0
is Aj-orthogonal, we have h = 0 and j = +e™¥. Thatis, Y = 0 Le¥ can be written as
a product of three A;-Householder matrices. However, since the determinant of an odd number of
A-Householder matrices is —1, we have Y = { _:y eiy } Now, X; = L, Y is a product of four

A-Householder matrices. Also, X3 is a product of five Aj-Householder matrices.
Notice that Y2 = diag(eziy e 2y ) = (LWLulLL,Z)Z. Proposition 5 (5) guarantees that

(LWLul LU2>2 = Liui Liyyup Luy Luy

is a product of four A -Householder matrices. Moreover, diag (ez'y , —e 2 ) =L, Y2 is a product of
five A;-Householder matrices.

eV h
If v is L-nonisotropic, then L,L,, Ly,e; = e, so that L,L,, L, = |: :| Since LyLy, Ly, is Apr-
0 j
) eV
orthogonal with determinant —1, we have h = O andj = —e™¥. Thatis, Y = y | Thus,
0 —e

X2 = LyLy, Ly, can be written as a product of three A;-Householder matrices, and X; = L,,X; is a
product of four A;-Householder matrices.
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Notice that X% = diag(eZiy, e‘z'y) = (Lle,lLuz)2 is a product of four A;-Householder matrices.
Moreover, diag(eZiy, - e_Ziy) = Le, X7 is a product of five A;-Householder matrices.
Suppose that —mr < 6 < m. Set & = 2y. Then diag(eZiy , e’Ziy) can be written as a product

of four Aj-Householder matrices, while diag(ez’y, — e_Ziy) can be written as a product of five A;-
Householder matrices.

Lemma 16. LetL =diag(1, —1). Let® € R be given. Then diag(eig ,t e_ie) can be written as a product
of at most five A -Householder matrices in My (C).

We summarize our results.

Lemma 17. Let A € M, (C) be A;-orthogonal. If det(A) = =1, then A can be written as a product of at
most 6 A -Householder matrices.

Let A € M; (C) be Aj-orthogonal with det (A) = +1. Suppose that k = 1. We look at the first
column of A, say u, and suppose that the first entry of u is cel” withc, 0 € R. Letw = u+e?e; and let
vV=u— e’eel. As before, either w is L-nonisotropic or v is L-nonisotropic. Moreover, L u = —el? e or

” ) 1 0 ei(u+b) O
Lyu = e%ey. Forj = 1,2, weletB; = and let C (a, b, n) = » D).
0 Aj 0 e ilath)

If w is L-nonisotropic, then we have L,A = B;C (8, 7, n). If v is L-nonisotropic, then we have L,A =
B>C (6, 0, n). Notice that B; and B, have the same forms, and that C (6, 7r, n) and C (6, 0, n) have
the same forms. Hence, it is without loss of generality to assume that v is L-nonisotropic. Now, A; €
Mp—1 (C) is a unitary matrix having determinant +1, and hence a product of at most2 (n — 1) — 1 =
2n — 3 Householder matrices [4, Theorem 1]. Let Hy = [ — 2xx* € My —1 (C) be a Householder matrix.

17 " P 10 10 |.
Sety = [Ox ] e C" Setly =1— 7Yyl Thenl, = . Hence, is a product of
0 Hy 0 Aq

at most 2n — 3 A;-Householder matrices. Let C = C (0, w,n) orC = C (0, 0, n) so that det (C) = 1.
Notice that we can write C as a product of at most 4 A;-Householder matrices. Hence, A is a product
of at most 2n + 2 A;-Householder matrices.

Suppose k > 2. We look at the first column of A, say u and suppose that the second entry of u is
cet?, with c,0 eR. Letw=u+ eieez andletv =u — eieez. Then, either w is L-nonisotropic or v is

L-nonisotropic. Moreover, Lyu = —e'?e; or L,u = e’ e,.
0 b
Suppose that w is L-nonisotropic. Then LyA = | —¢® ¢T |, where b,c € C" ! and B €
0 B
1 i —e "
Mu—2),ni—1) (C). Letp = 7 (61 + ¢ ez). Then L, = 0 @ I,—». Hence, we have
1d" |
LyLyA = ,whered € C"' and D € M_1 (C). Lemma 15 guarantees that d = 0, so that D
0D

is Ap,_,-orthogonal. If k = 2, then D can be written as a product of 2 (n — 1) 4+ 2 Ay, ,-Householder
matrices. Thus, A can be written as a product of 2n + 2 A;-Householder matrices. If k > 2, repeat the
reduction k — 2 more times. At this time, we have used 2 (k — 1) A;-Householder matrices, and we
need 2 (n — k + 1)+2 more. Hence, A can be written as a product of 2n+2 A -Householder matrices.

If v is L-nonisotropic, then a similar calculation shows that A can be written as a product of 2n + 2
A-Householder matrices.
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Theorem 18. Letn > 2and 1 < k < n be integers. LetL = I, & —I,,_. Let A € M, (C) be A;-
orthogonal with det (A) = +1. Then A can be written as a product of at most 2n 4+ 2 Aj-Householder
matrices.

The following is part of Theorem 3 in [4]. We provide a different proof.

Corollary 19. Letn > 2 and k > 1 be integers such thatn > k. LetL = I & —I,—y. Let A € M, (R)
be Aj-orthogonal. Then A can be written as a product of at most 2n — 1 Aj-Householder matrices.

Proof. Let A € M, (R) be A;-orthogonal. Because A is real, we have det (A) = £1. Suppose L,A =
B1Cq (0, 0, n), where p = w or p = v as in the proof of Theorem 18. Notice that we may take & = 0

+10

A
induction to show that we can use n — 2 more A;-Householder matrices to reduce A; to a diagonal
matrix with diagonal entries 1. We only need n — 2 A -Householder matrices because only 1 A;-
Householder matrix is needed to reduce a 2-by-2 matrix to a diagonal. Now, for each diagonal entry
thatis —1, multiply by L,;. Hence, every Aj-orthogonal A can be written as a product of at most 2n — 1
A-Householder matrices. [J

sothat C; = land By = { :| So, far, we have only used 1 A;-Householder matrix. We apply

3.3. Product of two A-Householder matrices

Letn > 2 and k > 1 be given integers with k < n. Let L, = I;; ® —I,_k. Let Q = [qi] € M, (C) be
Ap,-orthogonal. ThenqiLyq; = 1fori =1,...,k qiLyq; = —1fori=k+1,...,n,andq;Lyq; = 0
fori # j.

Definition 20. Let p < nbe a given positive integer. Then {xy, ..., x,} C C"is a Ay, -orthogonal set
if x/Lyxj = O fori # jand x{Lyx; = £1fori=1,...,p.

Let A = {x1,...,x,} C C"bea A -orthogonal set. Lety = a1X; + -+ + apxp = 0. Then,
foreachi =1, ..., p, we have 0 = x/Lyy = =a;, so that ; = 0. Hence, A is linearly independent.
Let Q € M, (C) be Ay, -orthogonal. One checks that QA = {Qx1, e, pr} is also a Ay, -orthogonal
set. Suppose that x{Lyx; = 1fori = 1,...,qand thatxjLyx; = —1fori =q+1,...,p. SetB =

[x1 - -+ Xp]. Lemma 12 guarantees that there exists a Ay, -orthogonal P such that Px; = e%"). Because

10
PAis a Ay, -orthogonal set, we must have PB = { , where By = [b,‘(l)] € M(u-1),p—1) (C) and

0 B;
{bgl), o b;)l)]} isa Ap,_,-orthogonal set.

(1)
p—1

C 1 say{c1,...,chp} U {bgl), e blgll]}. Set C; = [¢;] and set C = [By C;]. Then C € M,_; (C)
is unitary. Moreover, D = [1] @ C is Ay, -orthogonal. Let P7'D = [y;]. Notice that y; = x; for
i=1,...,p. Moreover, we have extended A to a Ay, -orthogonal basis of C".

If k = 1, then B; has orthonormal columns. Extend {bgl) ,...,b } to an orthonormal basis of

10
If k > 1, then there exists a A,_,-orthogonal Q; € M, (C) such that Q;B; = |: },where
0 By

By, = [bi(z)] € M(n-2),(p—2) (C) and {bgz), e, bl(,z_)z} isa Ay,_,-orthogonal set. SetP, = [1] @ Qg
100
and notice that P, is A -orthogonal and that P,PB = | 0 1 0 |. Continue the reduction un-

00 B
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I; O
tili = g andletT = Py---P,P. Then TB = |:g C:|, where C = [¢] € Mn—g).(p—q) (C)

and {cl, e, cp_q} isa Akaq—orthogonal set. Notice that necessarily, ¢ < k. Otherwise, we have

eZLkeq = —1, but (TB)* Ly (TB) = B*LxB = I; @ —I,_q implies e;Lkeq = 1. Now, ¢j'Li_q¢j = O for

i # jandcLy—qc; = —1fori = 1,...,p — q. There exists a Ay, -orthogonal S € Mp_q ©
G 0

such that S¢; = efl”:,f). Then SC = Let Ny = I; @ S. Then Nj is Ay, -orthogonal.

Moreover, C; = [f]] € M(n—q—1),(p—q—1) (C) and {f1, ..., fy—q—1} is a Ay,_,-orthogonal set. Here,
G 0

Li—q = lk—q ® —In—k—1. Now, there exists A, -orthogonal Ry such that R1C; = 02 ] :| Set

S» = Ry @[1]and set Ny = I; ® S,. Continue the reduction untili = p —q,and let W = N,_g4 - - - Ny.
Necessarily,p — q < n — k and

Iy 0
WIB=|0 0
0 Ip—q

Let M = WT, and let M~' = [n;]. Set F = [ngt1-- Mn_piql Set E1 = [xX1 -+ 4], set B =
[Xq+1 - Xp], and set D = [E; F E;]. Then MD = I, so that D = M~'. Now, notice that M is Ay, -

orthogonal, so that M~ is also A 1.-orthogonal. Hence, we have extended A to a Ay, -orthogonal basis
of C".

Theorem 21. Let A = {xq,..., xp} C C" be a Ay, -orthogonal set. Then A is linearly independent.
Suppose that X;Lgx; = 1fori = 1,...,qand xLyx; = —1fori = q+1,...,p. Thenq < k and
p — q < n — k. Moreover, A can be extended to a Ay, -orthogonal basis of C".

Let A € My (C) be a product of two A, -Householder matrices, say A = LyL,, where u,v € C".
Then rank(A — I) =rank(L, (L, — L)) =rank(L, — L) < 2. Ifrank(L, — L,) = 0, thenL, = L, and
A = I. Suppose that rank(A — I) # 0. Theorem 45 of [2] guarantees that the Jordan Canonical Form
of A contains only blocks of the form (1) Ji (A) @ Ji (%) where |A] > 1 and any k, and (2) Ji (eie),
where 6 € R and any k. If the Jordan Canonical Form of A contains blocks of the form (1), then A must
be real. Since rank(A — I) < 2, we must have k = 1, that is, A is similar to diag(k, %) ® I,,—». If the
Jordan Canonical Form of A contains blocks of the form (2) and if & # ki, where k is an integer, then
the Jordan Canonical Form of A must also contain Ji (e’i(’). In this case, we must have k = 1. If —1
is an eigenvalue of A, then A is similar to —I, & I, or A is similar to J, (—1) @ I,—». If 1 is the only
eigenvalue of A, then A is similar to J (1) & I,—» or A is similar to J3 (1) & I—3.

It is without loss of generality to assume that u*Lyu = 1 and that v*L,v = £=1. We look at these
cases.

Case 1. u*Lyu = v*Lyv = 1. There exists a Ay, -orthogonal P such that Pu = ey. Then PAP~! =
Le,Lpy. Let Pv = [q;],, let z = [a;]1,.

Suppose that k = 1. Ifz = 0, then Pv = ajeq and |a;| = 1,so that Lpy = L, and A = |,
a contradiction. Hence, z # 0. Let ||z||, = b. Then, there exists a unitary Q € M,_1 (C) such
that Qz = be§"71>. Set P = [1] & Q, so that P; is A -orthogonal. Moreover, Pie; = e; and
P1Pv = ayeq + be,. A direct computation shows that

- 2]a]* =1 —2arb
1 1 1 1
P1PAP Pl = L€‘1La181+b€2 = |: —Zﬂb 1+2b2 @In72-
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Here, we have |a; |2 — b%? = 1since v*Lyv = 1and PP is Ap,-orthogonal. Leta =1+ 2b2. Then the

eigenvalues of A are the two positive numbers o &= /a2 — 1 and 1.

Suppose thatk > 2. Notice thatif {u, v} isa A, -orthogonal set, thena; = 0. Moreover, z*Ly_1z =
1, so that there exists a Ay,_,-orthogonal Q such that Qz = eﬁ"_]). Set Py = [1] & Q, so that Py is
Ap,-orthogonal. Moreover, Pie; = e1 and P{Pv = e,. In this case, P1PAPP171 = Lo Ley = =L & I ».

Suppose that {u, v} is not a Ay, -orthogonal set. We have two subcases: z is Ly_1-isotropic or z is
Lk—1-nonisotropic.

Suppose that z is L;_1-isotropic. Notice thatn > 3, otherwise,z = 0and A = I. Now, |a;| = 1,
say,a; = e, where § € R. Lemma 14 guarantees that there exists a A, ,-orthogonal Q such that
Qz = eg"fl) + e}({nq)‘ Set P = [1] @ Q, so that Py is Ay, -orthogonal. Moreover, Pie; = e; and
P1Pv = e’0e1 + ey + ex41. Adirect calculation shows that

1 2% 0 —2¢Y o0
-2 1 0 2 0
PiPAP~IP ! = 0 0 Ly O 0
—2e7% _2 0 3 0
0 0 0 0 Iy
1 26 —2¢l
LetA; = | —2¢=® —1 2 |. Then, notice that (A; — I)? has rank 1 and that (A; —I)> = 0.

—2e7% —2 3
Hence, in this case, A is similar to J3 (1) @ I,_3.
Suppose that z is Ly_1-nonisotropic. We have two subcases: z*Ly_1z > 0and z*L,_1z < O.
Suppose that b> = z*Ly_1z > 0, with b > 0. There exists a Ap,_,-orthogonal Q such that
Qz = be%"_l). Set P; = [1] @ Q, and notice that Pie; = e and that P{Pv = aje; + be,. Here, we
have |a;]? + b?> = 1. In this case, we have
—2aib 1 —2b°

2|a1> —1 —2a1b
P1PAP_1P1_1=|: l ! } In_s

Let @« = 1 — 2b%. Because |«| < 1, the eigenvalues of A are « & iv/1 — o2 and 1.
Suppose that —b?* = z*L_1z < 0, with b > 0. There exists a Ap,_,-orthogonal Q such that

Qz = be,(:’_l). Set Py = [1] & Q, and notice that Pie; = ey and that P1Pv = aje; + beyt1. Here, we
have |a;|?> — b? = 1. In this case, we have

2lq1?P=1 0 —2@b O

PiPAP~ Py = 0 et 0 0
—2;b 0 1420 0
0 0 0 Iy

Let @ = 1 + 2b%. Then the eigenvalues of A are « & v/o2 — 1 and 1.

In—

0
Case2.u*Lyu = v*Lyv = —1.Thenu* (—Ly)u = 1. Set P = |:
Ir O

}. Then P (—Ly) PT = L.

Setx = Puand sety = Pv. Then x*L,_yx = y*L,—xy = 1.
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Case 3. u"Lyu = 1 and v*Lyv = —1. There exists a Ay, -orthogonal P such that Pu = e;. Then
PAP™! = Lo, Lpy. Let Pv = [q;]!;, letz = [a;],.

Suppose thatk = 1. Suppose further that {u, v}isa Ay, -orthogonalset. Thena; = Oand ||z||, =1,
so that there exists a unitary Q € M,_1 (C) such that Qz = e&"il). Set Py = [1] @ Q and notice that
PiPAPT'Py = —L @ 1,_5.

Suppose that {u, v} is not a Ay, -orthogonal set. Let b = ||z||,. Then |a; |> — b% = 1. Notice that

b # 0, otherwise, v*Lyv = 1. Now, there exists a unitary Q € M,_q (C) such that Qz = begn_l). Set

P; = [1] @ Q, and notice that P;e; = e and P{Pv = ae; + be,. One checks that

—1pn—1 —1 —2|a1|2 2a1b
PPAP~ P! = oy 1oy | @l
aq —

Set o = 1 4 2b?. Then, the eigenvalues of A are —« + /&2 — 1 and 1.

Suppose thatk > 2. Suppose further that {u, v}isa Ay, -orthogonal set. Thena; = Oandz*Ly—1z =
—1,sothat there existsa Ay, ,-orthogonalQ € M, (C) suchthatQz = e,En_l). SetP; = [1]Q and
notice that P1e; = eq,and that P1Pv = ey 1. Inthis case,P]PAP”Pf1 =[-118L_1B[-11BIh_k_1,
so that A is similar to —I, & I,,—».

Suppose that {u, v} is not a Ay, -orthogonal set. Notice that z is not Ly_1-isotropic, otherwise, we
have —1 = |a;|*> 4+ z*Ly—1z = |ay|>. Moreover, z*Ly_1z = —1 — |a1]*> < 0. Letb = /1 + |ay %

There exists a Ay,_,-orthogonal Q € M, (C) such that Qz = be,(f'_l). Set Py = [1] @ Q, and notice

that Pye; = e and that P1Pv = aje; + bey. Then,

—1=2]1> 0 2ab 0

I —
PPAP~ P! = g k-1 0 , 0
2a1b 0 1—2b 0
0 0 0 In—g—1

Setaw = 2b% — 1 = 1+ 2 |ay|%. The eigenvalues of A are the two real numbers —o + v/ — 1 and 1.
Case4.u*Lyu = —1 and v*Liv = 1. Consider instead —Lj.

We summarize our results. Notice that neither J, (1) nor J, (—1) is a possible Jordan block of a
product of two A, -Householder matrices.

Theorem 22. Letn > 2 and k > 1 be given integers. Let A € M, (C) be given. Suppose that A is a
product of two Ay, -Householder matrices. Then A is similar to only one of the following:

1 diag(k, %) @ I—y, where A € Rand |A| > 1,
2. diag(eig, e‘”’) @ I, where 6 € R, or
3 J3 (1) @D 1n73-
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