
Formalizing the User’s Context to Support

User Interfaces for

Integrated Mathematical Environments

Joseph R. Kiniry1

Computing Science Department
University of Nijmegen

Toernooiveld 1
6525 ED Nijmegen
The Netherlands

Abstract

This paper describes the several user-interface features for interactive theorem provers. Many of
these features mimic functionality that already exists, and have great utility, in modern interac-
tive development environments (IDEs). A formal kind theoretic model of a user’s context is also
presented. This model is used to formally describe the structure, behavior, and customization of
the features. The functionality presented include browsers for basic mathematical constructs (dec-
larations, theories, types, proofs, etc.), quick access to constructs definitions and uses (a short-cut
sidebar, menus, or implicit hyperlinks), built-in contextual help, context- and type-aware com-
pletion and visual representation (expanding and collapsing structured elements of specifications,
proof terms, and sequents), the graphical representation of language elements, and a user-extensible,
type-aware pretty-printer. Research opportunities in interface design based upon the formal model
are also identified and discussed. These features have been added to the PVS theorem prover as a
proof-of-concept and will be available in its next major release.

Keywords: Interactive theorem prover, interactive development environment, PVS theorem
prover.

1 Introduction

The user interfaces (UIs) of modern, popular theorem provers provide all the
core functionality necessary to write specifications and perform proofs. Un-

1 Email:kiniry@cs.kun.nl

Electronic Notes in Theoretical Computer Science 103 (2004) 81–103

1571-0661 © 2004 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.09.015
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81996096?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:kiniry@cs.kun.nl
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


surprisingly, most of these features focus on mathematics, rather than mathe-
maticians.

The complexity of the theories and specifications attempted in provers
has risen dramatically in recent years. For example, the formal semantics of
programming languages like Java has been specified in several provers [2]. The
proof scripts in one of these efforts [9] (to which the author contributed) are
tens of thousands of lines long, and hundreds of strategies have been written
to help prove thousands of theorems.

In contrast, only the most advanced theorem prover UIs provide features
approximating those of rudimentary programming environments of over a
decade ago, e.g., features like symbol completion, syntax highlighting, and
basic documentation lookup.

As a result, theorem prover users, especially those that are also program-
mers, are now demanding many of the features of modern integrated devel-
opment environments (IDEs), particularly those features that help manage
complex software systems.

The generic conceptual and technical facilities for handling complexity in
advanced programming environments, like those available for the C++ and
Java programming languages, are also applicable to the UIs of modern theorem
provers. To that end, this paper discusses some initial work in improving
the user interface of PVS, a higher-order theorem prover available from SRI,
through the addition of such facilities.

To formally and generically represent the UI features discussed herein,
and as a primary contribution of this work, the definition and elucidation of a
new concept called the semantic context is proposed. To clearly differentiate
technologies, we call an interactive theorem prover (ITP) with a first-class
notion of a semantic context an interactive mathematical environment (IME)
in the following.

1.1 Semantic Contexts

The general notion behind a semantic context was first introduced by Chandy [?]
in 1996 in the domain of C4I applications, primarily for military use and cri-
sis response management systems 2 . Then, the semantic context of a user or
application was called an infosphere.

An infosphere is the set of information pertaining to an agent—a person,
computer system, company, piece of software, etc.—any entity that interacts
and reacts to external events. Information constitutes an infosphere, and its
components are data and processes, that is, both passive and active elements.

2 C4I stands for “Command and Control, Communications, Computers, and Intelligence”.

J.R. Kiniry / Electronic Notes in Theoretical Computer Science 103 (2004) 81–10382



An infosphere is contextual since the focus of the information is the center of
the infosphere: its owner, the agent.

Within a military C4I context agents are, e.g., a general, a battleship, or
a tank. Their infospheres share some characteristics: position, disposition,
communication, etc. Other components are very different; the agents with
which a general interacts are not the same as those with which a battleship
or tank interacts.

There are a variety of proposals for specifying the contents of an infosphere.
Most are fairly ad hoc, such as text and XML documents, and thus have little-
to-no formal semantics. Consequently, there are few means by which one can
formally reason about an infosphere.

Since a goal of this work is to specify the meaning and use of an infosphere
within a formal system, it seems reasonable to (a) propose a mathematical
model for an infosphere, and (b) call this model something new, to differentiate
it from its informal cousin.

The formal model of an infosphere is dubbed a semantic context because,
as discussed earlier, it is contextual, and, since its formal nature is being
emphasized, it has a semantics. The theory of semantic contexts is specified
with a formal method called kind theory [11,12,13].

1.1.1 Kind Theory

Kind theory is used to specify the semantics of reusable artifacts in collabora-
tive environments. In the context of this work, the artifacts are the subcompo-
nents of proof scripts and proofs, which in turn are instances of mathematical
notions like variables and functions. The kind theoretical formalization of the
semantic context, and likewise the UI features discussed here, follows partially
from the grammar of the proof script language.

Kind theory is used because the process of writing a mathematical spec-
ification and proving properties about it are nearly wholly and exercise in
knowledge reuse. For example, importing pre-existing definitions and theo-
rems written and proven by other users is an action of knowledge reuse. Since
kind theory’s focus is on specifying and reasoning about reusable artifacts in
collaborations, it is uniquely suited to this task.

The formalization of semantic contexts relies on only three basic operators
of kind theory. The initial semantics of these operators is quite simple and can
be interpreted in terms of set theory and sequences. So as to avoid immersing
the reader in a new, unfamiliar formalism, these more familiar domains will
be used in this paper.

The actual semantics are specified with kind theory, rather than these

J.R. Kiniry / Electronic Notes in Theoretical Computer Science 103 (2004) 81–103 83



simpler foundations, because it provides a foundation for the future work
discussed in Section 4.3. The reader interested in understanding the richer
semantics should see the new PVS release and the aforementioned thesis [12].

1.2 Realizing the Semantic Context in PVS

To realize this new concept within a modern prover so as to provide a testbed
for UI design, the PVS UI has been augmented: a built-in lexer and parser
for the full PVS language have been added to the Emacs-based front-end.
This infrastructure represents high-level PVS constructs such as declarations,
theories, types, and proofs in a generic, syntactic fashion that mirrors the kind
theoretical-structure of the proof script. This generic representation is used by
a wide range of tools previously available only to “traditional” programmers
using modern IDEs, and we aggresively reuse these tools in the new PVS UI.

The new functionality available through this parser-based approach in-
cludes construct browsers, quick access to construct definitions via a short-cut
sidebar, menus, or implicit hyperlinks, contextual help, and context- and type-
aware completion.

Other new non-parser-centric functionality has also been added to the
PVS UI as well as the prover itself. First, the ability to visually expand and
collapse structured elements of specifications and sequents has been added.
Second, language elements can be represented graphically rather than textu-
ally, but with little impact on the ability to cut-and-paste terms. Finally, a
user-extensible, type-aware pretty-printer has been added to the PVS prover.

1.3 Related Work

Other environments provide some of the features that are discussed in this
paper. No environment has all of these features, and rarely is a formal foun-
dation developed, nor do any use an integrated parser or the prover’s proof
script comprehension infrastructure.

1.3.1 Mathematics Environments

Some mathematics environments provide interactive UIs. Most theorem prov-
ing environments come from a “bare-bones” tradition. More effort is obviously
spent focusing on mathematical, rather than visual, infrastructure. Until re-
cently, with the growing adoption of Proof General [4], interfaces were nothing
more than glorified command-lines [21].

Proof General and PVS are regarded as the most widely used environments
with the most advanced UIs. Both use Emacs as a front-end, so much of their

J.R. Kiniry / Electronic Notes in Theoretical Computer Science 103 (2004) 81–10384



power is simply a side-effect of that choice. Features like syntax highlighting,
completion, and hypertext documentation are examples of such pleasant side-
effects. Neither Proof General nor, obviously until now, PVS has the features
discussed in the following.

Some theorem proving environments like Jape and CtCoq have been used
as UI/HCI testbeds [6,7,21]. Many of the innovations that were originally
introduced in specialized environments have now found their way into general
purpose front-ends. For example, proof-by-pointing in Centaur and CtCoq
is now available in ProofGeneral, and the PPML-based layout and pretty-
printing facilities of CtCoq are partially functionally reproduced in some of
this work.

Pcoq is a Java-based user-interface for Coq [3]. It has some of the features
of this work including a rich graphical interface and structured editing and
presentation mechanisms. In particular, the rich presentation capabilities are
based upon an internal formal representation of proof constructs. Unfortu-
nately, while Pcoq followed a high-minded model put forth in [25], it has not
evolved as is not used as a UI for Coq.

IsaWin is another environment which has some advanced interactive fea-
tures [20]. IsaWin differs from this work in that it focuses on an iconic, graphi-
cal representation of mathematical constructs with a drag-and-drop interactive
metaphor. As with most iconic languages, there are some problematic issues
with scaling graphical representations of non-trivial artifacts.

Some commercial general-purpose computation environments, particularly
quality commercial environments like Mathematica, Maple, and Matlab, have
rich UIs. These tools provide WYSIWYG-ish interfaces that use mathematics
fonts and provide direct editing of terms with a point-and-click, drag-and-drop
UI. While the intention here is not to attempt to duplicate such UIs, their
visual features are compelling and inspirational, but their editing features and
flexibility are actually inferior to most sophisticated environments like those
mentioned above.

Coupling an advanced UI like that of Mathematica to a prover like PVS is
an interesting experiment [1]. But, as neither tool was designed as a reusable
component, such coupling is awkward. Instead, in this work these commercial
mathematics environments are studied, and the features that are found to
be most useful in day-to-day work are adopted, adapted, and formalized for
theorem provers.

J.R. Kiniry / Electronic Notes in Theoretical Computer Science 103 (2004) 81–103 85



1.3.2 Programming Environments

Modern programming environments, contrary to theorem proving environ-
ments, provide a large, rich set of UI features 3 . Common features that are not
specific to traditional, non-mathematical programming include code brows-
ing, automatic code and documentation formatting, type-aware and template-
based completion, general project management, and integrated help, API doc-
umentation, process tracking, and support for revision control systems.

The major meta-claim of this paper is that each new IDE UI feature, after
it has seen moderate success in the mainstream programming community,
should be evaluated as a potential addition to theorem proving UIs. This
work is the initial result of such an evaluation, focusing primarily on features
that help users deal with the enormous proof environments mentioned in the
introduction.

The next section describes the formal model of semantic contexts in de-
tail. The sequel focuses on the UI elements that have been widely adopted
in IDEs and have shown to be quite useful for dealing with the complexity
problems of large-scale programming. The balance of the paper discusses how
PVS has been extended to test out these ideas and summarizes some research
opportunities in theorem prover UI design.

2 Theoretical Foundations

Kind theory has six basic operators: inheritance, inclusion, composition, in-
terpretation, canonicalization, and realization, but we only have need of three
of them for this work.

2.1 Basic Operators

Inheritance, written “<” and read as “is-a”, is a reflexive, transitive, asym-
metric relation between classifiers (eponymously called kinds) or instances of
those classifiers at the object level. The logical rules involving inheritance
state that (a) all artifacts (classifiers or objects) have a parent and, (b) if an
inheritance relation exists between two artifacts, a description of how they

3 Some of the tools that are evaluated, and from which ideas are borrowed, include Bor-
land’s jBuilder and Together ControlCenter, Eclipse, Eiffel Studio, IntelliJ IDEA, jEdit,
Metrowerks CodeWarrior, NetBeans, Oracle9i JDeveloper, Sun ONE Studio, and the var-
ious “Visual*” tools (i.e., Microsoft’s Visual Studio, IBM’s VisualAge, WebGain’s Visual
Café).

J.R. Kiniry / Electronic Notes in Theoretical Computer Science 103 (2004) 81–10386



differ exists as well 4 .

Inclusion, written “⊃” and read as “has-a”, is a containment relation, thus
is also a reflexive, transitive, asymmetric relation between artifacts, that is,
pairs of kinds or pairs of objects. The rules involving inclusion state that
substructures of classifiers are preserved by substructures of classified objects.
More specifically, if a kind K has a substructure kind L (written “K ⊃ L”),
then an instance I : K has a substructure instance J : L (“I ⊃ J”).

Finally, composition comes in two basic forms: the ability to break down
an artifact into its subcomponents, written “⊗”, and the converse operator
for creating a new artifact from existing subcomponents, which is written as
“⊕”. Various logical rules relate the composition relations to other relations,
particularly inheritance and inclusion, but those rules are not important for
this discussion.

For the purpose of this work, one can think of of inheritance as a finite
lattice of type-like structures, inclusion as set theoretic inclusion, and com-
position as textual concatenation (i.e., a document is a sequence of textual
sub-elements composed through catenation).

2.2 Structure via Grammar

To formally represent the semantic context of an IME, its proof script lan-
guage(s) must be classified with kind theory. The set of all classifiers identified
in this section are called the kind context of the IME.

Since most formal languages have a (E)BNF description, a simple algo-
rithm is available to help perform the basic classification steps:

• Canonicalize the BNF by flattening all choice-less rules that are typically
used to clarify the grammar for the human reader.

For example, rules of the form
Rule1 ::= Rule2
Rule2 ::= ...etc...

should be flattened to
Rule1 ::= ...etc...

• Identify each rule that defines a specific, independent concept within the
proof script language. Create a new kind for each such concept, and let the
unique rule define each kind. More is said below about these definitions.

For example, the top-level concepts of PVS, as read directly from the
PVS proof language’s BNF, as well as emphasized in the PVS Language

4 This description is not important for this work, but in short, it is two (total) functions:
one that converts the parent to the child that is logically sound and complete, and another
that converts the child into the parent that is forgetful, but sound and complete with respect
to the parent’s context.

J.R. Kiniry / Electronic Notes in Theoretical Computer Science 103 (2004) 81–103 87



Guide, are theories and datatypes.
The second-level concepts of PVS are one level deeper within the gram-

mar. They are exactly those concepts which are used to define the top-level
concepts. They are: theory formals, import and export relations between
theories, assumptions, declarations, judgments, and conversions.

If a construct is seen at multiple levels, the top-most level is the appro-
priate location for classification. For example, datatypes can be defined
“inline” in PVS theories, but that does not preclude them from being a
core top-level concept.

No relation exists between these identified classifiers as of yet.

• Now, identify all inheritance relations by picking out BNF rules that exhibit
classification patterns 5 . Such patterns fall in two major forms in BNF,
disjunctive choice and name similarity. Disjunctive choice indicates that a
parent kind is the disjunctive composition (the “⊗” relation) of its children
kind.

For example, declarations in PVS fall into nine subcategories, as empha-
sized by the grammar and the language reference: libraries, abbreviations,
types, variables, constants, functions, formulas, and fields. Thus, these nine
kinds are all subkinds of the kind representing declarations, and the decla-
ration parent is decomposable into exactly one of its children kind.

Function

Inductive Coinductive Recursive Corecursive

NormalInduction Recursion

Fig. 1. The PVS Function Is-A Hierarchy

PVS functions fall into three subcategories: inductive, recursive, and
neither inductive nor recursive, the first two of which are not mutually
exclusive as a function can be both inductive and recursive. Induction and
recursion each break down into two categories as well, as the dual notions of
coinductive and corecursive are available. Thus, these notions define eight
kinds in a two level classification hierarchy, as sketched out in Figure 1.

Higher-level notions are sometimes defined in terms of lower-level no-
tions using composition. Thus, Induction ≡ Inductive⊕Coinductive
means that an induction function is either inductive or coinductive, but
not both. Likewise, Function ≡ (Induction ⊗ Recursion) ⊕ Normal

5 This is the basic procedure used to define an ontology or metamodel for a domain. Thus,
if the language in question already has either of these defined, simple adopt that definition.

J.R. Kiniry / Electronic Notes in Theoretical Computer Science 103 (2004) 81–10388



states that functions are either “normal”, or exhibit some combination of
inductive and recursion.

• To promote a classic, mathematically generic viewpoint on semantic con-
texts, that is, divorced from the terminology of the proof script language
in question, all core constructs should also be classified using the standard
mathematical concepts described in [12]. This permits users who are un-
familiar with the vernacular of an IME to still use its classification-based
preference system, as described below.

• Next, identify substructure relationships in the proof script language by
looking for BNF rules that exhibit containment relations. Typically, top-
level concepts have single flattened rules that clearly indicate substructure.

For example, the rule in the PVS BNF that describes the top-level concept
of theory is

Theory ::= id [TheoryFormals] ’:’ ’THEORY’
[Exporting]
’BEGIN’
[AssumingPart]
[TheoryPart]
’END’ id

This rule clearly indicates that a theory kind has five substructures: a name
(the id label), a theory formal, an exporting clause, an assuming part, and
a theory part. Note that the names of these sub-rules even indicate their
structural relationship (“Part”).

Analyzing the grammar from this point of view will produce an inclusion
hierarchy for the entire language. This hierarchy will be used for several
features discussed later in this document and is thus a key feature of the
semantic context.

• Finally, identify compositional substructures by examining the mandatory
textual ordering of the BNF rules.

The aforementioned rule for PVS theories shows such a mandatory or-
dering: exporting clauses must precede assumptions which must in turn
precede the theory part. Thus, a theory is defined as a sequence

TheoryName, TheoryFormal, ExportingClause, AssumingPart, TheoryPart

where the comma operator (“,”) is textual concatenation 6 .
Literal sequences identified in the grammar are also examples of compo-

sitional substructures. For example, the PVS BNF rule
TheoryNames ::= TheoryName++’,’

indicates that the classifier TheoryNames is composed of a comma-separated

6 The comma operator is defined kind theoretically as a composition operator, since se-
quences can be constructed and deconstructed in the obvious way.

J.R. Kiniry / Electronic Notes in Theoretical Computer Science 103 (2004) 81–103 89



sequence of TheoryNames.
These sequences are also used for many features discussed later in this

document.

2.3 Preferences by Classification

The classification hierarchies defined in the last section are primarily used by
the UI to define semantic context-based preference settings.

Each concept can be enabled or disabled on a per UI feature basis. If a
concept is disabled, then all of its subconcepts which are concepts below it in
the is-a hierarchy are also disabled.

Using such a scheme, a user can intuitively describe to the system which
concepts are appropriate for each UI interface, but unknowingly do so in an
formal manner. For example, if a PVS proof script document is to be summa-
rized in a tree view, and the user is only interested in the assumptions made in
the theories, then the Assumption construct is enabled, and all other sibling
concepts within the is-a hierarchy are disabled.

2.4 Iteration by Containment and Composition

The inclusion/containment and composition/sequence relations are generally
used for iteration in the various UI features discussed over the next several
pages.

A memoizing reversed nested iteration function is the key operator used
in many UI features. Essentially, one must follow the sequence of instances
within a context backwards and, each time one reaches the end of the sequence,
move up to the enclosing context, but never return the same instance twice.

Consider this fragment of PVS code:
exists1 [T: TYPE]: THEORY
BEGIN
x, y: VAR T
p, q: VAR pred[T]

unique?(p): bool = FORALL x, y: p(x) AND p(y) IMPLIES (*)
...

Assume the user’s focus, as discussed in the next section, is at the location
labeled (*). What is the sequence of reversed nested next objects?

The sequence is: � y, x, bool, p, unique?, q, T, exists1 �.

The first element is y because it is the final term in the enclosing sequence
for the Forall quantifier instance. The variable x follows because it is the
preceding instance at the same level. At that point, the sequence of the
current level expires, so we move up one level to the constant declaration
instance. Only three instances are in the sequenced substructure at this level:

J.R. Kiniry / Electronic Notes in Theoretical Computer Science 103 (2004) 81–10390



� unique?, p, bool �. They are iterated in reverse. When that sequence
expires, the next enclosing sequence is followed: � x, y, p, q �, but since x,
y, and p have all already been chosen, only q can be returned. Finally, the
elements of the outermost enclosing sequence � exists1, T � are returned
in reversed order.

This generic iteration is legitimate in the PVS context because PVS is a
higher-order prover, thus higher-order structures like formulas and theories
can be directly referenced. For non-higher-order provers, the initial set of
enabled classifiers will likely be smaller.

Features discussed later in this paper further refine this iteration operator.
For example, type-aware completion uses this iteration to choose prospective
terms to present for completion, but only shows each choice to the user if the
term typechecks in the given context.

2.5 Identifying the Semantic Context of the User

The semantic context of the user is the composition of the underlying kind
context as identified by the process of the preceding section, the instances
of all associated documents, as determined by parsing the documents and
identifying the concepts associated with all instances, and location of the
current focus of the user.

The set consisting of all kinds identified using the process of Section 2.2 is
the underlying kind context of the IME. This set is fixed for a given proof script
language and IME combination, thus is not contextual from the point-of-view
of a user.

All documents loaded by a user in the IME must be parsed to identify all
instances in the current semantic context. A parser will obviously exist in the
back-end prover of the IME, but it is often the case that no published API
exists for accessing this information. Thus, many IMEs will use a front-end
parser of some kind, like that discussed in Section 4.

Each construct identified by the parser has a starting point and an ending
point. This extent information is used to determine the current user focus by
identifying which construct encloses the current point of focus within the IME.
If the current point does not fall within the extent of any instance, than the
closest instance, moving backward through the current document, is consider
the enclosing instance.

In total then, the semantic context of the user is the union of the fixed
context of the prover and a dynamic context having two parts: (1) the contents
of all proof scripts currently in use, and (2) the current focus of the user’s
attention.

J.R. Kiniry / Electronic Notes in Theoretical Computer Science 103 (2004) 81–103 91



In the next section various UI facilities are discussed that take advantage
of the semantic context.

3 Semantic Context-based UI Facilities

Over half a dozen new facilities have been added to PVS that leverage the
formalization of the user’s context. While these new facilities primarily are of
benefit to PVS users struggling with very large formalizations and proofs, we
find that they also have significant utility to everyday PVS users.

3.1 Construct Browsing

A primary interface used by programmers in large-scale development efforts is
some kind of feature browser. A browser lets a user quickly navigate a struc-
tured information space. There are a variety of UI alternatives for presenting
hierarchical, structured information, the most popular of which are menus,
trees, and panes. Each of these alternatives renders the hierarchical inclusion
relation “⊃” of the user’s semantic context.

3.1.1 Menu-based Browsing

Menu-based browsing is a popular way to navigate small-to-medium sized
structured information spaces. The limitations of such an approach, e.g., the
existence of many nested levels, many items at each level, etc., are well-known
and often-abused. Thus, a menu’s characterization, particularly its maximum
size and depth, is user-tunable.

The PVS user can now specify with Emacs’s customize feature which PVS
constructs are shown in a summary menu, according to their classifying kind.
By default, all constructs are shown in a hierarchical menu, organized by
theory.

3.1.2 Hierarchical Shortcuts

Hierarchical shortcuts, often rendered as a tree, are a second popular way
to present structured information. Filesystem explorers, like that found in
Windows and OS X are examples of such tools, and IDEs like VisualStudio
and Apple’s Xcode organize project information in such a manner as well.

Hierarchies can be presented in either an integrated or independent (from
the main display) fashion. When a construct in the summary tree is activated
with a mouse click or keypress, the cursor in the current buffer jumps to the

J.R. Kiniry / Electronic Notes in Theoretical Computer Science 103 (2004) 81–10392



corresponding element in the main window. The user can customize which
PVS constructs are summarized in the hierarchy on a classifier-centric basis.

3.2 Finding Definitions

Extended implicit hyperlinking is a feature new to commercial development
environments. For example, automated spell-checking functionality, like that
found in Emacs or Microsoft Word, is an example of implicit hyperlinking. In
such an environment, the source document, perhaps a research paper, is im-
plicitly hyperlinked to one or more dictionaries. The purpose of this particular
hyperlinking is word spelling correction and definition and synonym lookup.

In general, the actions of an implicit hyperlink can either be informational,
such as the definition of an operator or variable, or corrective, e.g., correcting
the spelling of a variable.

Prior to this new work, PVS supported several kinds of implicit hyperlinks.
For example, in PVS one uses a shifted middle mouse button click to show
the type declaration of a construct is shown in a small information window.
Unfortunately, most advanced features, like finding where a declaration is
used, are not available as implicit hyperlinks and thus require the user to type
long, hard-to-remember key sequences.

This functionality has been improved by increasing the number of recog-
nized implicit hyperlink types. PVS keywords can now be activated to show
their full definition related and usage information. Also, a variety of implicit
link types can now be used in PVS comments including URLs, ISBN numbers,
embedded image references, RFC titles, documentation cross-references, mail
addresses, various compiler messages, pathnames, outline nodes, man pages,
key sequences, table of contents entry, tag location, bibliography references,
and some other more esoteric types.

Implicit hyperlinks of several kinds are particularly useful for theorem
provers: URLs, embedded images references, documentation cross-references,
and key sequences. URLs are obviously useful to cite relevant papers or other
source material for the documented construct. Embedded images can be used
to show pretty-printed versions of specific terms, sequents, or proof structures.
Info nodes can be used to cross-reference other Emacs and PVS documenta-
tion, in particular the PVS release notes, which are the only part of the PVS
documentation that at this time uses Texinfo. Finally, embedded key se-
quences can be used to document PVS UI behavior and trigger PVS actions
so that, for example, the PVS tutorial can be made more interactive and
automated.

J.R. Kiniry / Electronic Notes in Theoretical Computer Science 103 (2004) 81–103 93



3.3 Getting Help

Contextual help is generated by examining the current cursor position’s en-
closing construct and showing, after some user-tunable delay (usually a few
hundred milliseconds), extra information about that construct.

Within PVS the help message is shown in a small area at the bottom of
the user interface. Other environments often have similar unobtrusive-but-
always-visible places in which put such assistance information.

Within the new PVS this functionality is used to document the grammar
of language constructs (a kind of context-aware help-pvs-prover-commands)
as well as the usage of prelude operators like boolean operators, conditionals,
etc.

3.4 Completion

Modern programming environments offer scope- and type-aware completion.
These IDEs parse and typecheck the input file as the user edits. When com-
pletion of a construct (e.g., a type, variable, or method name) is requested, a
list of all legitimate (type-correct and visible within the current scope) alter-
natives is shown.

Unfortunately, because of PVS’s heavy use of overloading and parameteri-
zation, this level of type-aware completion is not yet available in the new PVS
UI 7 . At this time, when a completion is requested, only those constructs that
are visible in the current scope and are potentially type-correct are shown.
Completion choices are shown in the scope-dependent order selected by the
algorithm of Section 2.4, with matching declarations in inner scopes shown
before those in outer scopes.

3.5 Information Hiding

Outlines are used to show and hide various substructures of a document. An
outline mode has been designed for the PVS UI, where substructures are
identified based upon a document’s inclusion hierarchy.

Structures are hidden and shown via modified mouse actions, like those
used in documentation lookup, or via key sequences. A hidden structure is in-
dicated with an elided hypertext region (which automatically highlights when
touched by the mouse pointer) containing four periods. This representation
was chosen so that it is similar to the elision that PVS pretty-printing per-
forms today, but different enough that it is clear the elision is due to outline

7 Currently the semantic package-based parser front-end is not communicating with PVS’s
typechecker, but this feature will be added in the future.

J.R. Kiniry / Electronic Notes in Theoretical Computer Science 103 (2004) 81–10394



mode and not PVS itself. Touching a hidden structure with the mouse pointer
for an extended period of time will temporarily un-hide the structure for ex-
amination.

Incremental searches on a buffer with hidden regions finds matches in hid-
den text, and such matches are made temporarily visible. If the user exits the
search within such a temporarily hidden region, the text remains visible.

3.6 Pretty-Printing in PVS

A user-extensible, type-aware pretty-printer has also been added to the PVS
UI.

The PVS input syntax is currently limited to ASCII characters. This
is fairly restrictive, but PVS allows operators to be overloaded, using the
type system and theory hierarchy to determine the operator in any given
context. Overloading is very convenient, and heavily used in mathematics as
the context usually makes clear which operator is meant. For example, the
PVS prelude has four declarations for the caret operator (“^”) alone.

Pretty-printing the concrete PVS syntax is not difficult. Pretty-printing
in PVS is handled using the Common Lisp Pretty Printing facility [24, Chap-
ter 27] with a set of methods that walk down the PVS abstract term structures,
which are implemented in CLOS.

In extended character sets like those available in LATEXand UNICODE
there are many more operator symbols available than in ASCII. When such
character sets are available, it is desirable to map ASCII PVS operators to
output operators of the alternative character set. For example, one might
wish to use e2 for e^2 (exponentiation), and Bn

m for B^(m, n) (bit vector
extraction). However, to properly translate such forms, more information
than syntax is needed (in particular, types and resolutions).

The PVS LATEX printer is driven from typechecked specifications. It allows
substitutions to be made, and, by using the resolution information, can distin-
guish operators based on arity and the theory where the operator is declared.
Types are not currently used, in order to keep the substitutions file simple 8 .

Other approaches are available for pretty-printing that are especially useful
when embedding different logics in PVS. For example, Skakkebaek [23] gener-
ated a new parser for the Duration Calculus, mapping its abstract syntax to
subclasses of the PVS abstract syntax. Instances of these classes are pretty-
printed using specialized methods, but typechecking, proving, etc. would use
the methods of the superclass. This works well, but it is not easy to define a

8 In order to properly provide support for types, parts of the substitutions file would need
to be typechecked, and it is not trivial to determine the typechecking context.

J.R. Kiniry / Electronic Notes in Theoretical Computer Science 103 (2004) 81–103 95



new grammar in PVS 9 . Defining a new grammar for the Duration Calculus
was not too difficult because it copied most of the PVS grammar and simply
added a few new operators. Another difficulty is that as a proof is devel-
oped, terms get introduced that are part PVS and part Duration Calculus,
and though they would be pretty-printed, the result could be confusing to the
user.

In Pombo [22], PVS was used to provide the semantics of Ag specifications,
defining the semantics of First Order Dynamic Logic and Fork Algebras, along
with rules and strategies that allow a user to reason in Ag. Here there were
conversions defined, such as a meaning function, and arguments such as the
current world of the Kripke structure, that by default are included in the
prover interaction, but add clutter to the proof. In this case the function for
pretty-printing applications was modified in order to suppress the meaning
function and the world argument.

The new PVS pretty-printer is an elegent redesign that can be used to ac-
complish all of the above, but in a much simpler, more coherent fashion. The
pretty-printer now that lets a user register pretty-print functions on a per-type
basis. Each function takes a term and the type of the term as parameters. A
function checks if the term given is one that requires special pretty-printing
treatment, and pretty-prints the term if appropriate. If none of the registered
functions are applicable, then the default pretty-printer is used. It is expected
that some general functions will be provided that make it easy to perform
common tasks, like suppress arguments and recognize applications whose op-
erator is a constant of a specified theory and type. In its full generality, these
functions act as semantic attachments for the customized pretty-printing of
terms of any form.

This approach works well for many situations, but not all pretty-printing
tools can be integrated into Common Lisp. For non-Common Lisp-based
tool, resolution and type information need be provided. The most promising
approach to this problem is to provide the abstract syntax of PVS terms
in XML, given most programming languages have facilities for reading and
manipulating XML documents. This is done, for example, in OMDOC, which
provides an extension for PVS that generates OMDOC abstract syntax from
typechecked PVS specs [14]. There are future plans for generating XML that
directly reflect the internal abstract syntax of PVS, and this could easily be
used to build a new pretty-printer.

9 PVS currently uses the Ergo Parser Generator [15], which has a number of quirks that
make it difficult to use.

J.R. Kiniry / Electronic Notes in Theoretical Computer Science 103 (2004) 81–10396



3.7 Graphical Representation

Finally, some users prefer their computational mathematical environment to
(syntactically) closely resemble their own non-computational, pen-and-paper
approach to doing mathematics.

Fig. 2. Using X-Symbol within the PVS UI

The PVS user interface is now capable of using extended character sets.
Consequently, a standard set of mappings for all the core PVS operators is
provided with our new PVS UI extensions. All uses of an overloaded operator
look identical at this point in time. An piece of the PVS prelude, when
rendered with symbols, is shown in Figure 2.

J.R. Kiniry / Electronic Notes in Theoretical Computer Science 103 (2004) 81–103 97



4 Extending PVS

While various new features of PVS have been mentioned in the past several
sections, little detail has been given as to how the underlying functionality
of the semantic context has been implemented, and how that functionality is
used by the new UI. This section will briefly discuss the state of the current
implementation.

Fig. 3. The Integrated PVS Environment

Figure 3 shows an example configuration of the new integrated environment 10 .
As seen in the figure, the integrated PVS environment has several subcom-
ponents. Shown here are a hierarchical tree-based layout of the current proof
script (upper-left in window “W-0”), as discussed in Section 3.1.2, a list of all
files in the currently selected folder (window “W-1”), and a “history” of the
files that have been most recently visited (window “W-2”). The main window
shows the current proof script that is being edited.

10 The observant reader will note that the screenshots were made on a system running OS
X. The reason for this choice is not simply aesthetic. The author is also contributing to
a port of PVS to various Open Source Common Lisp implementations, thus we have PVS
partially running on OS X at this time.

J.R. Kiniry / Electronic Notes in Theoretical Computer Science 103 (2004) 81–10398



The configuration shown is the author’s favorite layout, but other users
will have different needs given their working methodology, screen size, etc.
The various subwindows can be interactively arranged and resized, and their
positions are automatically saved from session to session.

This integrated environment is an extension of the Emacs Code Browser
(ECB), a source code browser for Emacs [5]. It displays a user-customizable
set of windows that can be used to browse directories, files, and file contents,
all of which are substructures of the current semantic context. The summary
pane in the top-left of the future can also be split off into a separate window.
The Speedbar package is used to support this functionality [19].

Shortcut menus (not seen in the illustration) are available as discussed
in Section 3.1.1. They are realized using the Imenu facility, which is built
into recent versions of Emacs. This features offers a way to find the major
definitions in a file by name, via a nested set of menus.

Finally, the implicit hyperlinking functionality discussed in Section 3.2 is
realized by reusing portions of the Hyperbole package [28].

4.1 Underlying Realization

The most complex part of this work is mapping the constructs found in the
proof scripts to an underlying object-oriented representation.

The underlying representation of the kind theoretical model of the PVS
language is realized using eieio, a CLOS implementation for Emacs lisp (elisp) [18].
The object-oriented structure of the model maps directly onto CLOS objects
in a natural fashion.

To implement the mapping function, one needs to either (a) write PVS-
specific functionality for Emacs or (b) rely upon a generic language-based
framework that enables the use of existing and future tools based upon the
framework. With an eye toward saving time, increasing reliability, and taking
advantage of the hard work of other Emacs enthusiasts, option (b) was chosen.
And, after evaluating the various generic framework’s available for Emacs,
the semantic package, a part of the CEDET framework, was chosen as the
foundation library.

The semantic package for Emacs is used to build lexers and parsers in
elisp [17]. To use the semantic package with a new language, thereby enabling
all semantic package-based tools, one must write a grammar specification of
the language. Essentially, by relying upon a generic foundation, PVS support
is enabled “automagically” for all of the semantic package-dependent tools,
discussed in this section including iMenu, speedbar, and the ECB.

The semantic package includes, at its core, a lexer generator, and a com-

J.R. Kiniry / Electronic Notes in Theoretical Computer Science 103 (2004) 81–103 99



piler compiler, or what is known as a bovinator in the semantic package’s
nomenclature. The core utility is the semantic bovinator which has similar
capabilities to the GNU bison compiler compiler [8]. Recent versions of the
semantic package (mid-2003) include a second compiler compiler called wisent,
which is effectively a full GNU bison implementation in elisp. The work de-
scribed in this paper initially used the bovine framework, but now uses wisent.

The final bit of functionality, that of rendering PVS proof scripts with
extended character sets as seen in Figure 2, is accomplished with the X-Symbol
package [27].

4.2 Future Improvements

There remain several new features and refinements that need to be added to
the new PVS UI.

First, a graphical toolbar, like that available in Proof General has to be
added to represent some of the new features. Some Emacs users will simply
ignore new features until they have such toolbars, so it is important to add
this simple feature soon.

Second, currently the wisent parser does not work with the X-Symbol
package, as the grammar is written in ASCII. Thus, a user currently either
can have symbolic representation of their PVS proof scripts, or can have the
integrated environment, but not both. We hope to lift this limitation before
the release of the new PVS.

Keeping track of the importing and exporting relationships between PVS
theories is a complex and sometimes time-consuming task. A new semantic
package that is under development called COGRE can graphically represent
semantic package parsed structures [16] (initially, COGRE’s focus is UML
diagrams). In COGRE, a graphical representation can be manipulated to
change the underlying associated data. Consequently, some experimentation
with the graphical representation of theory relationships is warranted.

Finally, UI operations involving parameterized theories are weak. Improv-
ing support for completion and summarization of such parameterized substruc-
tures is an important research topic. It is likely that PVS theory parameter-
izations can be characterized by the kind theoretical composition operators,
thus the methods of Section 2 can continue to be used.

4.3 Research Opportunities

Many currently popular IDEs have recently added refactoring functional-
ity [10,26]. Refactoring is the process of changing the implementation of a
system in order to improve some aspect of the implementation while preserv-

J.R. Kiniry / Electronic Notes in Theoretical Computer Science 103 (2004) 81–103100



ing its capabilities. Examples of refactoring include safe renaming of program
features (variables, functions, methods, etc.), function extraction and inser-
tion, and safe modification of feature visibility (e.g., making a public variable
private, automatically writing getter and setter methods, and automatically
inserting these methods at all program locations that access the original public
variable).

An example refactoring operation within an IME is the identification and
use of a cut rule. When performing a large proof, it is sometimes the case
that, at some mid-point during the interactive process, multiple branches of
the proof are recognized as having a similar structure. To simplify the proof, a
lemma could be defined and used within these branches. Unfortunately, many
provers, PVS included, provide no means by which such a lemma, acting here
as a cut, can be extracted, defined, proved, then (re)used.

Theoretically representing refactoring operations within an IME is a sig-
nificant research opportunity, as it will provide the foundation for formal ver-
ification of refactoring operations.

If the semantics of a refactoring operation can be represented within kind
theory as what is known as an interpretation, then the verification effort is
trivial, as a fundamental property of full interpretations is that they are sound
and complete, that is, they preserve all properties of the constructs being
interpreted.

Because the mathematical structures, including the proof theoretic con-
structs (logical rules, judgments, etc.) of the IME are represented with kind
theory, then meta-theoretical claims, like the soundness the proof context un-
der interpretation (e.g., refactoring), are possible.

More work is necessary along these lines to determine if such a general
formal framework like kind theory is appropriate and useful for IMEs, but the
early results look promising.

Acknowledgments.

This work was supported by the Netherlands Organization for Scientific
Research (NWO). Thanks to Sam Owre, Erik Poll, Martjin Warnier, Bart
Jacobs, and Adriaan de Groot for their input on earlier versions of this paper.
Thanks to Chara Williams for help with the screen captures.

References

[1] Andrew Adams, Martin Dunstan, Hanne Gottliebsen, Tom Kelsey, Ursula Martin, and Sam
Owre. Computer algebra meets automated theorem proving: Integrating Maple and PVS. In
Richard J. Boulton and Paul B. Jackson, editors, Theorem Proving in Higher Order Logics,

J.R. Kiniry / Electronic Notes in Theoretical Computer Science 103 (2004) 81–103 101



TPHOLs 2001, volume 2152 of Lecture Notes in Computer Science, pages 27–42, Edinburgh,
Scotland, September 2001. Springer–Verlag.

[2] J. Alves-Foss, editor. Formal Syntax and Semantics of Java, volume 1523 of Lecture Notes in
Computer Science. Springer–Verlag, 1999.

[3] Ahmed Amerkad, Yves Bertot, Löıc Pottier, and Laurence Rideau. Mathematics and proof
presentation in Pcoq, 1998.

[4] David Aspinall. Proof General: A generic tool for proof development. In Proceedings of Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’00), volume 1785 of
Lecture Notes in Computer Science. Springer–Verlag, 2000.

[5] Klaus Berndl, Jesper Nordenberg, Kevin A. Burton, and Eric M. Ludlam. The ECB user
manual, July 2003. See http://ecb.sourceforge.net/

[6] Janet Bertot and Yves Bertot. CtCoq: A system presentation. In Algebraic Methodology and
Software Technology, pages 600–603, 1996.

[7] R. Bornat and B. Sufrin. Jape’s quiet interface. In Proceedings of User Interfaces for Theorem
Provers (UITP’96), 1996.

[8] The GNU Foundation. The GNU bison manual, February 2002. http://www.gnu.org/
software/bison/bison.html.

[9] Bart Jacobs and Erik Poll. A logic for the Java modeling language JML. Technical Report
CSI-R0018, Computing Science Institute, University of Nijmegen, November 2000.

[10] JetBrains. IntelliJ IDEA 3.0 overview, 2002. http://www.intellij.com/

[11] Joseph R. Kiniry. A new construct for systems modeling and theory: The Kind . Technical
Report CS-TR-98-14, Department of Computer Science, California Institute of Technology,
October 1998.

[12] Joseph R. Kiniry. Kind Theory. PhD thesis, Department of Computer Science, California
Institute of Technology, 2002.

[13] Joseph R. Kiniry. Using kind theory for distributed knowledge capture. In Proceedings, DC-
KCAP ’03, Distributed and Collaborative Knowledge Capture Workshop at K-CAP ’03, 2003.

[14] Michael Kohlhase and Sam Owre. An OMDoc interface to PVS, 2001. http://www.mathweb.
org/cvsweb/cvsweb.cgi/omdoc/projects/pvs/

[15] P. Lee, F. Pfenning, J. Reynolds, G. Rollins, and D. Scott. Research on semantically based
program-design environments: The Ergo project in 1988. Technical Report CMU-CS-88-118,
Department of Computer Science, Carnegie Mellon University, 1988.

[16] Eric Ludlam. The COGRE manual, 2002. http://cedet.sourceforge.net/cogre.shtml

[17] Eric Ludlam. The Semantic manual, 2002. http://cedet.sourceforge.net/semantic.shtml

[18] Eric Ludlam et al. The Eieio manual, 2003. http://cedet.sourceforge.net/eieio.shtml

[19] Eric Ludlam et al. The Speedbar manual, 2003. http://cedet.sourceforge.net/speedbar.
shtml

[20] C. Lüth, Tej H, Kolyang, and B. Krieg-Brückner. TAS and IsaWin: Tools for transformational
program developkment and theorem proving. In J.-P. Finance, editor, Fundamental Approaches
to Software Engineering FASE’99. Joint European Conferences on Theory and Practice of
Software ETAPS’99, number 1577 in Lecture Notes in Computer Science, pages 239–243.
Springer–Verlag, 1999.

[21] N. Merriam and M. Harrison. What is wrong with GUIs for theorem provers? In Proceedings
of User Interfaces for Theorem Provers (UITP’97), 1997.

J.R. Kiniry / Electronic Notes in Theoretical Computer Science 103 (2004) 81–103102

http://ecb.sourceforge.net/
http://www.gnu.org/software/bison/bison.html
http://www.gnu.org/software/bison/bison.html
http://www.intellij.com/
http://www.mathweb.org/cvsweb/cvsweb.cgi/omdoc/projects/pvs/
http://www.mathweb.org/cvsweb/cvsweb.cgi/omdoc/projects/pvs/
http://cedet.sourceforge.net/cogre.shtml
http://cedet.sourceforge.net/semantic.shtml
http://cedet.sourceforge.net/eieio.shtml
http://cedet.sourceforge.net/speedbar.shtml
http://cedet.sourceforge.net/speedbar.shtml


[22] Carlos López Pombo, Sam Owre, and Natarajan Shankar. A semantic embedding of the Ag

dynamic logic in PVS. Technical Report SRI-CSL-02-04, Computer Science Laboratory, SRI
International, 333 Ravenswood Ave., Menlo Park, CA 94025, July 2003. To appear.

[23] Jens U. Skakkebæk and N. Shankar. A Duration Calculus proof checker: Using PVS as a
semantic framework. Technical Report SRI-CSL-93-10, Computer Science Laboratory, SRI
International, 333 Ravenswood Ave., Menlo Park, CA 94025, December 1993.

[24] Guy Steele. Common Lisp: The Language. Digital Press, second edition, 1990.

[25] Laurent Thery, Yves Bertot, and Gilles Kahn. Real theorem provers deserve real user-
interfaces. Technical Report 1684, Sophia Antipolis, May 1992.

[26] Marian Vittek. The Xrefactory system, 2002. http://www.xref-tech.com/

[27] Christoph Wedler. The X-Symbol manual, May 2003. http://x-symbol.sourceforge.net/

[28] Bob Weiner et al. BeOpen.com Hyperbole: The everyday net-centric information manager,
July 1999. http://sourceforge.net/projects/hyperbole/

J.R. Kiniry / Electronic Notes in Theoretical Computer Science 103 (2004) 81–103 103

http://www.xref-tech.com/
http://x-symbol.sourceforge.net/
http://sourceforge.net/projects/hyperbole/

	Introduction
	Semantic Contexts
	Realizing the Semantic Context in PVS
	Related Work

	Theoretical Foundations
	Basic Operators
	Structure via Grammar
	Preferences by Classification
	Iteration by Containment and Composition
	Identifying the Semantic Context of the User

	Semantic Context-based UI Facilities
	Construct Browsing
	Finding Definitions
	Getting Help
	Completion
	Information Hiding
	Pretty-Printing in PVS
	Graphical Representation

	Extending PVS
	Underlying Realization
	Future Improvements
	Research Opportunities

	References



