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SUMMARY

CCR5, themajor HIV-1 coreceptor, is a primary target
for HIV-1 entry inhibition strategies. CCL5/RANTES,
a natural CCR5 ligand, is one of the most potent
HIV-1 entry inhibitors and, therefore, an ideal candi-
date to derive HIV-1 blockers. Peptides spanning
the RANTES N-loop/b1-strand region act as specific
CCR5 antagonists, with their hydrophobic N- and
C termini playing a crucial role in virus blockade.
Here, hydrophobic surfaces were enhanced by
tryptophan substitution of aromatic residues, high-
lighting position 27 as a critical hot spot for HIV-1
blockade. In a further molecular evolution step,
C-terminal engraftment of RANTES 400 loop pro-
duced a peptide with the highest solubility and anti-
HIV-1 activity. These modified peptides represent
leads for the development of effective HIV-1 inhibi-
tors and microbicides.

INTRODUCTION

HIV-1 is the causative agent of the acquired immunodeficiency

syndrome (AIDS) pandemic that has relentlessly afflicted several

millions people over the past 3 decades. Despite the massive

research commitment, current therapeutic options cannot erad-

icate the infection and remain financially prohibitive for most

AIDS sufferers worldwide. The urgent need for novel therapeu-

tics, including a long-sought vaccine, effective microbicides,

and new systemic drugs, is therefore a major goal. New classes

of drugs against HIV-1 have recently been developed, including

inhibitors of virus entry into target cells. HIV-1 particles dock to

target cells by interacting, via the envelope protein gp120, with

two receptors, CD4 and a chemokine receptor, either CCR5 or

CXCR4 (Lusso, 2006). Following these initial interactions, which

include profound conformational changes, HIV-1 particles enter

target cells by a gp41-mediated mechanism of virus-cell

membrane fusion (Colman and Lawrence, 2003). Among the

virus-entry inhibitors, T20, a peptide that impedes membrane

fusion by intercalating into and locking gp41 upon its conforma-
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tional change, represents a proof of principle for peptide-based

anti-HIV-1 drugs (Kilby et al., 1998). Other entry inhibitors fall into

the category of HIV-1 coreceptor antagonists. Most important,

CCR5 is a major HIV-1 coreceptor that is almost exclusively

used by HIV-1 strains responsible for initial transmission and

prevalent throughout the asymptomatic phase of the infection

(Lusso, 2006). Therefore, HIV-1 blockade at the CCR5 site repre-

sents an ideal therapeutic route, corroborated by the discovery

that the CCR5 D32 deletion confers HIV-1 infection resistance

(Huang et al., 1996). In order to avoid any proinflammatory

activity, CCR5-targeting HIV-1 blockers should ideally not acti-

vate the receptor; hence, CCR5 antagonism is an important

prerequisite. Maraviroc, a small chemical compound blocking

HIV-1 acting as a CCR5 antagonist, is a successful example in

this class of HIV-1 blockers (Gilliam et al., 2011). An intriguing

alternative to the high-throughput screening of large chemical

compound libraries is represented by the engineering of CCR5

natural chemokine ligands, as they are strong HIV-1 blockers

(Cocchi et al., 1995; Lusso, 2006). Given the extensive knowl-

edge on its structure and its potent anti-HIV-1 activity, CCL5/

RANTES (Regulated upon Activation, Normal T cell Expressed,

and Secreted) represents an ideal molecule to derive CCR5

antagonists with superior HIV-1 blocking capability (Vangelista

et al., 2008). The CCL5/RANTES N terminus has been found to

be the moiety responsible for CCR5 activation (Hartley and Off-

ord, 2005). Several mutants and engineered variants of this

region have been developed with interesting anti-HIV-1 features;

however, most of these RANTES derivatives retained strong

CCR5 agonistic activity (Vangelista et al., 2008). CCL5/RANTES

mutants deprived of CCR5-activating propensity have been

produced, such as C1C5-RANTES, whose anti-HIV-1 activity is

similar to that of the wild-type protein (Polo et al., 2000; Vange-

lista et al., 2010), and 5P12-RANTES, a highly active anti-HIV-1

blocker (Gaertner et al., 2008). In parallel to full-length RANTES

mutagenesis and chemical modification, short peptides have

been derived that encompass the N-loop/b1-strand region of

RANTES, revealing that this moiety accounts for CCR5 binding

in a nonactivating mode (Nardese et al., 2001). Although

RANTES full-length derivatives present higher anti-HIV-1

potency, increasing their potential clinical applicability, peptide

derivatives should bear the advantages of a superior proteolysis

resistance and a lower risk of eliciting a host antibody response.
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Figure 1. Tryptophan Scanning at Aromatic Residue Positions

(A) Three-dimensional representation of peptide R2.0, whose aromatic

residues’ side chains are shown, was generated using PyMOL. The NMR

coordinates used were chosen arbitrarily among a large set. In red, the five

original aromatic positions (12, 14, 27, 28, and 29) present in R11-29 and

R1.5G2. N and C, denote N and C termini, respectively. The R2.0 amino acid

sequence has the same color code of the NMR coordinates. Some aromatic

residues, present in R2.0 but not in R11-29, and nonnatural amino acids are

underlined.

(B) Inhibition of HIV-1BaL envelope-mediated fusion by tryptophan-substituted

R1.5G2 peptides. The antiviral activity for each peptide is shown relative to

the IC50 calculated for R1.5G2 (468 nM), whose amino acid sequence is

indicated.
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In addition, the prototype peptide R11-29, spanning RANTES

amino acids 11 to 29, has been produced in a retroinverted

version that presented anti-HIV-1 activity similar to R11-29,

disclosing an option for peptide variants with exceptional

resistance to proteolysis (Nardese et al., 2001). R11-29 has

subsequently been investigated by alanine substitution in

hydrophobic regions present at the N and C termini, highlighting

the importance of key hydrophobic residues (Vangelista et al.,

2006). More recently, RANTES N-loop/b1-strand-derived pep-

tides have been rationally designed to improve structuring and

reduce the hydrophilic linker connecting the N- and C-terminal

hydrophobic patches, achieving significant improvement in

antiviral activity (Lusso et al., 2011).

In this report, the anti-HIV-1 activity of RANTES N-loop/b1-

strand peptides has been significantly improved. Tryptophan

substitution of aromatic residues highlighted position 27 as a

hot spot for anti-HIV-1 activity. In addition, according to a

previous mapping of CCL5/RANTES interaction with a CCR5

N-terminal peptide (Duma et al., 2007), a segment correspond-

ing to the 400 loop of the chemokine was added at the peptide

C terminus, improving the resulting peptide’s anti-HIV-1 activity

and solubility. The potency of these new HIV-1 blockers has

been tested in several cellular systems on a panel of R5 HIV-1
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strains. The rationale for the possible implementation of these

molecularly evolved peptides in the therapy or prevention of

HIV-1 infection is also discussed.

RESULTS AND DISCUSSION

Evolution of RANTES-Derived Peptides: Anti-HIV-1
Activity Enhancement, Structure Stabilization,
and Suitability for Recombinant Expression
The prototype RANTES-derived peptide R11-29 encompasses

the N-loop/b1-strand region of the chemokine, which is involved

in CCR5 docking but is not sufficient for receptor activation

(Nardese et al., 2001). The N- and C-terminal hydrophobic

patches of R11-29 were subsequently shown to be key elements

for the anti-HIV-1 activity (Vangelista et al., 2006). Recently,

R11-29 has been rationally refined through a sequence of steps

that, in envelope-mediated fusion assays, lowered the 50%

inhibitory concentration (IC50) toward HIV-1BaL approximately

30-fold, from �3 mM of R11-29 to �100 nM of peptide R2.0

(Figure 1A) (Lusso et al., 2011). In order to exert their maximal

activity, these peptides need to be covalently dimeric (through

a disulphide bond at the N-terminal C11), N-terminally acety-

lated, and C-terminally amidated. However, given the absence

of detectable R2.0 monomer-monomer interactions by nuclear

magnetic resonance (NMR) (Lusso et al., 2011), peptide struc-

turing appears to occur exclusively within monomers; i.e., not

through the aid of tertiary structure assembly. Hence, monomer

moieties within covalent dimers appear to be relatively free and

independent, a feature that has been further investigated herein.

Efforts to increase anti-HIV-1 activity have been paralleled by

attempts to engineer recombinant RANTES-derived peptides

through: (1) the characterization of peptide monomers; (2) the

elimination of the N-terminal acetylation and the exploration of

alternative amino acids at the N terminus; (3) the conversion of

the C-terminal amidation to a natural carboxyl group; and (4)

the choice of natural instead of nonnatural amino acids. It is

important to note that recombinant expression could allow the

delivery of these peptides as live microbicides, as reported for

full-length RANTES variants (Vangelista et al., 2010). Throughout

their molecular refinement, our RANTES-derived peptides have

been tested against CXCR4-tropic HIV-1 strains, on which they

consistently showed no effect (data not shown).

Expansion of the Hydrophobic Surface by Tryptophan
Substitution of Aromatic Residues
The hydrophobic N and C termini of RANTES N-loop/b1-strand-

derived peptides are crucial for their HIV-1 blocking activity. Of

special importance, alanine replacement or deletion of aromatic

residues resulted in significant activity decrease (Vangelista

et al., 2006). However, substitution of the original residue at

position 28 (a phenylalanine) with 3-(1-naphthyl)-alanine (1Nal)

led to an increase in anti-HIV-1 activity (Lusso et al., 2011).

Therefore, the possibility to improve peptide antiviral activity by

increasing the aromatic volume of hydrophobic residues inspired

the tryptophan scanning procedure described herein. Many

high-affinity protein-protein interactions involve hydrophobic

residues, and often tryptophan is engaged into these interacting

surfaces, supplying its large planar aromatic area to increase

the interaction strength. In these cases, the thermodynamic
Elsevier Ltd All rights reserved
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cost of exposing a tryptophan residue to the solvent is balanced

by the sequestration of the aromatic side chain from the solvent

upon binding with the protein partner. A strong example of the

aforementioned feature is provided by the high-affinity receptor

for immunoglobulin E (IgE), where several solvent-exposed tryp-

tophan residues are engaged in the binding to IgE (Garman et al.,

2000). At the current stage of knowledge on the CCL5/RANTES-

CCR5 interaction in terms of three-dimensional organization,

antiviral activity improvements could not be assigned with

certainty to a direct peptide interaction with CCR5 moieties.

Thus, successful tryptophan substitutions could also account

for an improvement in the stability of the peptide fold. In the

two cases, the tryptophan involved would be either solvent

exposed or packed within a minihydrophobic core. In a third

possible scenario, a tryptophan residue could interact with the

lipids of the cell membrane, as in the case of the HIV-1 gp41

epitope of the neutralizing monoclonal antibody 4E10 (Sun

et al., 2008). Such tryptophan-lipid interaction could drive a local

peptide enrichment at the cell membrane, facilitating the subse-

quent interaction with CCR5.

In order to investigate the effects of tryptophan substitutions,

we stepped back from R2.0 (Figure 1A), the most active peptide

reported to date, and used R1.5G2 as the optimal scaffold to

test original aromatic positions for improvement. R1.5G2

contains a threonine residue at position 16, a substitution of

the original alanine residue of RANTES, produced to increase

water solubility of the resulting peptide (Lusso et al., 2011),

a convenient feature for the prospected introduction of highly

hydrophobic W residues. Moreover, five aromatic residues are

present in R1.5G2, as in the R11-29 peptide representing

the original CCL5/RANTES sequence. In a series of cell fusion

inhibition assays (Figure 1B), tryptophan substitution of phenylal-

anine at position 12 (R1.5G2W12) led to a marked decrease in

antiviral activity (IC50, 883 nM), while substitution of tyrosine 14

(R1.5G2W14) resulted in an anti-HIV-1 activity identical to that

of the original R1.5G2 peptide (IC50, 468 nM). Substitution of

tyrosine 29 (R1.5G2W29) led to a decrease in anti-HIV-1 activity

(IC50, 616 nM). As expected, however, substitution of phenylala-

nine 28 with tryptophan (R1.5G2W28) led to a significant increase

of antiviral activity (IC50, 207 nM). A favorable increase of hydro-

phobicity/aromatic surface in the amino acid side chain at

position 28 has already been documented with the 1Nal substi-

tution (Lusso et al., 2011), which should exert an effect similar

to that of tryptophan. However, the use of tryptophan instead

of 1Nal would allow a step toward the conversion of peptide

production from the exclusive chemical synthesis to the option

of recombinant expression systems. In search for the optimal

aromatic residue to place at position 28, a tyrosine substitution

was also produced in the R1.5G2 scaffold, leading to a 27–29

YYY motif. It is interesting that Y28 led to a significant increase

in anti-HIV-1 activity (IC50 �350 nM; data not shown) with

respect to the original F28 in R1.5G2; however, the Y28 variant

was less efficient in inhibiting HIV-1 as compared to the W28

variant. Remarkably, tryptophan substitution of tyrosine at

position 27 (R1.5G2W27) led to the highest increase in antiviral

activity (IC50,149 nM), a striking result, and a milestone for the

subsequent molecular analysis and evolution of RANTES-based

peptides. In summary, the original aromatic residues in positions

12 and 29 (phenylalanine and tyrosine, respectively) appear to
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be the most favorable for the anti-HIV-1 activity of these

peptides, confirming previous data (Vangelista et al., 2006).

Tyrosine in position 14 could be exchanged for tryptophan with

no difference in HIV-1 inhibition; hence, this substitution would

only provide an unnecessary hydrophobicity load, likely resulting

in reduced water solubility of the peptide. Most important, both

peptides in which the original Y27 and F28 were separately

substituted by W led to a substantial increase in antiviral activity.

A recent report on the three-dimensional organization of

CCL5/RANTES oligomers highlighted the 27�29 stretch as one

of the regions involved in the oligomerization surface (Wang

et al., 2011). This evidence implies that residues 27–29 could

be recruited for protein-protein interactions. The need for

CCL5/RANTES to be in its monomeric form to efficiently bind

CCR5 (Duma et al., 2007) implies the exposure of the 27–29

hydrophobic/aromatic residue stretch, likely making it available

for CCR5 interaction.

Modifications toward Natural N and C Termini
An initial screening of peptides (based on R1.5G2 as scaffold)

with N-terminal amino acid alternatives to acetylated C11, in

which nonacetylated single residues (M, A, S, T, Y, and W)

preceded C11, did not provide any encouraging result in terms

of HIV-1 inhibitory activity (data not shown). The hydrophobic

or polar amino acids tested were selected in an attempt to

reach a balance between the need for a hydrophobic N-terminal

moiety (important for anti-HIV-1 activity) and a sufficient solu-

bility in water. Despite the failure of this approach, M and Y

N-terminal elongations produced the best antiviral activities.

Some of these peptides (A, M, and W) were also tested in

C-terminally amidated versus carboxylated versions, yielding

similar antiviral activities but higher water solubility when their

C terminus was a natural carboxyl group (data not shown).

In light of this evidence and the results obtained from the

tryptophan scanning of aromatic residues in R1.5G2, attempts

were made to produce potent anti-HIV-1 peptides with a natural

N terminus using the W27 version of R1.5G2 as a scaffold and

the natural carboxyl group at the C terminus. Peptide variants

were synthesized in which the N-terminal acetyl group was

replaced by one to three additional amino acids preceding

C11. According to the results from the initial screening, the

new N termini selected included M and Y as single residues

and combinations of Y- and M-containing double- and triple-

amino-acid stretches. However, the anti-HIV-1 activity of these

N-terminally modified peptides remained well below that of

R1.5G2W27, confirming that the N-terminal acetyl group is

crucial for peptide activity (data not shown). Themost interesting

peptides in terms of antiviral activity and water solubility were

those with Y, SY, and SPM preceding C11. It is interesting that

these new peptides are fully natural and could be expressed

as recombinant molecules. However, as the main focus of this

work was HIV-1 blockade, the subsequent characterization

steps were conducted in the context of N-terminally acetylated

C11 peptides.

W versus 1Nal Comparison at Positions 27 and 28
Given the results obtained with W substitutions at positions

27 and 28 and considering the previously reported enhancement

of activity obtained introducing a 1Nal residue at position
8, December 21, 2012 ª2012 Elsevier Ltd All rights reserved 1581



Figure 2. Tryptophan Residues in the b1-Strand Hydrophobic Patch

Are Key for HIV-1 Blockade in CC Chemokine Peptide Scaffolds
(A) Comparison of 1Nal versus W residues in the inhibition of HIV-1BaL enve-

lope-mediated fusion. The antiviral activity for each peptide is shown relative to

the IC50 calculated for R1.5G3 (403 nM). Amino acid sequences are indicated;

1Nal and W residues are underlined.

(B) Comparison of the MIP-1b-derived peptide M12-30PWW (open squares)

with R1.5G2W27-28 (closed squares) for the inhibition of HIV-1BaL envelope-

mediated fusion. Amino acids modified from the original chemokine sequence

are in bold, and dashes indicate a portion of the hydrophilic linker previously

deleted with no loss of anti-HIV-1 activity (Lusso et al., 2011).

(C) Modification of RANTES-derived peptides from R2.0 to R3.0 and their

inhibition of HIV-1BaL envelope-mediated fusion. The antiviral activity for each

peptide is shown relative to the IC50 calculated for R2.0 (104 nM). Amino acid

sequences are indicated, and key residues are underlined.
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28 (Lusso et al., 2011), the effect of W versus 1Nal at these posi-

tions was compared. A series of peptides was synthesized

including double W and 1Nal at positions 27 and 28 (Figure 2A).

As reported earlier for the W substitution, the 1Nal substitution

of the original Y at position 27 (R1.5G21Nal27) also provided

a significant increase in anti-HIV-1 activity (IC50, 175 nM), as

compared to R1.5G3, which presents the 1Nal in position 28.

The double 1Nal-containing peptide R1.5G31Nal27 (positions

27 and 28) yielded a slight increase in anti-HIV-1 activity (IC50,

305 nM) compared to R1.5G3, yet remaining significantly less

active than R1.5G21Nal27. This discrepancy might be explained

by the possibility that the close proximity of the two bulky

nonnatural naphthyl groups may cause repulsions that in turn

create distortions or instability in the optimal peptide fold
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and/or CCR5 interaction conformer. In all cases, the effect

provided by W was superior to that derived from the 1Nal

substitution. This evidence further supported the possibility

to produce these peptides as recombinant molecules. As

expected, the highest anti-HIV-1 activity (IC50, 120 nM) was

exerted by R1.5G2W27–28, the peptide presenting both W27

and W28. Thus, the molecular evolution of these peptides was

advanced keeping W residues at both positions 27 and 28.

Investigating MIP-1b-RANTES Similarities and Hot Spot
Evolution in N-loop/b1-Strand Region Peptides
CCL5/RANTES and CCL4/MIP-1b share common physiological

properties, including the ability to bind CCR5 and block HIV-1

entry, as well as a relatively high sequence similarity; hence,

we compared the anti-HIV-1 activities of N-loop/b1-strand

peptides derived from the two chemokines. MIP-1b is of special

interest since it has been reported to bind solely to CCR5, while

RANTES can bind and activate also CCR1 and CCR3. Therefore,

a human MIP-1b-derived peptide, corresponding to the R11-29

amino acid region (namedM12-30, referring to theMIP-1b amino

acid numbering), was synthesized. A second peptide version,

a M12-30 S14P variant (named M12-30P), and a third, including

the S14P, Y28W and Y29W substitutions (named M12-30PWW),

were also synthesized. In cell fusion inhibition assays, the anti-

HIV-1 activities of M12-30 and M12-30P were comparable to

that of R11-29 (�3 mM; data not shown), providing an interesting

general proof of principle for the involvement of the N-loop/b1-

strand in the anti-HIV-1 activity of CCR5-binding chemokines.

Despite the amino acid sequence differences in the N-loop/b1-

strand region of RANTES and MIP-1b, we predicted that the

S14P substitution in M12-30 was likely to provide a structure

stabilization similar to that reported for the A13P substitution in

RANTES-derived peptides (Lusso et al., 2011). Likewise, we

postulated that W substitution for Y28 and Y29 in MIP-1b

(corresponding to Y27 and F28 in RANTES) would confer a higher

antiviral activity. Indeed, M12-30PWW showed a higher HIV-1-

blocking activity (IC50, 1 mM), as compared to both M12-30

and M12-30P. Although the anti-HIV-1 activity enhancement

observed in R1.5G2W27–28 versus R11-29 is by far superior to

that of M12-30PWW versus M12-30, the importance for an

increase in the hydrophobic/aromatic surface in the side chain

of these two positions was confirmed (Figure 2B). Once again,

we confirmed the involvement of residues 27 and 28 (28 and

29 for MIP-1b) in the docking/binding of this group of chemo-

kines to CCR5.

Insertion of W27 and W28 into the R2.0 Scaffold
Next, we switched back to the scaffold of R2.0, the peptide

previously reported to possess the best anti-HIV-1 activity

(Lusso et al., 2011). R2.0 is the result of a thoughtful study

aimed at producing a peptide with a more structured linker

connecting the two N- and C-terminal hydrophobic amino

acid stretches, as compared to the original CCL5/RANTES

sequence. Moreover, R2.0 has a C-terminal ornithine residue

following Y29, an extension that improved significantly the

peptide solubility. Solubility and activity were similar for a

C-terminal carboxylated or carboxyamidated R2.0 (data not

shown). Hence, a natural carboxyl group at the C terminus was

introduced in all the peptides generated from this point onward.
Elsevier Ltd All rights reserved



Figure 3. Engraftment of RANTES 400 Loop Enhances Peptides’

Anti-HIV-1 Activity

(A) Peptide regions are highlighted within full-length RANTES three-dimen-

sional structure (PDB coordinates 1HRJ), represented using PyMOL. The

11–29-spanning N-loop/b1-strand is in green, with the two hydrophobic

stretches in yellow, while the 400 loop is in blue. N and C, N and C termini,

respectively.

(B) 400 loop elongation of R1.5G2W27-28 andR3.0 (generating R1.5G2W27-2840
0

and R4.0, respectively) enhances inhibition of HIV-1BaL envelope-mediated

fusion, shown in relation to the IC50 of R1.5G2W27–28. Peptide sequences

are indicated with the 400 loop underlined.

(C) HIV-1BaL acute infection inhibition by R3.0 (closed squares) and R4.0

(closed circles).
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Peptide R2.0W27–28 (in which Y27 and 1Nal28 in R2.0 were both

substituted with W residues) exhibited a significantly higher

anti-HIV-1 activity (IC50, 40 nM) than R2.0 (Figure 2C). Moreover,

substitution of the C-terminal R2.0W27-28 ornithine with the

closely related natural amino acid lysine (peptide R3.0) led to

identical solubility and activity (IC50, 40 nM) (Figure 2C), again

pointing toward a possible implementation of these peptides

for their expression in recombinant systems.

C-Terminal Engraftment of the RANTES 400 Loop
Previous mapping studies on CCL5/RANTES residues con-

tributing to the interaction with a sulphated N-terminal CCR5

peptide documented the involvement of the 400 loop region,

suggesting its potential importance in the antiviral activity
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(Duma et al., 2007). This region contains a stretch of positively

charged amino acids and is exposed to the solvent. Observing

the three-dimensional structure of RANTES (Figure 3A), we

found that the 400 loop (indicated in blue) protrudes toward

the solvent in a region equidistant from the two hydrophobic

clusters identified within RANTES-derived peptides as the

CCR5-interacting units (indicated in yellow), namely, the

peptide’s termini. Thus, we decided to investigate the impor-

tance of this region for the antiviral activity of our peptides,

as well as its likely beneficial effect on peptide solubility. It is

interesting that a threonine residue is present both at RANTES

positions 30 and 43; hence, this residue was included following

Y29, with amino acids 43–48 (the TRKNRQ stretch encompass-

ing the RANTES 400 loop) engrafted C-terminally into the

peptide. The TRKNRQ stretch was added to R1.5G2W27–28

and R3.0, in order to compare its effects on peptides at different

stage of molecular evolution. Indeed, the resulting peptides,

namely R1.5G2W27–2840
0 and R4.0, displayed superior HIV-1

blocking activity (IC50s, 80 nM and 20 nM, respectively), as

compared to R1.5G2W27–28 and R3.0 (Figure 3B).

The most active peptides, R3.0 and R4.0, were tested also in

experiments of acute HIV-1BaL infection (Figure 3C) in which

they exerted a hierarchical activity (IC50s, 143 nM and 94 nM,

respectively) similar to that observed in the cell fusion inhibition

assays. According to their antiviral activity and sequence

features, subsequent experiments were carried out in parallel

with R3.0 and R4.0.

Monomeric Peptides Reveal a Positive Correlation
between Structural Stability and Antiviral Activity
Predictably, the design of more stable RANTES-derived pep-

tides was accompanied by a parallel increase in anti-HIV-1

activity. Given the fact that previous NMR analysis on disul-

phide-bonded dimeric peptides (R1.5G3 andR2.0) did not reveal

significant tertiary interactions (Lusso et al., 2011), we reasoned

that peptides with high structural stability could exert higher

anti-HIV-1 activity also in their monomeric form, as compared

to peptides of older generation (i.e., less structured). Several

peptides were then analyzed in cell fusion inhibition experiments

in their monomeric form (Figure 4A). Due to the reactive C11 sulf-

hydryl group present in the monomeric peptides, the exclusive

presence of monomers was verified by high-pressure liquid

chromatography (HPLC) under experimental conditions similar

to those of the anti-HIV-1 assays, in order to rule out any activity

interference contributed by the presence of spontaneously

oxidized peptide dimers (data not shown). Indeed, peptide

monomers followed an activity hierarchy identical to that of the

respective dimers, with R3.0, R2.0W27–28, and R4.0 showing

remarkably higher antiviral potencies compared to peptides of

the previous generation (Figure 4A). For each peptide, the gap

in activity was approximately, yet consistently, corresponding

to a 10-fold reduction for the monomer in respect to the dimer.

Similar results were obtained when testing peptide monomers

in acute HIV-1BaL infection experiments (Figure 4B).

The consistent anti-HIV-1 activity increase (directly related to

the increase in stability) observed with monomeric peptides

justified a second attempt in the reshaping of the N terminus to

allow recombinant expression of monomers. According to the

initial results, Y, SY, and SPM residues were added at the
8, December 21, 2012 ª2012 Elsevier Ltd All rights reserved 1583



Figure 4. Monomeric Peptides Present an HIV-1 Blocking Hierarchy

Identical to that of Dimeric Counterparts

(A) Comparison of the monomer versus dimer HIV-1BaL envelope-mediated

fusion inhibition for the most relevant peptides.

(B)HIV-1BaLacute infection inhibitionby themonomeric formofR1.5G2W27-2840
0

(closed triangles; IC50, 2.52 mM), R2.0W27–28 (closed rhombi; IC50, 1.77 mM),

R3.0 (closed squares; IC50, 2.06 mM) and R4.0 (closed circles; IC50, 969 nM).

(C) HIV-1BaL envelope-mediated fusion inhibition by dimers of SY-R3.0

(closed squares; IC50, 852 nM), SY-R4.0 (closed circles; IC50, 1.08 mM) and

SY-R1.5G2W27 (open triangles; IC50, 1.06 mM).

(D) HIV-1BaL envelope-mediated fusion inhibition bymonomers of R3.0 (closed

circles), R3.0 C11S (closed squares), SY-R3.0 (open squares), and SY-R3.0

C11S (closed rhombi).
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N terminus of R4.0 and R3.0, thus eliminating the acetyl group.

When tested in cell fusion inhibition assays, the dimeric versions

of these peptides provided frustrating results, with anti-HIV-1

activities in the same range of the earlier peptide variants con-

taining only the Y27W substitution in the R1.5G2 framework

(Figure 4C). Once again, this likely reflected the importance

of the acetyl group at the N terminus, whose loss appears to

flatten the advantages obtained from the other hot spots. A

C11S substitution variant of SY-R3.0 was also produced, hence

generating solely peptide monomers. It is surprising that the

SY-R3.0 C11S monomer was dramatically less active as HIV-1

inhibitor (IC50, 55 mM) when compared to the SY-R3.0 monomer

version (IC50, 5.5 mM) (Figure 4D). As this result was rather unex-

pected, the C11S variant of R3.0 was also produced (retaining

N-terminal acetylation), in order to exclude any effect due to

the absence of the N-terminal acetyl group. Again, a dramatic

reduction in HIV-1 blocking activity was observed (IC50,

86 mM), confirming the peculiar role played by C11 even in its

free thiol group state. Of note, and according to the reported

three-dimensional organization of CCL5/RANTES oligomers

(Wang et al., 2011), a possible explanation for the C11 effect

might be provided with a reasoning similar to that made earlier

for the 27–29 amino acid stretch. The cysteine 11 residue has

in fact been reported to be involved in the RANTES dimerization

surface and, partially, also in the oligomerization process (Wang

et al., 2011). Hence, C11 not is only involved in a disulphide

bonding with C50 (within full-length RANTES), and in a homodi-

merization disulphide bonding (in the peptides reported herein)

but seems to participate also in the CCL5/RANTES-CCR5

interaction, as evinced from its fundamental importance in the

anti-HIV-1 activity of our RANTES-derived peptides.

Broad Spectrum of HIV-1 Blocking Activity
of RANTES-Derived Peptides
To assess the antiviral activity of our peptides toward primary

viruses that can be encountered in different world regions,

several HIV-1 R5 strains were tested in cell fusion inhibition

experiments using PM1 cells chronically infected with the

different strains as effectors andNIH 3T3 cells expressing human

CD4 and CCR5 as targets. The fusion inhibitor T20 was tested in

parallel for comparison. As expected, R4.0 showed the highest

activity against most strains, and the hierarchy in the peptide

molecular evolution was, overall, respected with R4.0 > R3.0 >

R2.0 (Figure 5A; Lusso et al., 2011). Since several of the strains

tested represent primary CCR5-dependent isolates potentially

involved in viral transmission worldwide, the activity exerted

by our peptides suggests that these could be implemented in

a low-cost microbicide formulation for less developed countries.

RANTES-Derived Peptides Block HIV-1 Infection in
Primary Human CD4+ T Cells and Macrophages
Human CD4+ T cells and macrophages are the major cellular

targets for HIV-1 infection. Hence, R3.0 and R4.0 were tested

in an acute infection assay using HIV-1BaL on human mono-

cyte-derived macrophages established from peripheral blood

mononuclear cells (Figure 5B). The two peptides exerted similar

potency, with IC50s of 194 nM and 167 nM for R3.0 and R4.0,

respectively, confirming their HIV-1 blocking efficiency also on

this important cell target.
Elsevier Ltd All rights reserved



Figure 5. R3.0 and R4.0 Inhibit Several R5 HIV-1 Strains, as Well as

HIV-1BaL Macrophage Infection

(A) R5 HIV-1 envelope-mediated fusion inhibition by T20 (white bars), R3.0

(black bars), and R4.0 (gray bars). Several R5 HIV-1 strains have been tested,

including laboratory-adapted (BaL and SF162), primary clade B (QH0692,

Trinidad and Tobago) and C (92BR025, Brazil; 98IN007, India; and 98CN005,

China), and primary pediatric isolates (IT5513, IT5508, IT6088, IT10005, and

IT6366, Italy).

(B) HIV-1BaL acute infection inhibition of human monocyte-derived macro-

phages by R3.0 (closed squares) and R4.0 (closed circles).
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In order to test the new generation of RANTES-derived

peptides in a more physiological context, a cell fusion inhibition

assay has been developed in which purified human peripheral

blood CD4+ T lymphocytes were used as target cells, instead

of NIH 3T3 cells. Considering the fact that resting human CD4+

T cells express very low levels of CCR5, T lymphocytes were

preactivated with high doses of interleukin-2 (IL-2; 500 U/ml)

for 1 to 3 weeks, a treatment that is known to upregulate

CCR5 surface expression (Bleul et al., 1997). As this T-cell-

based setup is a novel cell fusion inhibition assay, two experi-

mental variants were implemented to optimize and expand

the potentials of the assay. A first variant (more physiological)

is based on the IL-2-induced endogenous expression of

CCR5, while the second variant takes advantage of the massive

CCR5 expression obtained upon vaccinia virus-encoded exoge-
Chemistry & Biology 19, 1579–158
nous CCR5. Effector cells were RK13 cells infected with a

HIV-1BaL envelope glycoprotein-expressing vaccinia virus.

R3.0 and R4.0 exerted strong anti-HIV-1 activity in both experi-

mental variants, even though the highest IC50s were obtained

using the endogenous CCR5-based assay (18 nM for R3.0

and 10 nM for R4.0) (Figure 6A). In the vaccinia virus-encoded

exogenous CCR5 assay, the antiviral activity resulted in an

IC50 of 32 nM for R3.0 and 19 nM for R4.0 (Figure 6B).

Given the physiologic conditions of the primary CD4+ T cell-

based assay, the strong activity revealed by these peptides is

very encouraging in the perspective of a potential translation

into therapeutics. In order to confirm the results obtained with

different primary R5 strains (Figure 5A), we selected the clade

C HIV-192BR025 and used chronically infected PM1 cells as

effector cells against IL-2-activated CD4+ T lymphocytes as

target cells; PM1 cells chronically infected by HIV-1BaL were

used as control. This latest variant of the cell fusion inhibition

assay is even more physiological, as it uses blood human

T lymphocytes and a human T-lymphocyte-derived cell line.

Inhibition of the two HIV-1 variants (BaL and 92BR025) by R3.0

and R4.0 was slightly higher than in the original assay using

NIH 3T3 cells, confirming the effectiveness of these peptides

in a physiologically relevant experimental model (Figures 6C

and 6D).

CCR5 Antagonism and Receptor Specificity
of RANTES-Derived Peptides in Chemotaxis Assays
CCR5 activation or antagonism by R3.0 and R4.0 were assessed

using chemotaxis assays. Maraviroc, a well-knownCCR5 antag-

onist was tested in parallel as a control, providing a direct

comparison of two molecularly different CCR5 antagonist cate-

gories, peptides, and small chemical compounds. As illustrated

in Figure 7A, R3.0 and R4.0 showed CCR5 antagonistic activity

comparable to that of Maraviroc, potently blocking lymphocyte

chemotaxis induced by CCL5/RANTES. When tested in the

absence of CCL5/RANTES, neither the RANTES-derived

peptides nor Maraviroc exhibited agonistic activity, as the result-

ing chemotaxis was lower than the basal level of nonstimulated

lymphocytes (Figure 7B). Moreover, earlier peptide variants

effectively blocked RANTES-induced phosphorylation of p38

MAP kinase, demonstrating an antagonistic effect on this

G-protein-independent signaling pathway (Lusso et al., 2011).

Drug resistance remains a major concern in the therapy of

HIV-1 infection. While resistance to Maraviroc has been well

documented, experimental evidence suggests that resistance

to full-length RANTES derivatives as CCR5-directed HIV-1

blockersmay be limited (Nedellec et al., 2010, 2011). This advan-

tage with respect to small chemical compounds is likely to be

provided by the extensive surface of interaction between

CCL5/RANTES and CCR5, a feature that would imply an insur-

mountable fitness cost for the virus in order to maintain CCR5

usage through extensive mutation. The alternative of a switch

to CXCR4 usage appears to be remote, given the emergence

of these strains only at late stages of HIV-1 infection, especially

in prophylactic regimens, and considering the rarity of CXCR4

usage at primary infection. Although RANTES-derived peptides

cannot cover the same extension in terms of CCR5 interaction

surface, they are likely to be more restrictive than Maraviroc in

terms of emergence of resistant strains. Indeed, our attempts
8, December 21, 2012 ª2012 Elsevier Ltd All rights reserved 1585



Figure 6. Anti-HIV-1 Activity of R3.0 and

R4.0 Assessed on a Novel Human CD4+

T-Cell-Based Fusion Assay

(A) Antiviral activity of R3.0 (closed squares) and

R4.0 (closed circles) was tested on human CD4+

T cells incubated with RK13 effector cells infected

with a HIV-1BaL envelope glycoprotein-expressing

vaccinia virus.

(B) Experimental setup as in (A), with the additional

infection of CD4+ T cells with a vaccinia virus en-

coding for CCR5.

(C) Experimental setup as in (A), replacing RK13

cells with HIV-1BaL chronically infected PM1 cells.

The IC50s for R3.0 and R4.0 were 66 nM and

25 nM, respectively.

(D) Experimental setup as in (C), using HIV-

192BR025 chronically infected PM1 cells. The IC50s

for R3.0 and R4.0 were 662 nM and 653 nM,

respectively.
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to generate HIV-1 strains resistant to early RANTES-derived

peptide versions failed to produce HIV-1 strains that could be

grown in the long term (data not shown).

Overall, the molecular evolution of RANTES-derived peptides

reported herein, culminating in the generation of R3.0 and R4.0,

has yielded promising new inhibitors with remarkable anti-HIV-1

and CCR5 antagonistic activities. Of note, a system has been

successfully engineered to produce recombinant N-terminally

acetylated proteins in E. coli (Johnson et al., 2010), opening an

option for the expression of R3.0 and R4.0. These last-genera-

tion RANTES-derived peptides display a pharmacological

potency comparable to that of Maraviroc, an anti-HIV-1 drug

currently used in therapeutic regimens, and therefore represent

new leads for the development of effective systemic or topical

HIV-1 inhibitors.

SIGNIFICANCE

Efforts have been made to develop peptides originally

derived from the N-loop/b1-strand region of human CCL5/

RANTES that exert potent anti-HIV-1 activity. At present,

very little is known about the structural details by which

CCL5/RANTES and HIV-1 gp120 bind to CCR5 and interfere

with each other. A significant advantage of peptides over

full-length RANTES lies in their capability to block HIV-1 by

binding to CCR5 as antagonists, i.e., in the absence of

receptor activation. Clearly, the identification of the molec-

ular portion that RANTES uses to interact with CCR5 and

directly interfere with gp120 disclosed the possibility to

enhance and evolve peptides as small folded units with

safe anti-HIV-1 activity. These peptides also represent an

ideal scaffold to investigate in more detail structural

information on CCL5/RANTES-CCR5 binding, as well as

computer-aided drug design. In addition, their relatively

small size may be advantageous, as they could provide

a better biodistribution and be less immunogenic. In this
1586 Chemistry & Biology 19, 1579–1588, December 21, 2012 ª2012 Elsevier Ltd All rights re
report, RANTES-derived peptides

have been generated that brought a

significant improvement in antiviral
activity and evolved toward their suitability for the expres-

sion in recombinant systems. R3.0 and R4.0 are the most

potent peptides developed and present IC50 values that

closely match that of T20, an HIV-1 blocking peptide

currently used in therapy. They also present pharmacolog-

ical features that resemble those of Maraviroc, an anti-

HIV-1 drug acting as CCR5 antagonist. Given the strong

need for an efficacious prevention of the emergence of

millions of new AIDS cases each year, RANTES-derived

peptides represent an interesting option for their imple-

mentation in the form of topical microbicides.

EXPERIMENTAL PROCEDURES

Peptide Synthesis

Peptides were synthesized by standard solid-phase protocols using Fmoc

chemistry and purified by reverse-phase HPLC (RP-HPLC) to >95% purity.

Peptides were dimerized by oxidation of the N-terminal cysteine residues

and N-terminally acetylated. Some of the peptides were C-terminally ami-

dated. For stable dimerization, peptides were incubated overnight in 50%

dimethyl sulfoxide (DMSO) (Sigma) in water; DMSO was removed by freeze

drying, and the dimerized peptides were purified by RP-HPLC. The purity of

the final stock was >97%; the Ellman test for free sulfhydryl groups was

negative. For simplicity, amino acid residues in each peptide were numbered

as in the full-length RANTES molecule.

HIV-1 Env-Mediated Cell Fusion Assay

Antiviral activity was evaluated using two assays: an HIV-1 envelope-mediated

cell fusion assay and an acute HIV-1 infection assay, both based on the proto-

type CCR5-dependent (R5) isolate, HIV-1BaL. The cell fusion assay was per-

formed using a modification of the test (Nardese et al., 2001), based on

a vaccinia virus technology, originally developed by Berger and coworkers

(Nussbaum et al., 1994). In the modified assay, the effector cells were chron-

ically infected PM1 cells (Lusso et al., 1995), whereas the target cells were NIH

3T3 mouse fibroblast cells stably expressing human CCR5 and human CD4.

Sixteen hours before the test, effector cells were infected with a vaccinia

vector expressing bacteriophage T7 RNA polymerase, while target cells

were infected with a vaccinia vector expressing the LacZ reporter gene under

the control of the T7 promoter, as described elsewhere (Nussbaum et al.,

1994). All vaccinia virus infections were performed in Dulbecco’s modified
served



Figure 7. R3.0, R4.0 and Maraviroc Exert Similar Antichemotactic

Activities

(A) Inhibition of RANTES-induced human lymphocyte chemotaxis by pre-

incubation with R3.0, R4.0, or Maraviroc. CCR5-mediated chemotaxis is

indicated as percentage of lymphocyte migration induced by RANTES. Basal

chemotaxis of nonstimulated lymphocytes was set as 0.

(B) R3.0, R4.0, and Maraviroc CCR5 antagonism is assessed by the absence

of lymphocyte migration. Chemotaxis is reported as percentage of non-

stimulated lymphocyte migration (Basal).
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Eagle’s medium (DMEM) supplemented with 2.5% fetal bovine serum (FBS).

The cells were then washed with DMEM 2.5%, and the effector cells were

mixed for 2 hr with the target cells in the presence or absence of the inhibitors.

Cell fusion was determined by measurement of b-galactosidase activity in

nonionic detergent cell lysates as described (Nussbaum et al., 1994).

In addition to the assay described earlier, a second modified cell fusion inhi-

bition assaywas used. In this assay, primary CD4+ T lymphocytes purified from

human peripheral blood mononuclear cells (PBMC) were used as target cells

instead of NIH 3T3 cells, and RK13 cells infected with a HIV-1BaL envelope

glycoprotein-expressing vaccinia virus were used as effector cells instead of

PM1 cells. Briefly, PBMC were isolated by Lympholyte Cell Separation Media

(Cedarlane Laboratories Limited) gradient centrifugation of buffy coat pre-

parations from healthy blood donors. Subsequently, PBMC were stimulated

with 500 U/ml recombinant human IL-2 (Chiron) in complete RPMI medium

for 7 to 21 days to induce surface expression of CCR5. The day before the

cell fusion inhibition assay, CD4+ T cells were purified from PBMC by negative

selection using Dynabeads goat antimouse immunoglobulin G (Dynal) and

a cocktail of purified monoclonal antibodies against human CD19, CD16,

CD56, CD8 (AL-Immunotools), and CD14 (Serotech). CD4+ T cells were then

infected with the vaccinia vector expressing the LacZ reporter gene under

the control of T7 promoter. In a set of experiments, CD4+ T cells were infected

also with a vaccinia vector encoding for human CCR5. Infection was carried

out in DMEM in the absence of FBS during the first 2 hours, then the cells

were diluted using DMEM supplemented with 2.5% FBS. In parallel, RK13

effector cells were infected with a vaccinia vector expressing bacteriophage
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T7 RNA polymerase. The following day, CD4+ T cells (target) were incubated

with effector cells 4 hr in the absence or presence of inhibitors. After incuba-

tion, cells were lysed and cell fusion was determined as described earlier.

As an alternative to RK13 cells, PM1 cells chronically infected with HIV-1BaL
and, in separate experiments, a primary R5 isolate of clade C (HIV-192BR025)

were also used as effector cells.

HIV-1 Infection Assay

Acute HIV-1 infection was obtained by adding HIV-1BaL stocks (50 median

tissue-culture-infective doses [TCID50] per well) to PM1 cells (2 3 104 per

well) in complete RPMI medium. Experiments were performed in triplicate

using 96-well round-bottom microtiter plates in the presence or absence of

inhibitors. After incubation at 37�C for 16 hr, the wells were washed twice,

and complete medium, with or without the inhibitors, was added. After

48 hr, 75% of the supernatant was removed for the HIV-1 p24 antigen

measurement and replaced by an equal volume of medium containing the

inhibitors. Virus replication was assayed at Day 4 postinfection by the p24

antigen ELISA. Supernatants were diluted in 1% Empigen BB detergent

(Calbiochem) to disrupt virions and added to a 96-well ELISA plate coated

with anti-HIV-1 p24 polyclonal antibodies (Aalto Bio Reagents Ltd.) and

incubated 2 hr at room temperature. The plate was then washed three times

in Tris-buffered saline (1.5 M NaCl, 250 mM Tris, pH 7.5) and an alkaline phos-

phatase-conjugated anti-HIV-1 p24 monoclonal antibody (Aalto Bio Reagents

Ltd.) was added for 1 hr at room temperature. After washing three times

with TROPIX buffer (10 mM MgCl2, 200 mM Tris, pH 9.8), p24 was detected

adding the luminescence substrate CSPD TROPIX (Applied Biosystems),

and the signal was analyzed using a Mithras LB 940 luminometer (Berthold

Technologies). Levels of p24 were calculated generating a standard curve

with HIV-1 p24 antigen standards.

Human monocyte cultures were established from PBMC isolated from

Ficoll-Hypaque (Pharmacia) density gradient centrifugation of buffy coat

preparations obtained from healthy HIV-1 seronegative blood donors. PBMC

(83 106/ml) were cultured in DMEM supplemented with 5% AB serum (Lonza

BioWhittaker), 10% fetal calf serum (FCS), 2 mM glutamine, 50 mg/ml strepto-

mycin, and 100 U/ml penicillin (Lonza BioWhittaker), and monocytes were

allowed to adhere in T75 flasks for 2 hr at 37�C. Nonadherent cells were then

removed by washing with medium. After 24 hr, adherent cells were

recovered, seeded (1 3 105 per well) in 96-well flat-bottom plates in DMEM

supplemented with 10% FCS and 5% AB serum, and allowed to differentiate

into monocyte-derived macrophages (MDM) 7–10 days before infection.

MDMwere infected in quadruplicatewithHIV-1BaL (50 TCID50 perwell) in a total

volume of 0.2 ml in the presence or absence of inhibitors. After overnight

incubation, unbound virus was removed by extensive washing, fresh medium

was added, and cultures were further incubated at 37�C. Supernatants were

harvested at Day 4 for p24 antigen determination as described earlier.

Lymphocyte Chemotaxis Assay

PM1 is a unique CD4+ CCR5+ human T cell clone susceptible to a wide variety

of primary HIV-1 isolates, including those exclusively using CCR5 as corecep-

tor (Lusso et al., 1995); thus, it was used for the chemotaxis assays in consis-

tency with the antiviral assays. The chemotactic activity was assayed in

duplicate 24-well Transwell chambers (pore size, 5 mm; Costar) as previously

described (Lusso et al., 2011). To test agonistic activity, RANTES, RANTES-

derived peptides, or Maraviroc were diluted in 600 ml RPMI containing 0.5%

human serum albumin and added to the lower chamber; a total of 2 3 105

PM1 cells in 100 ml RPMI were added to the upper chamber. To test antago-

nistic activity, the peptides or Maraviroc were mixed with the cells prior to

addition to the upper chamber. The number of cells migrated into the lower

chamber in replicate wells was measured using a Gallios flow cytometer

(Beckman Coulter). Specific cell migration was calculated by subtracting the

number of cells migrated in the absence of the chemotactic factor (basal

chemotaxis) from the number of cells migrated in the presence of the chemo-

tactic factor; chemotaxis inhibition by RANTES peptides was calculated as the

percentage of cells migrated toward RANTES in the absence of the peptide.

Statistical Analysis

Dose-response curves were fitted using GraphPad Prism version 5.04

(GraphPad Software) in order to calculate IC50 concentrations through
8, December 21, 2012 ª2012 Elsevier Ltd All rights reserved 1587
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nonlinear regression analysis. All data are expressed as the means ± SD for

two independent experiments performed in triplicate.
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Duma, L., Häussinger, D., Rogowski, M., Lusso, P., and Grzesiek, S. (2007).

Recognition of RANTES by extracellular parts of the CCR5 receptor. J. Mol.

Biol. 365, 1063–1075.

Gaertner, H., Cerini, F., Escola, J.M., Kuenzi, G., Melotti, A., Offord, R.,

Rossitto-Borlat, I., Nedellec, R., Salkowitz, J., Gorochov, G., et al. (2008).

Highly potent, fully recombinant anti-HIV chemokines: reengineering a low-

cost microbicide. Proc. Natl. Acad. Sci. USA 105, 17706–17711.

Garman, S.C., Wurzburg, B.A., Tarchevskaya, S.S., Kinet, J.P., and Jardetzky,

T.S. (2000). Structure of the Fc fragment of human IgE bound to its high-affinity

receptor Fc epsilonRI a. Nature 406, 259–266.

Gilliam, B.L., Riedel, D.J., andRedfield, R.R. (2011). Clinical use of CCR5 inhib-

itors in HIV and beyond. J. Transl. Med. 9(Suppl 1 ), S9.

Hartley, O., and Offord, R.E. (2005). Engineering chemokines to develop opti-

mized HIV inhibitors. Curr. Protein Pept. Sci. 6, 207–219.

Huang, Y., Paxton, W.A., Wolinsky, S.M., Neumann, A.U., Zhang, L., He, T.,

Kang, S., Ceradini, D., Jin, Z., Yazdanbakhsh, K., Kunstman, K., et al.

(1996). The role of a mutant CCR5 allele in HIV-1 transmission and disease

progression. Nat. Med. 2, 1240–1243.

Johnson, M., Coulton, A.T., Geeves, M.A., and Mulvihill, D.P. (2010). Targeted

amino-terminal acetylation of recombinant proteins in E. coli. PLoS ONE 5,

e15801.

Kilby, J.M., Hopkins, S., Venetta, T.M., DiMassimo, B., Cloud, G.A., Lee, J.Y.,

Alldredge, L., Hunter, E., Lambert, D., Bolognesi, D., et al. (1998). Potent
1588 Chemistry & Biology 19, 1579–1588, December 21, 2012 ª2012
suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of

gp41-mediated virus entry. Nat. Med. 4, 1302–1307.

Lusso, P., Cocchi, F., Balotta, C., Markham, P.D., Louie, A., Farci, P., Pal, R.,

Gallo, R.C., and Reitz, M.S., Jr. (1995). Growth of macrophage-tropic and

primary human immunodeficiency virus type 1 (HIV-1) isolates in a unique

CD4+ T-cell clone (PM1): failure to downregulate CD4 and to interfere with

cell-line-tropic HIV-1. J. Virol. 69, 3712–3720.

Lusso, P. (2006). HIV and the chemokine system: 10 years later. EMBO J. 25,

447–456.

Lusso, P., Vangelista, L., Cimbro, R., Secchi, M., Sironi, F., Longhi, R., Faiella,

M., Maglio, O., and Pavone, V. (2011). Molecular engineering of RANTES

peptide mimetics with potent anti-HIV-1 activity. FASEB J. 25, 1230–1243.

Nardese, V., Longhi, R., Polo, S., Sironi, F., Arcelloni, C., Paroni, R., DeSantis,

C., Sarmientos, P., Rizzi, M., Bolognesi, M., et al. (2001). Structural determi-

nants of CCR5 recognition and HIV-1 blockade in RANTES. Nat. Struct. Biol.

8, 611–615.

Nedellec, R., Coetzer, M., Lederman, M.M., Offord, R.E., Hartley, O., and

Mosier, D.E. (2010). ‘‘Resistance’’ to PSC-RANTES revisited: two mutations

in human immunodeficiency virus type 1 HIV-1 SF162 or simian-human

immunodeficiency virus SHIV SF162-p3 do not confer resistance. J. Virol.

84, 5842–5845.

Nedellec, R., Coetzer, M., Lederman, M.M., Offord, R.E., Hartley, O., and

Mosier, D.E. (2011). Resistance to the CCR5 inhibitor 5P12-RANTES requires

a difficult evolution from CCR5 to CXCR4 coreceptor use. PLoS ONE 6,

e22020.

Nussbaum, O., Broder, C.C., and Berger, E.A. (1994). Fusogenic mechanisms

of enveloped-virus glycoproteins analyzed by a novel recombinant vaccinia

virus-based assay quantitating cell fusion-dependent reporter gene activation.

J. Virol. 68, 5411–5422.

Polo, S., Nardese, V., De Santis, C., Arcelloni, C., Paroni, R., Sironi, F., Verani,

A., Rizzi, M., Bolognesi, M., and Lusso, P. (2000). Enhancement of the HIV-1

inhibitory activity of RANTES by modification of the N-terminal region: dissoci-

ation from CCR5 activation. Eur. J. Immunol. 30, 3190–3198.

Sun, Z.Y., Oh, K.J., Kim, M., Yu, J., Brusic, V., Song, L., Qiao, Z., Wang, J.H.,

Wagner, G., and Reinherz, E.L. (2008). HIV-1 broadly neutralizing antibody

extracts its epitope from a kinked gp41 ectodomain region on the viral

membrane. Immunity 28, 52–63.

Vangelista, L., Longhi, R., Sironi, F., Pavone, V., and Lusso, P. (2006). Critical

role of the N-loop and beta1-strand hydrophobic clusters of RANTES-derived

peptides in anti-HIV activity. Biochem. Biophys. Res. Commun. 351, 664–668.

Vangelista, L., Secchi, M., and Lusso, P. (2008). Rational design of novel HIV-1

entry inhibitors by RANTES engineering. Vaccine 26, 3008–3015.

Vangelista, L., Secchi, M., Liu, X., Bachi, A., Jia, L., Xu, Q., and Lusso, P.

(2010). Engineering of Lactobacillus jensenii to secrete RANTES and a CCR5

antagonist analogue as live HIV-1 blockers. Antimicrob. Agents Chemother.

54, 2994–3001.

Wang, X., Watson, C., Sharp, J.S., Handel, T.M., and Prestegard, J.H. (2011).

Oligomeric structure of the chemokine CCL5/RANTES from NMR, MS, and

SAXS data. Structure 19, 1138–1148.
Elsevier Ltd All rights reserved


	Enhancement of Anti-HIV-1 Activity by Hot Spot Evolution of RANTES-Derived Peptides
	Introduction
	Results and Discussion
	Evolution of RANTES-Derived Peptides: Anti-HIV-1 Activity Enhancement, Structure Stabilization, and Suitability for Recombi ...
	Expansion of the Hydrophobic Surface by Tryptophan Substitution of Aromatic Residues
	Modifications toward Natural N and C Termini
	W versus 1Nal Comparison at Positions 27 and 28
	Investigating MIP-1β-RANTES Similarities and Hot Spot Evolution in N-loop/β1-Strand Region Peptides
	Insertion of W27 and W28 into the R2.0 Scaffold
	C-Terminal Engraftment of the RANTES 40′ Loop
	Monomeric Peptides Reveal a Positive Correlation between Structural Stability and Antiviral Activity
	Broad Spectrum of HIV-1 Blocking Activity of RANTES-Derived Peptides
	RANTES-Derived Peptides Block HIV-1 Infection in Primary Human CD4+ T Cells and Macrophages
	CCR5 Antagonism and Receptor Specificity of RANTES-Derived Peptides in Chemotaxis Assays

	Significance
	Experimental Procedures
	Peptide Synthesis
	HIV-1 Env-Mediated Cell Fusion Assay
	HIV-1 Infection Assay
	Lymphocyte Chemotaxis Assay
	Statistical Analysis

	Acknowledgments
	References


