the reimbursement institutions in Turkey has been reflected upon the costs. As a value of effectiveness, the rate of completing the treatment has been chosen. The success rate of completing the treatment determined as 2 doses and 3 doses per day has been gathered from the literature. The completion level of the treatment for 2 doses per day is 68% and for the agents used for 3 doses, it is 50%.

RESULTS: In terms of incremental cost per additional completing doses, amoxicillin clavulanate is cost-effective in comparison to the treatment of community-acquired pneumonia (113.43 TL), acute rhinosinusitis (70.73 TL), acute otitis media (70.73 TL), tonsillolopharyngitis (-52.06 TL). CONCLUSIONS: According to the results derived from the comparison between the costs and effectiveness values; for each illness at primary care, the use of amoxicillin clavulanate is cost saving in order to complete the treatment successfully.

PIN60
CRITICAL REVIEW OF COST-EFFECTIVENESS ANALYSES OF HUMAN PAPILLOMAVIRUS VACCINE IN BOYS

Jia Lin1,2, Gauthier A3, Pralud E2, Largeron N2
1Amansor, London, UK, 2Sanofi Pasteur MSD, Lyon, France

OBJECTIVES: HPV vaccination of young girls is a preventive strategy now recommended in most industrialised countries. As HPV can cause cancers and diseases in both sexes, questions are raised about the health and economic impact of extending HPV vaccination programme to boys. The aim of this study was to review the cost-effectiveness studies of boys HPV vaccination and provide recommendations for future research.

METHODS: Cost-effectiveness models of HPV vaccination that consider boys vaccination as a possible vaccination strategy published before the end of 2011 were included in the study. Models were compared from a number of aspects, including modelling approach, model calibration, diseases modelled, HPV transmission patterns, vaccination and screening strategies and input parameters (transition probabilities, costs, effectiveness, discount rates).

RESULTS: Six US and three European studies were included in the review. Five in nine used the same dynamic model, and three different types of models were used in other studies. Results differed widely according to HPV-related diseases considered: analyses modelling cervical cancer only, with or without genital warts, yielded a higher cost-effectiveness ratio. The comparison usually did not account for vaccination strategies implemented. Results were very sensitive to country-specific parameters, such as the current vaccination coverage in girls (the most favourable cost-effectiveness ratios for boys vaccination were achieved when girls vaccination coverage was low), vaccine price, vaccine characteristics and the assumption on natural immunity of HPV. CONCLUSIONS: Few analyses examined the cost-effectiveness of extending HPV vaccination to boys. As methods and parameters differed across studies, the review provided limited conclusions. The cost-effectiveness of boys and girls vaccination programme should include all benefits expected from HPV vaccination and should be evaluated on a country-by-country basis to take into account local specificities, such as observed coverage rate in girls and vaccine price.

PIN61
THE COST-UTILITY OF TELAPREVIR IN COMBINATION WITH Peginterferon α-2b and Ribavirin (PR) COMPARED TO THE COMBINATION BOCEPREVIR WITH PR AND TO PR ALONE IN THE MANAGEMENT OF CHRONIC HEPATITIS C IN THE NETHERLANDS

Velipolou K4, Van Aghoven M2, Van Der Kolk A2, Lamotte M2, Cure S1, Bianić P4
1Medis, Ghent, Belgium, 2Innolife, Borg de Werve, The Netherlands, 3Prumohamid, Uxbridge, Middlesex, UK, 4OptumInsight, Nanterre, France

OBJECTIVES: Chronic hepatitis C genotype 1 (HCV) may lead to cirrhosis, liver cancer, liver transplant, increased mortality. Peginterferon-α and ribavirin (PR) results in higher cure rates (Undisplaced Viral Response) in less than 50% of patients. Aim of this study was to assess the cost-utility of telaprevir + PR (TPR) compared to boceprevir + PR (BPR) and PR alone in the management of HCV in adults with mild, moderate HCV, compensated liver disease, including cirrhosis, who have not been treated before or have been treated with PR but failed treatment. METHODS: A Markov model with a lifetime time horizon using annual cycles was developed to compare TPR, BPR and PR in treatment-naïve patients (TN) and treatment-experienced patients (TE). Clinical data were provided by published phase 3 trials (TPR vs. BPR, BPR vs. PR) and a mixed treatment comparison for the indirect comparison TPR vs. BPR. Dutch unit costs (direct and indirect) and utilities were taken from a Dutch observational study in HCV patients. Annual discounting of 4% and 1.5% was applied on costs and outcomes respectively. The cost per quality-adjusted life-year (QALY) was calculated from the societal perspective using the Human Capital approach. RESULTS: Treating TN with TPR generates 0.85 QALYs gained and €634 additional cost compared to PR, resulting in an incremental cost-utility ratio (ICUR) of €746/QALY. In TE, TPR dominates PR with cost-savings (-€6,621) and 1.78 additional QALYs gained. A TPR dominates BPR in higher effects (0.02 in TN, 0.75 in TE) and cost-savings (-€724 in TN, -€221,110 in TE). Sensitivity analysis showed that time horizon affected the ICERs. The probability to obtain an ICER<20,000/QALY is 100% (probabilistic sensitivity analysis). CONCLUSIONS: Based on the results of this local adaptation, TPR is highly cost effective versus PR alone in TN patients. It was a dominant option in all comparisons (including becopeprevir and treatment for TE patients).