Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

4-connected triangulations and 4-orderedness

Raiji Mukae^{a,1}, Kenta Ozeki^{b,*,1}

^a Faculty of Education and Human Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
^b National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

ARTICLE INFO

Article history: Received 8 October 2009 Received in revised form 22 April 2010 Accepted 29 April 2010 Available online 4 June 2010

Keywords: Triangulations of a surface 4-ordered

ABSTRACT

For a positive integer $k \ge 4$, a graph *G* is called *k*-ordered, if for any ordered set of *k* distinct vertices of *G*, *G* has a cycle that contains all the vertices in the designated order. Goddard (2002) [3] showed that every 4-connected triangulation of the plane is 4-ordered. In this paper, we improve this result; every 4-connected triangulation of any surface is 4-ordered. Our proof is much shorter than the proof by Goddard.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

A graph *G* is called *k*-ordered for an integer $4 \le k \le |V(G)|$, if for any ordered set of *k* distinct vertices of *G*, *G* has a cycle that contains all the vertices in the designated order. This topic has been extensively studied; see for example [1,2,4,5]. Considering the topic on the concept of "*k*-linked", it is known that the high connectivity guarantees the *k*-orderedness, in particular, every 10*k*-connected graph is *k*-ordered [9]; see also [1]. However, little is known about the minimum connectivity that implies 4-ordered. Faudree [1] proposed the following question;

If G is a 6-connected graph, is G 4-ordered?

This question is still open. However, if we restrict ourselves to a triangulation of the plane, Goddard [3] showed that smaller connectivity assumption guarantees the 4-orderedness.

Theorem 1 (Goddard [3]). Let G be a 4-connected triangulation of the plane. Then G is 4-ordered.

In this paper, we extend this result to other surfaces.

Theorem 2. Let G be a 4-connected triangulation of any surface. Then G is 4-ordered.

The proof of Theorem 2 is very different from that of Theorem 1. In [3], it is tried to find a contractible edge and to use the induction on |V(G)|. On the other hand, in this paper, we do not use the induction method. For given four vertices, we directly try to find a cycle containing such vertices in a given order. In fact, the proof of this paper is much shorter than the proof in [3].

2. Proof of Theorem 2

In order to prove Theorem 2, we use the following theorem.

* Corresponding author.

E-mail addresses: mkerij@gmail.com (R. Mukae), ozeki@nii.ac.jp, ozeki@comb.math.keio.ac.jp (K. Ozeki).

¹ Research Fellow of the Japan Society for the Promotion of Science.

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter 0 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2010.04.026

Fig. 1. The desired cycles.

Theorem 3 (Seymour [7], Shiloach [8], Thomassen [10]). Let G be a 4-connected graph, and suppose that four vertices s_1 , t_1 , s_2 , t_2 are given. Then, either

- (1) there are two disjoint paths P_1 , P_2 such that P_i connects s_i and t_i for i = 1, 2; or
- (2) there exists an embedding of G into the plane so that one face-boundary cycle contains four vertices s_1 , s_2 , t_1 , t_2 in the clockwise order.

Proof of Theorem 2. Let *G* be a 4-connected triangulation of a surface and let $\{x_1, x_2, x_3, x_4\}$ be an ordered set of four distinct vertices of *G*. We shall find a cycle containing x_1, x_2, x_3, x_4 in this order.

Case 1. For any $1 \le i \le 4$, $x_i x_{i-1} \in E(G)$ or $x_i x_{i+1} \in E(G)$.

In this case, we may assume that $x_4x_1, x_2x_3 \in E(G)$. Suppose that there exist no two disjoint paths P_1 and P_2 such that P_i connects x_{2i-1} and x_{2i} for i = 1, 2. It follows from Theorem 3 that *G* can be embedded into the plane so that one face-boundary contains x_1, x_3, x_2, x_4 in the clockwise order. If *G* is a triangulation of a surface which is not plane, then this is a contradiction, because *G* cannot be embedded into the plane. On the other hand, if *G* is a triangulation of the plane, then any embedding of *G* into the plane cannot have a non-triangular face, which is also a contradiction. In either case, we have a contradiction. Therefore there exist two disjoint paths P_1 and P_2 such that P_i connects x_{2i-1} and x_{2i} for i = 1, 2. So, $P_1 \cup x_2x_3 \cup P_2 \cup x_4x_1$ is a cycle containing x_1, x_2, x_3, x_4 in this order. \Box

Case 2. For some $1 \le i \le 4$, $x_i x_{i-1} \notin E(G)$ and $x_i x_{i+1} \notin E(G)$.

We may assume that i = 2, that is, $x_1x_2 \notin E(G)$ and $x_2x_3 \notin E(G)$. Since *G* is a triangulation, we can take a cycle *C* through all the vertices in $N_G(x_2)$, which is called the *link of* x_2 ; see Theorem 3 in [6]. By the assumption of Case 2, note that $x_1, x_3 \notin V(C)$. Since *G* is 4-connected, we can find four pairwise internally disjoint paths P_1, P_2, P_3, P_4 such that P_1 and P_2 connect x_1 and V(C), and P_3 and P_4 connect x_3 and V(C). We may assume that $|V(P_i) \cap V(C)| = 1$, say $\{y_i\} = V(P_i) \cap V(C)$. Notice that $y_i \neq y_j$ for any $1 \le i < j \le 4$. Since *C* is the link of x_2 , note also that $x_2 \notin V(P_i)$ for every $1 \le i \le 4$. Moreover, replacing the indices of P_1 and P_2 if necessary, we may also assume that the subpath of *C* from y_1 to y_3 , say C_1 , does not intersect with the subpath of *C* from y_2 to y_4 , say C_2 . Let *H* be the cycle of *G* which consists of $P_1 \cup C_1 \cup P_3 \cup P_4 \cup C_2 \cup P_2$.

Since *C* is the link of $x_2, x_2y_i \in E(G)$ for any $1 \le i \le 4$. Hence x_2 can be "inserted" into *H* instead of C_1 , that is, we can find the cycle $(H - C_1) \cup y_1x_2 \cup x_2y_2$. By the same way, we can also insert x_2 into *H* instead of C_2 .

If $x_4 \in V(H)$, say $x_4 \in V(P_2 \cup C_2 \cup P_4)$ by the symmetry, then the cycle obtained from H by inserting x_2 instead of C_1 is the desired cycle. (See the left side of Fig. 1). Thus we may assume that $x_4 \notin V(H)$. Since G is 4-connected, we can find three pairwise internally disjoint paths Q_1, Q_2, Q_3 from x_4 to V(H) in $G - x_2$. We may also assume that for i = 1, 2, $V(Q_i) \cap V(P_2 \cup C_2 \cup P_4) \neq \emptyset$, say $\{z_i\} = V(Q_i) \cap V(P_2 \cup C_2 \cup P_4)$. Let H' be the subpath of $P_2 \cup C_2 \cup P_4$ between z_1 and z_2 . Then $(H - H') \cup Q_1 \cup Q_2$ is the cycle containing x_1, C_1, x_3, x_4 in this order. Hence the cycle obtained by inserting x_2 instead of C_2 is also the desired cycle. (See the right side of Fig. 1). This completes the proof of Theorem 2.

Acknowledgements

The authors would like to thank Professor Ota and Professor Nakamoto for stimulating discussions and important suggestions.

References

- [1] R.J. Faudree, Survey of results on k-ordered graphs, Discrete Math. 229 (2001) 73-87.
- [2] R.J. Faudree, R.J. Gould, A.V. Kostochka, L. Lesniak, I. Schiermeyer, A. Saito, Dégree conditions for k-ordered hamiltonian graphs, J. Graph Theory 42 (2003) 199–210.
- [3] W. Goddard, 4-connected maximal planar graphs are 4-ordered, Discrete Math. 257 (2002) 405–410.
- [4] K. Mészáros, On 3-regular 4-ordered graphs, Discrete Math. 308 (2008) 2149–2155.
- [5] L. Ng, M. Schultz, k-ordered hamiltonian graphs, J. Graph Theory 24 (1997) 45-57.
- [6] G. Ringel, Non-existence of graph embeddings, in: Theory and Applications of Graphs, in: Lecture Notes Math., vol. 642, Springer-Verlag, Berlin, 1978, pp. 465–476.
- [7] P.D. Seymour, Disjoint paths in graphs, Discrete Math. 29 (1980) 293-309.
- [8] Y. Shiloach, A polynomial solution to the undirected two paths problem, J. ACM 27 (1980) 445-456.
- [9] R. Thomas, P. Wollan, An improved linear edge bound for graph linkages, European J. Combin. 26 (2005) 309-324.
- [10] C. Thomassen, 2-linked graph, European J. Combin. 1 (1980) 371-378.