4-connected triangulations and 4-orderedness

Raiji Mukae ${ }^{\text {a,1 }}$, Kenta Ozeki ${ }^{\text {b,*, }}$
${ }^{\text {a }}$ Faculty of Education and Human Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
${ }^{\mathrm{b}}$ National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

A R T I C L E I N F O

Article history:

Received 8 October 2009
Received in revised form 22 April 2010
Accepted 29 April 2010
Available online 4 June 2010

Keywords:

Triangulations of a surface
4-ordered

Abstract

For a positive integer $k \geq 4$, a graph G is called k-ordered, if for any ordered set of k distinct vertices of G, G has a cycle that contains all the vertices in the designated order. Goddard (2002) [3] showed that every 4 -connected triangulation of the plane is 4 -ordered. In this paper, we improve this result; every 4-connected triangulation of any surface is 4-ordered. Our proof is much shorter than the proof by Goddard.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

A graph G is called k-ordered for an integer $4 \leq k \leq|V(G)|$, if for any ordered set of k distinct vertices of G, G has a cycle that contains all the vertices in the designated order. This topic has been extensively studied; see for example [1,2,4,5]. Considering the topic on the concept of " k-linked", it is known that the high connectivity guarantees the k-orderedness, in particular, every $10 k$-connected graph is k-ordered [9]; see also [1]. However, little is known about the minimum connectivity that implies 4-ordered. Faudree [1] proposed the following question;

If G is a 6 -connected graph, is $G 4$-ordered?
This question is still open. However, if we restrict ourselves to a triangulation of the plane, Goddard [3] showed that smaller connectivity assumption guarantees the 4-orderedness.

Theorem 1 (Goddard [3]). Let G be a 4-connected triangulation of the plane. Then G is 4-ordered.
In this paper, we extend this result to other surfaces.
Theorem 2. Let G be a 4-connected triangulation of any surface. Then G is 4-ordered.
The proof of Theorem 2 is very different from that of Theorem 1. In [3], it is tried to find a contractible edge and to use the induction on $|V(G)|$. On the other hand, in this paper, we do not use the induction method. For given four vertices, we directly try to find a cycle containing such vertices in a given order. In fact, the proof of this paper is much shorter than the proof in [3].

2. Proof of Theorem 2

In order to prove Theorem 2, we use the following theorem.

[^0]

Fig. 1. The desired cycles.
Theorem 3 (Seymour [7], Shiloach [8], Thomassen [10]). Let G be a 4-connected graph, and suppose that four vertices $s_{1}, t_{1}, s_{2}, t_{2}$ are given. Then, either
(1) there are two disjoint paths P_{1}, P_{2} such that P_{i} connects s_{i} and t_{i} for $i=1,2$; or
(2) there exists an embedding of G into the plane so that one face-boundary cycle contains four vertices $s_{1}, s_{2}, t_{1}, t_{2}$ in the clockwise order.

Proof of Theorem 2. Let G be a 4-connected triangulation of a surface and let $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ be an ordered set of four distinct vertices of G. We shall find a cycle containing $x_{1}, x_{2}, x_{3}, x_{4}$ in this order.
Case 1 . For any $1 \leq i \leq 4, x_{i} x_{i-1} \in E(G)$ or $x_{i} x_{i+1} \in E(G)$.
In this case, we may assume that $x_{4} x_{1}, x_{2} x_{3} \in E(G)$. Suppose that there exist no two disjoint paths P_{1} and P_{2} such that P_{i} connects $x_{2 i-1}$ and $x_{2 i}$ for $i=1$, 2. It follows from Theorem 3 that G can be embedded into the plane so that one face-boundary contains $x_{1}, x_{3}, x_{2}, x_{4}$ in the clockwise order. If G is a triangulation of a surface which is not plane, then this is a contradiction, because G cannot be embedded into the plane. On the other hand, if G is a triangulation of the plane, then any embedding of G into the plane cannot have a non-triangular face, which is also a contradiction. In either case, we have a contradiction. Therefore there exist two disjoint paths P_{1} and P_{2} such that P_{i} connects $x_{2 i-1}$ and $x_{2 i}$ for $i=1$, 2. So, $P_{1} \cup x_{2} x_{3} \cup P_{2} \cup x_{4} x_{1}$ is a cycle containing $x_{1}, x_{2}, x_{3}, x_{4}$ in this order.
Case 2. For some $1 \leq i \leq 4, x_{i} x_{i-1} \notin E(G)$ and $x_{i} x_{i+1} \notin E(G)$.
We may assume that $i=2$, that is, $x_{1} x_{2} \notin E(G)$ and $x_{2} x_{3} \notin E(G)$. Since G is a triangulation, we can take a cycle C through all the vertices in $N_{G}\left(x_{2}\right)$, which is called the link of x_{2}; see Theorem 3 in [6]. By the assumption of Case 2, note that $x_{1}, x_{3} \notin V(C)$. Since G is 4-connected, we can find four pairwise internally disjoint paths $P_{1}, P_{2}, P_{3}, P_{4}$ such that P_{1} and P_{2} connect x_{1} and $V(C)$, and P_{3} and P_{4} connect x_{3} and $V(C)$. We may assume that $\left|V\left(P_{i}\right) \cap V(C)\right|=1$, say $\left\{y_{i}\right\}=V\left(P_{i}\right) \cap V(C)$. Notice that $y_{i} \neq y_{j}$ for any $1 \leq i<j \leq 4$. Since C is the link of x_{2}, note also that $x_{2} \notin V\left(P_{i}\right)$ for every $1 \leq i \leq 4$. Moreover, replacing the indices of P_{1} and P_{2} if necessary, we may also assume that the subpath of C from y_{1} to y_{3}, say C_{1}, does not intersect with the subpath of C from y_{2} to y_{4}, say C_{2}. Let H be the cycle of G which consists of $P_{1} \cup C_{1} \cup P_{3} \cup P_{4} \cup C_{2} \cup P_{2}$.

Since C is the link of $x_{2}, x_{2} y_{i} \in E(G)$ for any $1 \leq i \leq 4$. Hence x_{2} can be "inserted" into H instead of C_{1}, that is, we can find the cycle $\left(H-C_{1}\right) \cup y_{1} x_{2} \cup x_{2} y_{2}$. By the same way, we can also insert x_{2} into H instead of C_{2}.

If $x_{4} \in V(H)$, say $x_{4} \in V\left(P_{2} \cup C_{2} \cup P_{4}\right)$ by the symmetry, then the cycle obtained from H by inserting x_{2} instead of C_{1} is the desired cycle. (See the left side of Fig. 1). Thus we may assume that $x_{4} \notin V(H)$. Since G is 4-connected, we can find three pairwise internally disjoint paths Q_{1}, Q_{2}, Q_{3} from x_{4} to $V(H)$ in $G-x_{2}$. We may also assume that for $i=1,2$, $V\left(Q_{i}\right) \cap V\left(P_{2} \cup C_{2} \cup P_{4}\right) \neq \emptyset$, say $\left\{z_{i}\right\}=V\left(Q_{i}\right) \cap V\left(P_{2} \cup C_{2} \cup P_{4}\right)$. Let H^{\prime} be the subpath of $P_{2} \cup C_{2} \cup P_{4}$ between z_{1} and z_{2}. Then $\left(H-H^{\prime}\right) \cup Q_{1} \cup Q_{2}$ is the cycle containing $x_{1}, C_{1}, x_{3}, x_{4}$ in this order. Hence the cycle obtained by inserting x_{2} instead of C_{2} is also the desired cycle. (See the right side of Fig. 1). This completes the proof of Theorem 2.

Acknowledgements

The authors would like to thank Professor Ota and Professor Nakamoto for stimulating discussions and important suggestions.

References

[1] R.J. Faudree, Survey of results on k-ordered graphs, Discrete Math. 229 (2001) 73-87.
[2] R.J. Faudree, R.J. Gould, A.V. Kostochka, L. Lesniak, I. Schiermeyer, A. Saito, Degree conditions for k-ordered hamiltonian graphs, J. Graph Theory 42 (2003) 199-210.
[3] W. Goddard, 4-connected maximal planar graphs are 4-ordered, Discrete Math. 257 (2002) 405-410.
[4] K. Mészáros, On 3-regular 4-ordered graphs, Discrete Math. 308 (2008) 2149-2155.
[5] L. Ng, M. Schultz, k-ordered hamiltonian graphs, J. Graph Theory 24 (1997) 45-57.
[6] G. Ringel, Non-existence of graph embeddings, in: Theory and Applications of Graphs, in: Lecture Notes Math., vol. 642, Springer-Verlag, Berlin, 1978, pp. 465-476.
[7] P.D. Seymour, Disjoint paths in graphs, Discrete Math. 29 (1980) 293-309.
[8] Y. Shiloach, A polynomial solution to the undirected two paths problem, J. ACM 27 (1980) 445-456.
[9] R. Thomas, P. Wollan, An improved linear edge bound for graph linkages, European J. Combin. 26 (2005) 309-324.
[10] C. Thomassen, 2-linked graph, European J. Combin. 1 (1980) 371-378.

[^0]: * Corresponding author.

 E-mail addresses: mkerij@gmail.com (R. Mukae), ozeki@nii.ac.jp, ozeki@comb.math.keio.ac.jp (K. Ozeki).
 ${ }^{1}$ Research Fellow of the Japan Society for the Promotion of Science.

