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Abstract

This paper aims at applying the CT L∗1 model checking method to the time Petri net (TPN) model. We show here how to
contract its generally infinite state space into a graph that captures all its CT L∗ properties. This graph, called atomic state class
graph (ASCG), is finite if and only if, the model is bounded.2 Our approach is based on a partition refinement technique, similarly
to what is proposed in [Berthomieu, Vernadat, State class constructions for branching analysis of time Petri nets, Lecture Notes
in Computer Science, vol. 2619, 2003; Yoneda, Ryuba, CTL model checking of time Petri nets using geometric regions, IEICE
Trans. Inf. Syst. E99-D(3) (1998)]. In such a technique, an intermediate abstraction (contraction) of the TPN state space is first built,
then refined until CT L∗ properties are restored. Our approach improves the construction of the ASCG in two ways. The first way
deals with speeding up the refinement process by using a much more compact intermediate contraction of the TPN state space than
those used in [Berthomieu, Vernadat, State class constructions for branching analysis of time Petri nets, Lecture Notes in Computer
Science, vol. 2619, 2003; Yoneda, Ryuba, CTL model checking of time Petri nets using geometric regions, IEICE Trans. Inf. Syst.
E99-D(3) (1998)]. The second way deals with computing each ASCG node in O(n2) instead of O(n3), n being the number of
transitions enabled at the node. Experimental results have shown that our improvements have a good impact on performances.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The need for including the time parameter in system analysis is obvious since they are real time in nature. Several
models integrating the time parameter in different ways have been developed. Among these models, we find timed
automata (TA) [1] and various time Petri net (TPN) models [9,11,15,18,19].

The integration of time in models increases their modelling power, but tremendously complicates their analysis.
Indeed, because of time density, state spaces of timed models are in general infinite and thus not useful for enumerative
analysis such as model checking. If enumerative techniques are to be used, the infinite state space must be contracted
into a finite representation (a graph) which preserves all properties of interest.
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Several analysis approaches, based on state space contractions, have been developed for TA [10,12,13] and some
TPN models as well [3–9,11,16,17,20,21]. Resulting graphs are principally characterized by their sizes, the condition
of their finiteness and the kind of properties they preserve (LTL 3 , CTL, CTL∗, . . .). Preserved properties can be verified
by exploring these graphs. In this context, the model checking method is the most attractive verification technique.

This paper aims at applying the CTL∗ model checking method to the TPN model.
Berthomieu and Menasche proposed 20 years ago (1982) a contraction of the TPN state space that preserves the

LTL properties of the model [4], but not necessarily its CTL∗ ones. Yoneda and Ryuba developed in [21], another
contraction, called atomic state class graph (ASCG), which preserves CTL∗ properties. Their approach has however
the disadvantage of being limited to TPN models with bounded firing intervals. For TPN models with unbounded firing
intervals, their approach may yield infinite ASCGs, even if the model is bounded. Recently, in [5], Berthomieu and
Vernadat improved the approach of Yoneda and Ryuba and extended its application to all bounded TPN models. Their
improvements allow also to generate smaller ASCGs in much shorter times. Both approaches proposed in [5,21] use a
partition refinement technique, where an intermediate graph, representing a contraction of the TPN state space, is first
built then refined until an ASCG is derived.

Both intermediate state class graphs used in [5,21] are computed such that they preserve linear properties of the TPN
model. As we will show, this feature is not a requirement of the refinement technique. Besides, experimental results
have shown that state class graphs that preserve linear properties are in general closer in size to their corresponding
ASCGs, and even larger for some TPN models. For instance, the strong state class graph (SSCG) construction faces a
sever state explosion problem for some TPN models with unbounded firing intervals. For these models, SSCGs may
be several times larger than their corresponding ASCGs. This constitutes a major obstacle towards their construction
and their refinement too.

In this paper, we propose to improve the construction of the ASCG in two ways. The first way deals with speeding
up the refinement process by using a much more compact intermediate contraction of the TPN state space than what
is proposed in [5,21]. The second way deals with computing each ASCG node in O(n2) instead of O(n3), n being the
number of transitions enabled at the node.

Our experimental results have shown a significant impact of our improvements on the construction of ASCGs. For
all tested TPN models, we recorded in general an important reduction in computing times and memory usage. For some
tested models, computing times have been reduced by factors greater than 12, while memory usage has been reduced
by factors greater than five. Furthermore, the improvements seem to increase as the model increases in size. 4 In this
way, we have been able to compute some ASCGs which failed to compute without the proposed improvements, either
in reasonable times or due to lack of memory.

Section 2 of this paper is devoted to some definitions related to the TPN model and its different state space contractions.
In Section 3, we present the construction of our intermediate structure used in the refinement process. In Section 4,
we propose an implementation for this construction approach that reduces the computing time complexity. Section 5
is devoted to the ASCG construction. Finally, Section 6 presents some experimental results. Our results are compared
to those obtained in [5].

2. Time Petri nets

2.1. Definition and behavior

A TPN is a Petri net completed with time intervals attached to its transitions [4]. Formally, a TPN is a tuple
(P, T , Pre, Post, M0, Is) where:

• P is a finite set of places,
• T is a finite set of transitions (P ∩ T = ∅),
• Pre and Post are the backward and the forward incidence functions: P ×T −→ N, where N is the set of non-negative

integers,
• M0 is the initial marking, M0 : P −→ N,

3 Linear-time Temporal Logic.
4 More precisely, the size of its ASCG.
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Fig. 1. A TPN model with unbounded static firing intervals.

• Is : T → Q+ × (Q+ ∪ {∞}), Q+ is the set of non-negative rational numbers. Function Is associates with each
transition t an interval [t min(t), t max(t)] called the static firing interval of t . t min(t) and t max(t) are, respectively,
the minimal and maximal firing delays of the transition.

Let M be a marking and t a transition. t is enabled for M if and only if, all tokens required to fire t are present in M ,
i.e.: ∀p ∈ P, M(p)�Pre(p, t).

We denote by En(M) the set of all transitions enabled for the marking M.
As an example, Fig. 1 is the graphic representation of a small TPN defined by 5 :

• P = {P0, P1, P2},
• T = {t0, t1, t2},
• Pre = (P0, t0) + (P1, t1) + (P2, t2),
• Post = (P0, t0),
• M0 = P0 + P1 + P2,
• Is = {(t0, [1, 2]), (t1, [2, ∞]), (t2, [2, ∞])}.

There are mainly two known characterizations of the TPN state. The first characterization, called interval state [4],
defines the state of the TPN model as a pair (M, Id) combining a marking M and a delay function Id. The function Id
associates a firing interval with each enabled transition in M. When a transition t becomes enabled, its firing interval is
initialized to its static firing interval Is(t). The bounds of the interval decrease synchronously with time, until t is fired
or disabled by another firing. t can occur, if the lower bound of its interval reaches 0, but must be fired, without any
additional delay, if the upper bound of its interval reaches 0. In this characterization, the initial state of the TPN model
is the couple (M0, Id0) where M0 is the initial marking and Id0 is such that Id0(t) = Is(t), ∀t ∈ En(M0).

The second characterization of the TPN state, called clock state [16,17,21], defines the state of the model as a pair
(M, V ) combining a marking M and a clock valuation function V . In this characterization, a clock is associated with
each transition to measure the elapsed time since its enabling. The function V associates with each enabled transition
in M the value of its clock. When a transition t becomes enabled, its clock is initialized to 0. The clock increases
with time until t is fired or disabled by another firing. t can occur if the value of its clock is within the static firing
interval Is(t). It must be fired immediately, without any additional delay, when its clock reaches t max(t). In this
characterization, the initial state of the TPN model is the couple (M0, V0) where M0 is the initial marking and V0 is
such that V0(t) = 0, ∀t ∈ En(M0).

The two characterizations of the TPN state given above are very closely related. If (M, V ) is a clock state, its
corresponding interval state is (M, Id), where: ∀t ∈ En(M), Id(t) = [Max(0, t min(t) − V (t)), t max(t) − V (t)].
Note that, if t max(t) = ∞, then t max(t) − V (t) = ∞ independently of V(t). In this case, all clock values of t greater
or equal to t min(t) map to the same interval [0, ∞]. Consequently, several clock states may map to the same interval
state, in which case they are obviously bisimilar.

Despite their relatedness, the two state characterizations still show some major differences. As an example, the
characterization based on intervals is not appropriate for constructing ASCGs (the reasons will be made clear in
Section 2.3). For this reason, our approach and those proposed in [5,21] are all based on the clock characterization of
states. Note that, in [5], the authors do not speak explicitly about clock states. They characterize the TPN state in terms
of intervals, but implicitly use the clock state characterization to construct both the intermediate abstraction, called
SSCG and the ASCG.

5 Pre, Post and M0 are multi-sets represented by their formal sums.
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Initially, the model is in its initial state (clock state/interval state). The state evolves either by time progressions
(clocks increase/delays decrease) or by firing transitions. The firing of a transition is supposed to take no time but leads
to another marking (required tokens disappear while the produced ones appear). It follows that because of time density,
the TPN model has in general an infinite number of reachable states (i.e.: infinite state space), even if it is bounded. Its
analysis by enumerative techniques must pass by some state space contractions.

2.2. Concrete state spaces

The first abstraction of the TPN state space consists in hiding states reachable by time progression. We obtain a
graph, called concrete state space, where only states reachable by firing transitions are represented [16,17]. This graph
is defined by a tuple (�, −→, �0) where:

• �0 ∈ � is the initial state (�0 = (M0, V0)),
• � is the set of states reachable from �0 by firing sequences of transitions,
• −→ ⊆ (� × T × �) is the transition relation defined as follows:

((M, V ), tf , (M ′, V ′)) ∈−→ if and only if, the transition tf may occur from the state (M, V ) after some delay dh�0
and its firing leads to the state (M ′, V ′), i.e.:
◦ tf ∈ En(M),
◦ ∃dh ∈ R, 6

(0�dh) ∧ (t min(tf ) − V (tf )�dh)∧ ∧
t∈En(M) dh�(t max(t) − V (t)),

◦ ∀p ∈ P, M ′(p) = M(p) − Pre(p, tf ) + Post(p, tf ),
◦ ∀t ′ ∈ En(M ′), V ′(t ′) = 0, if t ′ is newly enabled (by transition tf ), V ′(t ′) = V (t ′) + dh, if not.

We also denote by (� −→tf �′) the condition (�, tf , �′) ∈−→.

The concrete state space of a TPN model is generally infinite and not suitable for an enumerative analysis. Hence,
further contractions are needed.

2.3. State class spaces

A state class space of the TPN model is a graph representing a finite abstraction of its generally infinite concrete
state space [16,17]. The nodes of this graph, called state classes, are agglomerations of concrete states. All concrete
states agglomerated in one node must share the same marking.

Let (�, −→, �0) be the concrete state space of a TPN model. Formally, a state class space is defined as a structure
AS = (A, �⇒, �0) where:

• A is a cover of �. 7 Each element of A, called state class, is an agglomeration of concrete states sharing the same
marking.

• �0 is the initial state class of AS, such that �0 ∈ �0, and
• �⇒⊆ A × T × A is the successor relation that satisfies condition EE, i.e.:

◦ ∀(�, tf , �′) ∈ A × T × A, (� �⇒tf �′) ⇒ (∃� ∈ �, ∃�′ ∈ �′, � −→tf �′),
◦ ∀(�, tf , �′) ∈ (� × T × �), (� −→tf �′) ⇒ (∀� ∈ A s.t. � ∈ �, ∃�′ ∈ A, (�′ ∈ �′ ∧ � �⇒tf �′)).

The first part of condition EE prevents the connection of two state classes with no connected states. The second one
ensures that all sequences of transitions in the concrete state space are represented within the state class space.
The relation �⇒ may satisfy other additional conditions such as

EA:

∀(�, tf , �′) ∈ A × T × A, (� �⇒tf �′) ⇒ (∀�′ ∈ �′, ∃� ∈ �, � −→tf �′).

AE:

∀(�, tf , �′) ∈ A × T × A, (� �⇒tf �′) ⇒ (∀� ∈ �, ∃�′ ∈ �′, � −→tf �′).

6 R being the set of real numbers.
7 A cover of � is a collection of sets whose union contains �.
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Theorem 1 establishes a relation between conditions AE, EA and properties of the model preserved in the state class
space.

Theorem 1. Let AS = (A, �⇒, �0) be a state class space of a TPN model. The following relations hold:

(i) If (AS satisfies condition EA and �0 = {�0}) then AS preserves LTL properties of the TPN model,
(ii) If AS satisfies condition AE then it preserves CTL∗ properties of the TPN model.

Proof. (i) It suffices to show that AS and its concrete state space have the same sequences of transitions. Condition EE
(the second part) ensures that any sequence of transitions in the concrete state space is also a sequence of transitions
in AS. What remains to show is that any sequence of transitions within AS exists within the concrete state space.
For this, let �0 �⇒t0 �1 . . . �n−1 �⇒tn−1 �n be a path in AS. Since we have �n−1 �⇒tn−1 �n, condition EA assures
that ∀�n ∈ �n, ∃�n−1 ∈ �n−1 such that �n−1 −→tn−1 �n. By going backward in the similar way, we can show that

∃�0 ∈ �0, ∃�1 ∈ �1, . . . , ∃�n−1 ∈ �n−1 such that �0 −→t0 �1 . . . �n−1 −→tn−1 �n. Since �0 = {�0} then �0 = �0,
which guarantees that the sequence starts from the initial state.

(ii) Knowing that, in absence of silent transitions 8 [5], bisimilar states satisfy identical CTL∗ properties, it suffices
to show that if AS satisfies AE, it is bisimilar to the TPN concrete state space. For this, we need to find a bisimulation
containing (�0, �0).

Let B be the binary relation defined by

∀(�, �) ∈ (A × �), (�, �) ∈ B iff � ∈ �.

The following three properties hold for B:

(1) (�0, �0) ∈ B;
(2) ∀(�, �) ∈ B, (� �⇒tf �′) ⇒ ∃�′, (� −→tf �′) ∧ (�′, �′) ∈ B;
(3) ∀(�, �) ∈ B, (� −→tf �′) ⇒ ∃�′, (� �⇒tf �′) ∧ (�′, �′) ∈ B.

Property (1) is obvious from the definition of �0. Property (2) is a direct consequence of condition AE. Finally, property
(3) is true because AS satisfies condition EE. From these properties, we conclude that B is a bisimulation, and therefore,
AS is bisimilar to the TPN concrete state space. �

Note that there are some differences between condition EE presented here and those given in [5,17].
EE in [5]:

∀(�, tf , �′) ∈ A × T × A, (∃� ∈ �, ∃�′ ∈ �′, � −→tf �′) ⇔ (� �⇒tf �′).

EE in [17]:

∀(�, tf , �′) ∈ A × T × A, (∃� ∈ �, ∃�′ ∈ �′, � −→tf �′) ⇒ (� �⇒tf �′).

Conditions EE given in [5,17] impose to connect each two classes � and �′ whenever some state of the first one has
a successor in the second one. However, most contractions [4,5,21] proposed in the literature do not obey this rule,
while they are still valid. As an example, consider the TPN model with its SSCG 9 shown in Fig. 2. In the figure,
the inequalities associated with each state class constrain the values of clocks associated with transitions enabled at
the class. 10 Note that the unique state of class C0 (i.e., the initial state of the TPN model) belongs also to class C1.

8 Internal activities of a system not visible for an external observer.
9 The TPN strong state class graph is a state class space proposed by Berthomieu and Vernadat [5].

10 In other words, these inequalities characterize clock domains of all states agglomerated in the class.
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Fig. 2. A TPN model and its SSCG.

This state has itself as a successor by t0. C0 is connected by t0 to C1 but C1 is not connected to C0 by t0, which
contradicts condition EE given in [5] and the one given in [17].

Berthomieu and Menasche used the interval characterization of the TPN state and proposed 20 years ago to ag-
glomerate, into one state class, all states reachable by firing the same sequence of transitions [4]. Each state class is
characterized by the common marking of its states and the union of their firing intervals. The resulting graph, called
linear state class graph (LSCG), preserves LTL properties of the model but not necessarily its CTL∗ ones [5,21].
Moreover, LSCGs are not suitable to be refined into ASCGs. The refinement procedure is mainly based on splitting
state classes, which is not possible with the characterization of state classes used for LSCGs. Indeed, interval states
agglomerated into an LSCG state class cannot be identified one by one. The way the agglomeration is characterized
makes it an irreversible operation.

Yoneda and Ryuba developed in [21] an approach to generate a state class space that preserves CTL∗ properties of
the TPN model. Their approach consists in two steps. The first step builds an intermediate contraction of the TPN state
space as a state class space satisfying condition EA. The second step refines this state class space, using a partition
refinement technique, until both conditions EA and AE are satisfied. The resulting graph, called ASCG, preserves the
CTL∗ properties of the TPN model, but the approach has some disadvantages. The state class definition used in this
approach is somewhat complicated. 11 Furthermore, since condition AE is sufficient for a state class space to preserve
CTL∗ properties, enforcing condition EA complicates the computations and yields in general bigger ASCGs. The
approach is also limited to TPN models with bounded firing intervals, which reduces its application extent.

Recently, Berthomieu and Vernadat brought in [5] some improvements to the characterization of state classes and to
the ASCG construction. Their ASCGs are in general smaller than those obtained with Yoneda–Ryuba’s approach and
much faster to compute too. Moreover, Berthomieu–Vernadat’s approach produces finite ASCGs for all bounded TPN
models, including those with unbounded firing intervals.

3. Compact state class graph of the TPN model

Berthomieu–Vernadat in [5] and Yoneda–Ryuba in [21] use a partition refinement technique to construct an ASCG,
and both use as an intermediate abstraction a state class space satisfying condition EA. Enforcing condition EA is
however not necessary. It also leads in general to very large state class spaces with a high degree of state redundancy. 12

Experimental results have shown that this redundancy induces the refinement process to waste time and space generating

11 A state class is characterized by a marking, a set of constraints and the firing sequence which led to that state class.
12 One state may appear in several state classes.
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redundant classes which need to be eliminated. To attenuate these problems, we propose to generate a compact state
class graph (CSCG) with no regard to condition EA.

For reasons of clarity, we will consider only T-safe TPNs (no multi-enabled transitions). The case of multienabledness
can be treated in the same way as in [3].

Let (�, −→, �0) be a concrete state space of a TPN model. The CSCG is a state class space where each state class is
defined as a pair (M, F ) combining a marking M and a formula F . F characterizes the clock domains of all concrete
states agglomerated in the state class. In F, the clock of each enabled transition for M is represented by a variable with
the same name. By abuse of language, F is also called the domain of the class.

The initial state class of the CSCG is the pair (M0, F0) where:

• M0 is the initial marking, and
• F0 = (

∧
t∈En(M0)

t = 0).

State classes are computed progressively by repeatedly applying the following firing rule starting from the initial
state class.

3.1. Firing rule of transitions from state classes

Let � = (M, F ) be a state class and tf a transition.

• tf can occur from � if and only if, there exists at least one state in � from which tf can fire, i.e.:
◦ tf is enabled for the marking M, and
◦ the following formula is consistent:

F ∧ (dh�0) ∧ (t min(tf )� tf + dh)∧ (
∧

t∈En(M)(t + dh� t max(t))),
• If tf can occur from �, its firing leads to the class �′ = (M ′, F ′) such that:

◦ ∀p ∈ P, M ′(p) = M(p) − Pre(p, tf ) + Post(p, tf ),
◦ the clock domain F ′ is computed in four steps:

1. Initialize F ′ with the formula F ∧ (dh�0), and replace each variable t by (t − dh) (this substitution increases
clocks of all enabled transitions by exactly dh time units),

2. Add the constraints: (t min(tf )� tf ) and (
∧

t∈En(M) t � t max(t)),
3. Eliminate by substitution tf , dh and all variables associated with transitions conflicting with tf for the marking

M. A transition t of En(M) conflicts with tf for M iff: (∃p ∈ P, M(p) < Pre(p, t) + Pre(p, tf )),
4. For each transition t newly enabled in M ′, add the constraint: t = 0.

During the construction of the CSCG, each newly computed class is compared with the previously computed ones.
All state classes, with the same marking, having domains such as one is included into the other are grouped into one
node. If the initial state class is combined with another one, the node obtained becomes initial.

The idea of performing such an agglomeration is however not new. Similar techniques have been successfully used
for TA [10], under the name inclusion abstraction, to check for reachability properties.

The objective behind computing a CSCG is to use it as an intermediate structure for constructing an ASCG. The
intermediate structure used in [5] for the same objective is generated with the same firing rule given above, but state
classes are agglomerated whenever they are equal to each other. The result is a state class space, called SSCG which
preserves the LTL properties of the TPN model. Compared to the SSCG, the CSCG is just its abstraction by inclusion
which satisfies condition EE but does not necessarily preserve LTL properties. Nevertheless, it is still appropriate to be
refined into an ASCG with a good impact on performances (see Section 6 for experimental results).

3.2. Relaxing state classes with unbounded firing intervals

The CSCG construction approach presented in the previous subsection may generate infinite graphs for bounded
TPN models with unbounded static intervals. To complete this approach for the case of bounded TPN models with
unbounded static intervals, we use the relaxation operation proposed by Berthomieu and Vernadat in [5], to resolve the
same problem.
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Let (M, F ) be a state class such as some of its enabled transitions have unbounded static firing intervals. We denote
by En<∞(M) and En=∞(M) the following sets:

• En<∞(M) = {t |t ∈ En(M) ∧ t max(t) < ∞},
• En=∞(M) = {t |t ∈ En(M) ∧ t max(t) = ∞}.

The relaxation of (M, F ) consists in replacing it by the set of classes: {(M, Fe)|(e = ∅ ∨ e ⊆ En=∞(M))}, Fe is
a consistent formula that characterizes states of the class (M, F ) where all transitions of e have not yet reached their
minimal delays, while those of (En=∞(M) − e) have either reached, or passed over their minimal delays.

Fe is computed in three steps:

1. Initialize Fe with: F ∧ (
∧

t∈e t < t min(t))∧
(
∧

t ′∈En=∞(M)−e t ′ � t min(t ′)),
2. Eliminate all variables of (En=∞(M) − e),
3. Add the constraint:

(
∧

t ′∈En=∞(M)−e t min(t ′)� t ′ �∞).

The last operation, called class relaxation, replaces the domain of each transition t ′ which has reached its minimal
delay, with the domain [t min(t ′), ∞]. This operation may add some extra clock states to the relaxed state class, but does
not alter the behavior of the class. The explanation could be well understood if we revert to the interval characterization
of states. From this perspective, the relaxation does not add any new interval state to the relaxed class. 13 All added
clock states are bisimilar to some states already present in the class before its relaxation.

3.3. Illustrative example

Consider the TPN model shown in Fig. 1. Its SSCG 14 shown in Fig. 3 consists of 15 nodes and 30 arcs. The successor
state classes of the initial class, by transition t0, are computed in two steps. The first step computes the successor of class0
by t0, using the firing rule given in Section 3.1. The result is the state class: (P 0+P 1+P 3, 1� t1 �2 ∧ t2 = t1 ∧ t0 = 0).

The second step relaxes the resulting state class by replacing it with two classes, one for e = {t1, t2}, the other one
for e = ∅ (formulas corresponding to e = {t1} and e = {t2} are not consistent). The subclasses are, respectively:

• class1 = (P 0 + P 1 + P 3, 1� t1 < 2 ∧ t2 = t1 ∧ t0 = 0),
• class2 = (P 0 + P 1 + P 3, 2� t1 �∞ ∧ 2� t2 �∞ ∧ t0 = 0).

For the remaining state classes, no relaxation is required, but some of them are included in the others. For example,
state classes named class4, class9, class12 are all included in state class class3. In the CSCG (see Fig. 4), all these
classes are grouped in the state class class3 (class C3 in Fig. 4). The same thing applies to state classes class6, class10,
class13 which are grouped in class5 (class C5 in Fig. 4), and state classes class8, class11, class14 which are grouped
in class7 (class C7 in Fig. 4). The resulting CSCG shown in see Fig. 4 consists only of 6 nodes and 15 arcs.

Note that the grouping of state classes by inclusion is not performed at the end of the SSCG construction but during
the construction itself.

4. Reducing the computing complexity of state classes

The construction of the CSCG requires computing state classes using the firing rule, checking them for inclusion,
and relaxing them whenever required. The efficiency of the construction relies heavily on the way state classes are
implemented. From the firing rule, one can see that the formula F of each state class (M, F ) is a conjunction of atomic
constraints of the form (t − t ′ ≺ c), (−t ≺ c) or (t ≺ c), where c ∈ Q ∪ {∞, −∞}, ≺∈ {<, =, � , >, �} and t, t ′ are
transitions. The conjunction of this type of inequations is known to define a convex domain. A well known data structure
that fits perfectly with this framework is the difference bound matrix (DBM) data structure [2,22]. Furthermore, all
operations performed on state classes when constructing CSCGs are well defined for DBMs. These operations are made

13 See Section 2 for the relation between the clock and the interval characterization of states.
14 The SSCG is computed using the tool Tina-2.2.6 which implements the approach of Berthomieu and Vernadat [5].
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Fig. 3. SSCG of the model in Fig. 1 built with TINA tool.

simple by putting each DBM in its unique canonical form. The computation of this form is based on the shortest path
Floyd–Warshall’s algorithm and is considered as the most costly operation on DBMs. Its time complexity is O(n3),
where n is the DBM order.

In our implementation for building CSCGs, state classes are represented using DBMs with canonical forms computed
in O(n2) instead of O(n3).
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Fig. 4. CSCG of the model in Fig. 1 built with our tool.

Let (M, F ) be a state class. Its canonical form is the pair (M, B) where B is the DBM of F in its canonical form.
The order of B is |En(M) ∪ {o}|, where o represents the value zero.

Usually, a DBM is represented as a matrix where each element is a couple composed of a constant (a bound) and
a comparison operator (� or <). For clarity, we separate, in what follows, bounds from operators into two distinct
matrices H and S, respectively. Using this convention, the DBM of F is the couple (H, S) defined by:
∀(x, y) ∈ (En(M) ∪ {o})2,

• H(x, y) = Sup(x − y, F ), where Sup(x − y, F ) is the supremum of x − y in the domain of F,
• S(x, y) is either � or <, depending respectively on whether x − y reaches its supremum in the domain of F or not.

The canonical form of the initial state class is �0 = (M0, (H0, S0)), where M0 is the initial marking of the model,
H0 is the null matrix and all elements of S0 are set to � .

We establish in Propositions 1 and 2 an implementation of the firing rule that directly computes the canonical form
of each reachable state class in O(n2) (n is the number of transitions enabled for the class). In the same way, we show
in Proposition 3 how to relax state classes more efficiently.

Note that in the remaining, we will focus only on computations involving the matrix H. The matrix S is computed
as for DBMs [2,22].

Proposition 1. Let (M, F ) be a state class, (M, (H, S)) its canonical form and tf a transition.
tf is firable from (M, (H, S)) if and only if:

• tf ∈ En(M), and
• t min(tf )�Mint∈En(M)(t max(t) + H(tf , t)).

Intuitively, this means that the clock tf has to reach t min(tf ), before any other enabled transition t reaches t max(t).

Proof (Sketch of proof). The proof is based a graph representation of DBMs called constraint graphs [2]. A constraint
graph of a DBM associated with a formula F is a weighted directed graph, where nodes represent variables of F, with
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one extra node, denoted o, representing the value 0. An arc connecting node x to node y with weight (≺, c), where ≺ is
either < or � , represents the constraint: y − x ≺ c. An arc connecting node x to node y with weight c represents the
constraint: y − x�c.

Let F be a set of constraints representable by a constraint graph.

• F has, at least, one solution (one tuple of values that satisfies, at once, all constraints in F) if and only if, the constraint
graph of F has no negative cycle,

• If the constraint graph of F has no negative cycle, the weight of the shortest path, in the graph, going from a node y
to a node x, is equal to Sup(x − y, F ).

The formula of each reachable state class is consistent and can be represented by a constraint graph. Consequently, its
constraint graph has no negative cycle.

Let � = (M, F ) be a reachable state class, (H, S) the DBM (in its canonical form) of F and G its constraint graph.
Using the definition of H and the above results, the weight of the shortest path, in G, from a node y to a node x is equal
to H(x, y).

From the firing rule given in Section 3.1, we deduce that transition tf is firable from � if and only if, tf is enabled
for the marking M and the following formula is consistent: F ∧ (

∧
t∈En(M) t − tf � t max(t) − t min(tf )).

In other words, the constraint graph of F completed with the set of arcs {(tf , t, t max(t) − t min(tf ))|t ∈ En(M)}
has no negative cycle.

Since before adding these arcs, the graph did not contain any negative cycle, the completed graph will have no negative
cycle if and only if, all cycles going through one of the added arcs are not negative (see Fig. 5b, added arcs are dotted).

f

f

f

f

f f

f

t En(m)

t En(M )

f

f

f

f

(a) (b)

(c)

Fig. 5. Added arcs in the constraint graph of F .
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The weight of the shortest cycle going through an added arc (tf , t, t max(t) − t min(tf )) is t max(t) − t min(tf ) +
H(tf , t). This weight must be nonnegative, i.e.: ∀t ∈ En(M), t max(t) − t min(tf ) + H(tf , t)�0. �

Proposition 2. Let (M, F ) be a state class, (M, (H, S)) its canonical form and tf a transition.
If tf is firable from (M, (H, S)), its firing leads to the state class (M ′, (H ′, S′)) computed as follows:

• ∀p ∈ P, M ′(p) = M(p) − Pre(p, tf ) + Post(p, tf );
• ∀t ∈ En(M ′),

◦ H ′(t, t) = 0,
◦ If t is newly enabled: H ′(t, o) = H ′(o, t) = 0,
◦ If t is not newly enabled: H ′(t, o) = Mint ′∈En(M)(t max(t ′) + H(t, t ′)),

and H ′(o, t) = Min(H(o, t), H(tf , t) − t min(tf )),
• ∀(t, t ′) ∈ (En(M ′))2, t �= t ′,

◦ If t and t ′ are newly enabled: H ′(t, t ′) = H ′(t ′, t) = 0,
◦ If t is newly enabled and t ′ is not: H ′(t, t ′) = H ′(o, t ′) and H ′(t ′, t) = H ′(t ′, o),
◦ If t and t ′ are not newly enabled: H ′(t, t ′) = Min(H(t, t ′), H ′(t, o) + H ′(o, t ′)).

Proof (Sketch of proof). Suppose that the transition tf is firable from the state class � = (M, (H, S)). From the firing
rule given in Section 3.1, we deduce that the matrix H ′ of the class reachable from � by firing tf , can be computed
using the constraint graph corresponding to H as follows:

1. Rename the node o to dh, then add a new node o and the arc (dh, o, 0). This operation corresponds to the step 1 of
the firing rule given in Section 3.1.

2. Add the arc (tf , o, −t min(tf )) and all arcs in the set {(o, t ′, t max(t ′))|t ′ ∈ En(M)}. This corresponds to the
constraints: (t min(tf )� tf ) and ((

∧
t∈En(M) t � t max(t))),

3. Rename the node tf and all nodes associated with transitions conflicting with tf for M, to avoid having different
nodes with the same name,

4. For each transition x newly enabled in M ′, add a new node x and both arcs (x, o, 0) and (o, x, 0). This corresponds
to the constraint: x = 0.

For each couple (x, y) of (En(M ′) ∪ {o})2, H ′(x, y) is the weight of the shortest path from node y to node x, in the
completed constraint graph (see Fig. 5c, added arcs are dotted):

• If t is not newly enabled, the shortest path from node o to node t is the shortest path among those going through an
arc (o, t ′, t max(t ′)), t ′ ∈ En(M). Otherwise, its value is 0,

• If t is not newly enabled, the shortest path from node t to node o is the shortest path among those going through
(dh, o, 0) or (tf , o, −t min(tf )). Otherwise, its value is 0. Note that dh corresponds to the node o in the constraint
graph of F,

• If t and t ′ are not newly enabled, the shortest path from node t ′ to node t is the shortest path among those going
through node o and those which do not pass through node o. Note that all added arcs are either ingoing or outgoing
arcs of o,

• If t and t ′ are newly enabled, t − t ′ = 0,
• If t is newly enabled and t ′ is not, t − t ′ = −t ′ and t ′ − t = t ′. �

We have shown, in Propositions 1 and 2, how to reduce the computing complexity of each state class. The complexity
of testing the consistency is reduced from O(n3) to O(n) while computing complexity of the canonical form passes
from O(n3) to O(n2).

To handle TPN models with unbounded firing intervals, some computed state classes have to be split and relaxed.
Proposition 3 shows how to compute in O(n2) the canonical form of each resulting class.
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Proposition 3. Let (M, F ) be a state class with En=∞(M) �= ∅, (M, (H, S)) its canonical form and e a subset of
En=∞(M) (e can be empty).

• The class �e = (M, Fe), corresponding to the subset e, is not empty if and only if:
◦ ∀t ∈ e, t min(t) + H(o, t) > 0,
◦ ∀t ∈ En=∞(M) − e, H(t, o) − t min(t)�0,
◦ ∀t ∈ e, ∀t ′ ∈ En=∞(M) − e, t min(t) + H(t ′, t) − t min(t ′) > 0

• If �e is not empty, its canonical form (M, (He, Se)) is computed using the canonical form of (M, F ) as follows:
◦ ∀t ∈ En(M), He(t, o) = Min(H(t, o), Mint ′∈e(t min(t ′) + H(t, t ′))),
◦ ∀t ∈ En(M), He(o, t) = Min(H(o, t), Mint ′∈En=∞(M)−e(H(t ′, t) − t min(t ′))),
◦ ∀(t, t ′) ∈ En(M)2, He(t, t

′) = Min(H(t, t ′), He(t, o) + He(o, t ′)),
◦ ∀t ∈ En=∞(M) − e, He(t, o) = ∞ and He(o, t) = −t min(t),
◦ ∀t ∈ En=∞(M) − e, ∀t ′ ∈ En(M) − {t}, He(t, t

′) = ∞ and He(t
′, t) = He(t

′, o) − t min(t).

Proof (Sketch of proof). The proof is also based on constraint graphs (see Proposition 1). The constraint graph of Fe

can be obtained from the constraint graph of F by adding the arcs:
{(o, t, t min(t))|t ∈ e} and
{(t ′, o, −t min(t ′))|t ′ ∈ En<∞(M) − e}.
These arcs correspond, respectively, to the constraints:
(
∧

t∈e t < t min(t)) and (
∧

t ′∈En=∞(M)−e t ′ � t min(t ′)).
Fe is consistent if and only if, the obtained graph has no negative cycle, in which case, the shortest path from a node

x to a node y is the upper bound of the distance (y − x), i.e.: He(y, x).
The relaxation operation replaces the domain of each transition t , belonging to (En=∞(M) − e), by the interval

[t min(t), ∞]. �

5. Atomic state class graph of the TPN model

Let (�, −→, �0) be the concrete state space of a TPN model and AS = (A, �⇒, �0) one of its state class spaces. AS
is said to be atomic if and only if, it satisfies condition AE, i.e.: ∀(�, tf , �′) ∈�⇒, (∀� ∈ �, ∃�′ ∈ �′, (�, tf , �′) ∈−→).

In other terms, AS is atomic if and only if:

∀(�, tf , �′) ∈�⇒, (� ⊆ Pred(�′, tf )).

Pred(�′, tf ) is the set of all states which may lead by firing the transition tf to some states in �′. To verify the
atomicity of class � for the transition (�, tf , �′), it suffices to verify that � is equal or included in Pred(�′, tf ). In case
� is not atomic, it is partitioned into a set of convex subclasses so as to isolate the predecessors of �′ by tf in �, from
those which are not. This refinement operation is repeated until all state classes are atomic.

A CSCG is a state class space which is not necessarily atomic. Nevertheless, the characterization of its state classes
allows it to be refined into an atomic state class space. Starting from a finite CSCG, its non-atomic state classes are
repeatedly split, until an ASCG is obtained.

5.1. Splitting non-atomic state classes

Let AS be a state class space and (�, tf , �′) a transition for which � = (M, F ) is not atomic. Algorithm 1 shows how
to split � according to Pred(�′, tf ), represented by �′′ = (M ′′, F ′′) in the algorithm, with M ′′ = M .

The splitting algorithm is used only if the test � ⊆ Pred(�′, tf ) fails. It returns either a partition of � or an
empty set. A partition is returned if Pred(�′, tf ) ∩ � �= ∅. The last subclass added to the partition is exactly the
predecessors of �′ by tf in �. Each subclass of the partition inherits all connections of �. In case (�, t, �) ∈�
⇒, each subclass of the partition is connected, by t , to all subclasses of the partition, including itself. If � and
Pred(�′, tf ) do not share any state, the splitting function returns an empty set, and the transition (�, tf , �′) is
removed.
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Algorithm 1.
Partition Function Split (Class �, Class �′′)
{

Formula X := F ; // F is the formula of the class �
Partition Part := ∅;
for each constraint f of F ′′ do
{

if (X ∧f ) is not consistent then
// there is no predecessor of �′ by tf in �

return ∅;
if (X ∧¬f ) is consistent then

Part := Part ∪ {(M, X ∧ ¬f )};
X := (X ∧ f );

}
// At this point, (M, X) is equal to Pred(�′, tf )

Part := Part ∪ {(M, X)};
return Part;

}

Similarly to what is done in Propositions 1 and 2, the consistency test of (X ∧ f ) and (X ∧ ¬f ), in Algorithm 1,
is performed in O(n), where n is the number of variables in X. Their canonical forms are computed in O(n2) too. The
next proposition shows how to compute Pred(�′, tf ).

Proposition 4. Let New(M ′, tf ) be the set of all transitions newly enabled in the marking M ′ of �′, i.e.:
New(M ′, tf ) = {t ∈ En(M ′)|∃p ∈ P, M ′(p) − Post(p, tf ) < Pre(p, t)}.

The set Pred(�′, tf ) of all states that lead by firing tf to some states in �′ = (M ′, F ′) is computed in six steps:
Let M ′′ and F ′′ be the marking and the formula of Pred(�′, tf ).

1. ∀p ∈ P, M ′′(p) = M ′(p) + Pre(p, tf ) − Post(p, tf ),
2. Initialize F ′′ to (F ′ ∧ ∧

t∈New(M ′,tf ) t = 0),

3. Eliminate by substitution all transitions in New(M ′, tf ),
4. Add constraints: (t min(tf )� tf ) and (

∧
t∈En(M ′′) 0� t � t max(t)),

5. Replace each variable t by t − dh and add the constraints dh�0, and (
∧

t∈En(M ′′) 0� t),
6. Eliminate dh by substitution.

Proof (Sketch of proof). Since the firing of transition tf sets the clock of each newly enabled transition to 0, in step
two, we extract from �′ the subset of states where the clock of all newly enabled transitions are equal to 0. In step four,
we add the firing constraints of transition tf so as to only keep states that might fire tf . Finally, in the fifth step, we go
back in time (each variable is decreased by dh time units). �

The canonical form of Pred(�′, tf ) is computed in O(n2), using a technique similar to what is presented in
Proposition 2.

5.2. Building the atomic state class graph

Algorithm 2, generates the ASCG from the CSCG using a partition refinement technique. It repeatedly scans the
transitions (the arcs) of the graph, checking for the satisfaction of condition AE. The algorithm stops when all transitions
satisfy this condition. During the process, if some transition does not satisfy condition AE, the splitting operation
(Algorithm 1) is performed.
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Algorithm 2.
Graph Function BuildingAtomicGraph (Graph G)
{

Graph G′ := G;
Repeat
{

for each transition (�, tf , �′) of G′ do
{

Class �′′ := Pred(�′, tf );
// let F′′ be the formula of �′′
if ¬ (� ⊆ �′′) then
{

Partition Part :=Split (�, F ′′);
if (Part = ∅) then

Eliminate transition (�, tf , �′) from G′
else
{

Replace (�, Part, G′)(∗);
Eliminate � from G′

}
}

}
} until all classes become atomic;
return G′;

}
(∗)The action Replace(�, Part, G′) replaces, in G′, the node � by all subclasses of the partition Part.

Algorithm 2 terminates because it operates on a finite CSCG where each state class has a finite number of possible
splitting [3]. Note that the algorithm does not specify any strategy concerning the order in which transitions are
considered during the refinement process. Experimental results have shown however that this order is relevant. In our
implementation, we retained a simple strategy which seems to offer a good compromise between computing times and
resulting graph sizes. In this strategy, all computed arcs are stored in a queue and treated in first in first out order.

6. Implementation results

We implemented our approach for buildingASCGs in our experimental tool called Real Time Studio. The tool, written
in JAVA and C + +, integrates several functionalities related to enumerative analysis of the TPN model, including a
CTL model checker and a minimizer under bisimulation 15 [17].

All results reported in this section have been obtained on a three gigahertz Pentium-4 with two gigabytes of RAM.
We tested our approach on many TPN models, all of which have shown an important gain in performances when

using our improvements. We report here the results obtained for some models considered by Berthomieu and Vernadat
in [5] (Figs. 6 and 8), and Yoneda and Ryuba in [21] (Fig. 6).

Fig. 8 shows the TPN model components of the classical level crossing example: the train, the controller and the
barrier models. The level crossing model is obtained by putting in parallel one copy of the controller model, n copies
of the train model, and one copy of the barrier model. The model components are synchronized on transitions with the
same names.

We also report results obtained for the TPN models in Fig. 7 which illustrate special cases where SSCGs are larger than
their corresponding ASCGs. This situation generally happens when a TPN model has some transitions with unbounded

15 Bisimilar classes must also share the same marking.
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Fig. 6. Some TPN models used in our experiments.
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Fig. 7. Producer consumer model.

firing intervals, where lower bounds are greater than zero. The reason could be well understood since, in this special
case, the relaxation operation induces a big fragmentation of state classes.

Note that we only compare our results to those of Berthomieu and Vernadat obtained using the tool Tina-2.6.6, which
implements their approach. The results ofYoneda and Ryuba for the models given in Fig. 6 could be found in [5] where
they are compared with those of Berthomieu and Vernadat.

Table 1 reports in each row the results obtained for the SSCG and its corresponding CSCG of the model given in the
first column. The results are given in terms of graph size (nodes/arcs) followed by its computing time. The denotation
M1 ‖ M2 is used in the first column to indicate the parallel composition of the TPN models M1 with M2 for the TPN
models in Fig. 6. For the producer consumer models in Fig. 7, the parallel composition of n − 1 copies of the model
in Fig. 7b with one copy of the model in Fig. 7a while merging all places named P1 in one single place, is denoted
Prod(n). For the level crossing Model in Fig. 8 with n trains crossing the level, we use the denotation Trains(n). The
results given in column two are those obtained for computing SSCGs using the tool Tina. 16 An interrogations mark
indicates a situation where the computation has not completed after an hour or the execution has aborted due to a lack
of memory. The last column gives the ratio of the results obtained for SSCGs to those obtained for CSCGs. It also
allows to see the big gap in performances between the two constructions.

16 SSCGs obtained using our tool are identical in sizes.
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Table 1
SSCGs and CSCGs of some tested TPN models

TPNs SSCG CSCG Ratio

Fig. 1 15/30 6/15 2.14
Time (ms) 0 0 –
Fig. 6a 21/29 12/17 1.72
Time (ms) 0 0 –
Fig. 6b 60/93 15/25 3.83
Time (ms) 10 0 > 10.00
Fig. 6c 39/63 12/17 3.52
Time (ms) 0 0 –
Fig. 6a‖6b 6410/15 759 509/1395 11.67
Time (ms) 391 10 39.10
Fig. 6a‖6c 3725/10 821 191/534 20.06
Time (ms) 250 0 > 250.00
Fig. 6b‖6c 9555/26 002 483/1707 16.24
Time (ms) 691 10 69.10
Fig. 6‖6b 200 087/547 822 1360/5048 116.71
Time (ms) 11 045 460 24.01
Fig. 7 Prod(2) 7963/42 566 165/896 47.62
Time (ms) 1833 10 183.30
Fig. 7 Prod(3) 122 191/1 111 887 1184/11 721 95.63
Time (ms) 106 994 510 209.79
Fig. 7 Prod(4) 659 377/7 987 583 4726/67 954 118.97
Time (ms) 551 610 8342 66.12
Fig. 7 Prod(5) ? 13 643/249 187 –
Time (ms) 57 502 –
Fig. 8 Trains(1) 11/14 10/13 1.09
Time (ms) 0 0 –
Fig. 8 Trains(2) 141/254 41/82 3.21
Time (ms) 10 0 > 10
Fig. 8 Trains(3) 5051/13 019 244/714 18.86
Time (ms) 500 10 50
Fig. 8 Trains(4) 351 271/1 193 376 1807/7091 173.59
Time (ms) 19 450 165 117.88
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Table 2
ASCGs of some tested models

TPNs Tina Ours Optimal

Fig. 1 15/30 6/15 4/8
Time (ms) 0 0 0
Fig. 6a 36/61 27/49 26/47
Time (ms) 0 0 0
Fig. 6b 80/204 80/204 80/204
Time (ms) 0 0 0
Fig. 6c 61/162 46/135 46/135
Time (ms) 0 0 0
Fig. 6a‖6b 9349/36 709 8969/36 377 8599/34 591
Time (ms) 13 610 2784 48 169
Fig. 6a‖6c 4558/21 702 4195/20 531 3898/19 035
Time (ms) 4446 1091 19 035
Fig. 6b‖6c 9852/45 045 9630/44 786 9366/43 143
Time (ms) 16 904 3404 80 126
Fig. 6b‖6b 79 840/378 432 79 840/378 432 ?
Time (ms) 912 910 70 911
Fig. 7 Prod(2) 2615/27 348 2444/26 358 2334/25 046
Time (ms) 8422 1151 9414
Fig. 7 Prod(3) ? 31 197/485 960 28 319/430 875
Time (ms) 40 167 3 887 309
Fig. 7 Prod(4) ? 151 384/2 887 295 ?
Time (ms) 358 060
Fig. 7 Prod(5) ? 472 940/10 407 836 ?
Time (ms) 1 993 170
Fig. 8 (1 train) 12/16 11/15 11/15
Time (ms) 0 0 0
Fig. 8 (2 trains) 196/859 192/844 185/786
Time (ms) 40 10 30
Fig. 8 (3 trains) 6981/49 997 6966/49 802 6905/48 749
Time (ms) 9740 2113 60 878
Fig. 8 (4 trains) ? 356 930/3 447 548 ?
Time (ms) 317 286

Note that, during the construction of the CSCG, checking for inclusion has been performed sequentially. This
operation could be improved significantly by using an appropriate way to order state classes.

Table 2 reports the results for ASCGs obtained using the tool Tina (column two) and using our approach (column
three). Column four gives the optimal ASCG size obtained by minimization under bisimulation [17]. Times reported
in this last column are minimization times only.
Note that we successfully tested the bisimilarity of all ASCGs we obtained with or without abstraction by inclusion.

An interesting feature which helps to explain the obtained results is illustrated in Fig. 9. 17 This feature relates to the
computation pattern followed by the refinement procedure, depending on which state class space is refined (the SSCG
or the CSCG). The feature has been noticed in all tested models, and appears to be independent of the implementation
strategy of the refinement process. 18

Among the reported models, Fig. 6b‖6b is where the feature is most apparent. As illustrated in Fig. 9, the refine-
ment of the CSCG into an ASCG follows an almost linear like pattern, 19 whereas the refinement of the SSCG results
in a graph which size starts first to grow up to a peek size, then decreases until the ASCG is obtained. We observed
in general that the peek size increases as the ratio of the ASCG size to the CSGG size increases. In certain cases, the peek

17 The results reported in Fig. 9 have been obtained using our implementation.
18 We tested several implementation strategies of the refinement procedure with no major change in the observed refinement pattern.
19 The size of the graph grows linearly in time during its construction.
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Fig. 9. Refinement patterns of the SSCG and the CSCG of the model Fig. 6b‖6b.

size grows out of control, leading to a state explosion. This is the main reason why some ASCGs have been computed
successfully using CSCGs, but failed to compute, in reasonable times or due to a lack of memory, using SSCGs
(ex: Fig. 8 (4 trains)).

Note also that for some models (ex: Fig. 6b‖6b, Fig. 7 Prod(n)) the SSCG may be much larger than the ASCG itself.
This remark suggests that the state explosion problem may arise during the construction of the SSCG itself, before
even starting its refinement. In this sense, using CSCGs helps to attenuate the state explosion problem.

7. Conclusion

This paper deals with the application of the CTL∗ model checking technique to the time Petri net (TPN) model.
Because of time density, this model has in general an infinite state space. To apply CTL∗ model checking to the
TPN model, its state space has to be contracted into a finite graph which preserves its CTL∗ properties. In [5,21], the
authors propose two different construction approaches of such a graph, called atomic state class graph (ASCG). Both
approaches use a partition refinement technique, where an intermediate contraction of the TPN state space is first built
then refined until an ASCG is produced.

To improve the ASCG construction, we propose to use an intermediate structure that is much more compact and
much faster to compute than what is proposed in [5,12]. This structure, called contracted state class graph (CSCG),
is a contraction of the intermediate structure proposed in [5], where states redundancy is reduced to a very low level.
We also propose to compute each CSCG and ASCG node in O(n2) instead O(n3), n being the number of transitions
enabled at the node.

These improvements have shown a significant impact on the ASCG construction procedure, in terms of computing
times and memory usage. They allowed to compute some ASCGs, which failed to compute on the same computer
configuration without their application.

In future works we want to investigate the possibility to contract further the CSCG and study its impact on the
refinement procedure in more details.
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