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In this paper, based on a generalized version of the Poincare� �Birkhoff twist
theorem by Franks, we establish the existence of infinitely many subharmonics for
the asymmetric Duffing equation with the classical Lazer�Leach�Dancer condition.
As a consequence of our result, we obtain a sufficient and necessary condition for
existence of arbitrarily large amplitude periodic solutions for a class of asymmetric
Duffing equations at resonance. � 2001 Academic Press
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1. INTRODUCTION

In this paper, we consider periodic solutions for Duffing equations

x"+ g(x)= p(t), (1.1)

where g : R � R is a continuous function and p : R � R is a continuous
2?-periodic function. We are interested in Eq. (1.1) at resonance by means
of potential, that is,

(G0) lim
x � +�

2G(x)
x2 =a2, lim

x � &�

2G(x)
x2 =b2, (1.2)

where G(x)=�x
0 g(s) ds and a, b are positive constants which satisfy that

1
a

+
1
b

=
2
n

. (1.3)

The resonance problem for Eq. (1.1) has been widely investigated in the
literature. One of the classical results is given by Lazer and Leach [11] for
the symmetric equation

x"+n2x+h(x)= p(t), (1.4)
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where h(x) is a continuous bounded function. It was shown in [11] that
Eq. (1.4) has at least one 2?-periodic solution if

} |
2?

0
p(t) eint dt }<2(lim inf

x � +�
h(x)&lim sup

x � &�
h(x)). (1.5)

On the other hand, the nonexistence of a 2?-periodic solution for (1.4) was
given recently by Alonso and Ortega [2] when h is non-constant and
moreover

2(sup h&inf h)� } |
2?

0
p(t) eint dt }. (1.6)

The asymmetric equation

x"+a2x+&b2x&+h(x)= p(t), (1.7)

where x+=max[x, 0] and x&=min[&x, 0], was considered first by
Fu$ cik [7] and by Dancer [4]. They called this equation one of ``jumping
nonlinearities.''

Assume that

lim
|x| � �

h(x)
x

=0, (1.8)

and denote by

h\= lim
x � \�

h(x).

In [4], Dancer proved, by using rather delicate estimates, the existence of
2?-periodic solution for (1.7) provided that (1.8) and

(i) h\ exist, at least one of h+ and h& is infinite, and h+{h& ; (1.9)

or

(ii) both h+ and h& are finite and

2n \h+

a2 &
h&

b2 +{M({) for all { # [0, 2?], (1.10)

where M({)=�{+2?
{ p(s) ,(s&{) ds and ,(t) is the solution of

x"+a2x+&b2x&=0
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satisfying ,(0)=0, ,$(0)=1. This result can be considered as a generaliza-
tion of Lazer and Leach's classical result, from symmetric Eq. (1.4) to
asymmetric Eq. (1.7). Dancer showed in the same paper that for each (a, b)
satisfying (1.3), there is a 2?-periodic function p(t) such that the equation

x"+a2x+&b2x&= p(t) (1.11)

has no 2?-periodic solution.
More interest on the asymmetric Eq. (1.7) came from Lazer and

McKenna [12]. They showed in [12] that the asymmetric Eq. (1.7)
models the motion of a particle subjected to an asymmetric restoring force
and appeared, after separation of variables, as a simplified version of the
model of a suspension bridge.

Recently, there have been many interesting results on understanding the
resonance phenomenon for the asymmetric oscillator. Ortega [13] showed
that all solutions of the small perturbated asymmetric equation

x"+a2x+&b2x&=1+ p(t) (1.12)

are bounded via Moser's twist theorem, where p(t) is small and smooth
enough. As a consequence, there are infinitely many 2?-periodic solutions
and other subharmonic solutions for (1.12). Ortega's result has been
generalized to Eq. (1.11) with p(t) smooth enough and M({){0 by Liu [10].
On the other hand, in another paper, Alonso and Ortega [3] showed that
there is R>0, such that every solution x(t) of (1.11) with

(x(t0))2+(x$(t0))2>R

for some t0 # R, goes to infinity in the future or in the past provided that
M({)=0 for some { and for these {, M$({){0. Alonso and Ortega's result
is related to the phenomenon of instability at the roots of unity that appear
in Hamiltonian mechanics and implies that there is no large amplitude
periodic solution in that case.

We continue the work on the direction of asymmetric oscillations. We
show in this paper that under Dancer's conditions there are infinitely many
subharmonics of Eq. (1.7), especially, there are arbitrarily large amplitude
subharmonics. Instead of (1.8), we assume (G0) and

(g0) lim inf
|x| � �

g(x)
x

�:>0.
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Moreover, we introduce the conditions

lim
x � +�

h(x)=+�, lim sup
x � &�

h(x)<+�; (1.13)

lim
x � &�

h(x)=&�, lim inf
x � +�

h(x)>&�; (1.14)

lim
x � +�

h(x)=&�, lim inf
x � &�

h(x)>&�; (1.15)

lim
x � &�

h(x)=+�, lim sup
x � +�

h(x)<+�. (1.16)

h\ are finite, 2n \h+

a2 &
h&

b2 +> max
{ # [0, 2?]

M({); (1.17)

h\ are finite, 2n \h+

a2 &
h&

b2 +< min
{ # [0, 2?]

M({). (1.18)

If Dancer's condition (1.9) or (1.10) holds, then h(x) satisfies one of the
above conditions.

Our main theorem in this paper is the following

Theorem 1.1. Assume (G0), (g0), and one of the conditions (1.13)�(1.18)
holds. Then Eq. (1.7) has a 2?-periodic solution and a 2m?-periodic solution
xm(t), for any sufficiently large positive integer m. xm(t) satisfies that

lim
m � �

min
t # N

((x$m(t))2+(xm(t))2)=+�.

xm(t) has 2(m+1)n zeros in [0, 2m?) provided that (1.13) or (1.14) or
(1.17) holds and xm(t) has 2(m&1)n zeros in [0, 2m?) provided that (1.15)
or (1.16) or (1.18) holds.

Moreover, if p(t) has 2?-least period and m, n are prime to each other,
xm(t) is a 2m?-least periodic solution.

As a consequence of the above theorem and Proposition 3.1 in [3], we
obtained the following necessary and sufficient condition for the existence
of arbitrarily large amplitude periodic solutions.

Theorem 1.2. Assume the h\ are finite and

}2n \h+

a2 &
h&

b2 +&M({) }+|M$({)|>0, for all { # [0, 2?]. (1.19)

Then, Eq. (1.7) has arbitrarily largbe amplitude periodic solutions if and only
if Dancer's condition (1.10) holds.
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Our approach is based on some estimates for the successor map and uses
the Poincare� �Birkhoff twist theorem recent generalized by Franks [8].

The rest of the paper is organized as follows. In Section 2, we give some
estimates for the successor map. These estimates will be used to prove twist
properties for the successor map in Section 3. In the last section, we use the
twist theorem to prove the existence of infinitely many subharmonics.

2. THE SUCCESSOR MAP

The successor map was used successfully in studying bounded perturba-
tions of oscillators at resonance, see [1, 3, 4, 13, 14]. In this section we will
give some estimates based on phase plane analysis. We assume (G0) and
(g0) throughout the section. Moreover, we assume the uniqueness of the
solution for the initial value problem associated to (1.1).

Let x(t; {, v) be the solution of (1.1) satisfying

x({; {, v)=0, x$({; {, v)=v. (2.1)

Denote by {1 the first zero of x(t; {, v) to the right of {, that is,

{1>{, x({1 ; {, v)=0, x(t; {, v){0, for t # ({, {1).

We also use the notation v1=x$({1 ; {, v). The successor map is defined by

S: ({, v) [ ({1 , v1).

To prove the definition of S well, we need the following argument.
Note that from assumption (G0), we have K>0, such that

G(x)�&K, for x # R.

Let x(t)=x(t; {, v) and H(t)= 1
2 (x$(t))2+G(x(t)). Then we have

|H$(t)|=|x$(t) x"(t)+ g(x(t)) x$(t)|=| p(t) x$(t)|

�P max[2, H(t)+K],

where P=maxt # [0, 2?] | p(t)|. By using the Gronwall inequality, we can
prove that for any given T>0, there is v0>0, such that

e&PT v2

2
&K(1&e&PT )�H(t)�ePT v2

2
+K(ePT&1), (2.2)

for |t&{|�T and v�v0 . Moreover, using polar coordinates

x=r cos %, x$=r sin %,
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we have the polar form associated to (1.1)

%$=
&xg(x)&(x$)2+ p(t) x

r2 , r$=
xx$+x$g(x)& p(t) x$

r
. (2.3)

Assumption (G0) implies that there are k1 , k2>0, such that

k1 H(t)�r2(t)�k2H(t) for H(t)>>1. (2.4)

From (2.2), (2.3), (2.4), and assumption (g0), one can prove that for T>0
and r0>0, there is v0>0, such that

%$(t)<&1
2 min[1, :] and r(t)�r0 ,

for v�v0 and |t&{|�T,

which implies that

%({+T )&%({)�&1
2 min[1, :] T, for v>>1

and then x(t; {, v) has a zero in the right of {. Thus S is well defined for
|v|>>1 and the uniqueness of the solution for the initial value problem
guarantees that S is continuous and one to one. The periodicity of p(t)
leads to that

S({+2?, v)=S({, v)+(2?, 0).

In what follows, let v>0. Denote by {(0)
1 the first right zero of the solu-

tion x(t; {, v) of the autonomous equation x"+ g(x)=0 satisfying initial
condition (2.1). Then

{ (0)
1 ={+|

G&1 (v 2�2)

0

2 ds

- v2&2G(s)
, for v>>1.

Moreover, we have

Lemma 2.1. Assume (G0) and (g0). Then

{ (0)
1 ={+

?
a

+b(1), as v � +�,

where b(1) � 0 for v � +� as usual.

Proof. This is a consequence of Theorem 2 in [5] by using assumptions
(G0) and (g0). K
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It was proved in [15], under the assumption

lim sup
x � +�

G(x)
g2(x)

<+�,

that {(0)
1 ={ (0)

1 (v) is an improper integral which converges uniformly with
respect to v>>1. Moreover {(0)

1 (v) has the growing property \=>0, _v0>0,
and $>0, such that

|{ (0)
1 (v+2))&{ (0)

1 (v)|<=, for v�v0 and |2|<$v.

By using the above properties and some delicate phase plane analysis, the
author proved the following basic lemma in [15]

Lemma 2.2. Assume (G0) and (g0). Then

{1={ (0)
1 +b(1), as v � +�.

Similar ideas are employed in [16]; the reader can consult [16] for
details.

As a consequence of Lemma 2.1 and Lemma 2.2, we have immediately
that

{1={+
?
a

+b(1), as v � +�. (2.5)

For v1 , we have

Lemma 2.3. Let l(t)=- 2H(t). Then we have, for given T>0, that

|l(t)&v|�2PT, for |t&{|�T and v>>1.

Especially, | |v1|&v|�2P |{1&{|, for v>>1, where P=maxt # [0, 2?] | p(t)|.

Proof. By using (2.2), we have

l(t)�2 - K, for |t&{|�T and v>>1,

and then

l(t)� 1
2 |x$(t)|, for |t&{|�T and v>>1.

Note that

l$(t)=l(t)&1 (x$(t) x"(t)+g(x(t)) x$(t))

=l(t)&1 (x$(t) p(t)).
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Thus we have

|l(t)&l({)|= } |
t

{

x$(s)
l(s)

p(s) ds }�2P |t&{|�2PT,

which follows that

| |v1 |&v|=|l({1)&l({)|�P |{1&{|. K

Our next step is to give more precise estimates for {1 .
At first, we suppose one of the conditions (1.13)�(1.16) holds. We discuss

only the case with the condition (1.13); the arguments for other cases are
similar. Then we suppose

lim
x � +�

(g(x)&a2x)=+�. (2.6)

We use the notation

EM={% } %=%(t)=arc tan \x$(t; {, v)
x(t; {, v) + for |x(t; {, v)|�M, t # [{, {1]= ,

(2.7)

where M is a parameter. If M is fixed, then

mes(EM) � 0, as v � +�. (2.8)

Note that for k>0 given, we have M>0, such that

g(x)&a2x& p(t)�k>0, for x�M. (2.9)

Therefore, by using (2.3), (2.4), (2.7)�(2.9), and Lemma 2.3, we obtain

{1&{=|
?�2

&?�2

r2 d%
xg(x)+(x$)2& p(t) x

�|
[&?�2, ?�2]"EM

r2 d%
a2x2+(x$)2+kx

+|
EM

r2 d%
a2x2+(x$)2&M�

=|
?�2

&?�2

r2 d%
a2x2+(x$)2+|

[&?�2, ?�2]"EM

r2(&kx) d%
(a2x2+(x$)2+kx)(a2x2+(x$)2)

+|
EM

r2M� d%
(a2x2+(x$)2&M� )(a2x2+(x$)2)

�
?
a

&
$
v

, for v>>1,
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where M� =M(max |x|�M | g(x)|+aM+P) and $ is a constant, independent
of v. Moreover

$ � +�, as k � +�. (2.10)

Thus we have

Lemma 2.4. If (2.6) holds, then for any $>0 there exists v0>0, such
that

{1<{+
?
a

&
$
v

, for v�v0 .

Denote by ({2 , v2)=S({1 , v1). Then we have

{2={+
2?
n

+b(1), as v � +�. (2.11)

Moreover, since lim supx � &� ( g(x)&b2x)<+�, we assume g(x)&b2x
�;<+� for x�0. Then

{2&{1=|
3?�2

?�2

r2 d%
xg(x)+(x$)2&p(t)x

�|
3?�2

?�2

r2 d%
b2x2+(x$)2+(;+P)x

=|
3?�2

?�2

r2 d%
b2x2+(x$)2

&|
3?�2

?�2

r2(;+P)x d%
(b2x2+(x$)2+(;+P)x)(b2x2+(x$)2)

.

Thus we have

{2�{1+
?
b

+O \ 1
v1+ , as v1 � �, (2.12)

where O(1�v) denotes a function for which there are positive constants c1

and v0 such that

}O \1
v+}�

c1

v
, for v�v0 .

By using (2.10) and similar estimates for the other cases, we have proved
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Lemma 2.5. Assume (G0) and ( g0). Then for any given $>0, there exists
v0>0, such that

0<{2&{<
2?
n

&
$
|v|

, for |v|�v0 ,

provided that condition (1.13) or (1.14) holds,

{2&{>
2?
n

+
$
|v|

, for |v|�v0 ,

provided that condition (1.15) or (1.16) holds.

Second, let h(x) be bounded and h\ exist. In this case, we will give the
following more precise estimation for v2 .

Lemma 2.6. Assume h\ exist. Let x(t; {, v) be the solution of (1.7)
satisfying

x({; {, v)=0, x$({; {, v)=v>0.

Then

v2=v+|
{+2?�n

{
p(s) ,$(s&{) ds+O \1

v+ , as v � +�. (2.13)

Proof. At first, we will prove that

v1=&v&|
{+?�a

{
p(s) cos a(s&{) ds+O \1

v+ , as v � +�.

By the proof of Lemma 2.3, we have

l(t)&l({)=|
t

{

x$(s)
l(s)

p(s) ds.

Recall that

x$(s)=&v cos a(s&{)&|
s

{
( p(!)&h) cos a(s&!) d!.
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Therefore

|v1|&v=l({1)&l({)

=|
{1

{

&v cos a(s&{)
l(s)

p(s) ds

&|
{1

{

�s
{( p(!)&h) cos a(s&!) d!

l(s)
p(s) ds

=|
{

{+?�a
p(s) cos a(s&{) ds+O \1

v+ , as v � +�,

by using (2.5) and Lemma 2.3. Furthermore, a similar estimation for
v2&v1 yields the conclusion of the lemma. K

Next, we discuss the estimation for {2 . By variation of the constant formula,
we have

x(t; {, v)=
v
a

sin a(t&{)+|
t

{

p(s)&h
a

sin a(t&s) ds.

Thus {1 satisfies that

v
a

sin a({1&{)=|
{1

{

h& p(s)
a

sin a({1&s) ds

and

{1&{=
?
a

+O \1
v+ ,

which follows that

v
a

sin a({1&{)=
v
a

sin a \?
a

&{1+{+
=v \?

a
&{1+{+O \ 1

v3++ ,

and then

&{1+{+
?
a

=
1
v |

{1

{

h& p(s)
a

sin a({1&s) ds+O \ 1
v2+

=
1
v |

{+?�a

{

h+

a
sin a \{+

?
a

&s+ ds

+
1
v |

{+?�a

{

p(s)
a

sin a(s&{) ds+ b \1
v+ .
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Same arguments show that

&{2+{1+
?
b

=
1

|v1 | |
{+2?�n

{+?�a

h&

b
sin b \{+

?
a

+
?
b

&s+ ds

+
1

|v1 | |
{+2?�n

{+?�a

p(s)
a

sin b \s&
?
a

&{+ ds+ b \1
v+ .

Hence, we can conclude that

Lemma 2.7. Assume h\ exist. Let x(t; {, v) be the solution of (1.7)
satisfying

x({; {, v)=0, x$({; {, v)=v>0.

Then

{2={+
2?
n

&
2
v \\

h+

a2 &
h&

b2 +&|
{+2?�n

{
p(s) ,(s&{) d{++ b \1

v+ , (2.14)

as v � +�.

3. TWIST PROPERTY

In this section, we will show some twist properties for the successor map
based on the estimations given in the last section.

Denote by ({m , vm)=Sm({, v), ?1 , and ?2 the projections from ({, v) to
its first and second factor, respectively. Form Lemma 2.1, Lemma 2.2, and
Lemma 2.3, we know that there is v0>0, such that

| |v2 |& |v| |�P� , for |v|�v0 ,

where P� is a constant independent of v.
Then, by using Lemma 2.5, we have

Lemma 3.1. If (G0), (g0), and (1.13) or (1.14) hold, then there exists a
m

*
>0, such that for integer m�m

*
, we have

{2mn&{<2(m&1) ?, for v # [v0+(mn&1) P� , (3mn+1) P� ].

Proof. Choose v0�0, so that $(P� )&1>8?, where $ is defined in
Lemma 2.5. Moreover, let m

*
�v0(2nP� )&1. Then for m�m

*
and

v # [v0+(mn&1) P� , (3mn+1) P� ],
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we have

?2(S 2i ({, v))�v0 , i=1, 2, ..., mn&1;

thus

{2mn&{<mn
2?
n

&\$
v

+
$
v2

+ } } } +
$

v2(mn&1) +
<2m?&\$

v
+

$
v+P�

+ } } } +
$

v+(mn&1) P� +
=2m?&

$
P�

:
mn&1

j=0

1
v(P� )&1+ j

�2m?&8? :
mn&1

j=0

1
3mn+1+j

<2m?&8?
1
4

=2(m&1) ?.

The last inequality is valid because

1
3mn+1

+
1

3mn+2
+ } } } +

1
4mn

=ln \4
3++ b (1), as m � +�,

and then

1
3mn+1

+
1

3mn+2
+ } } } +

1
4mn

>
1
4

, for m>>1. K

In what follows, we will give a similar estimation as shown in Lemma 3.1
under assumption (1.17).

From Lemma 2.6 and Lemma 2.7, we know S 2n is in the form

{
{2n={+2?+L({)

1
v

+ b \1
v+ ,

v2n=v&L$({)+O \1
v+ ,

(3.1)

where L({)=M({)&(2n(h+ �a2&h& �b2)). Our assumptions implies that
L({)<0, 2?-periodic, and C2.

Introduce new variables ({, \) with

{={, \=
1
$v

,
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where \ # [\& , \+], \\ are positive constants depending on L({) and
$>0 is a parameter to be determined later. Then S2n becomes

{{2n={+2?+$L({) \+ b ($2),
\2n=\+$L$({) \2+O($2).

(3.2)

To give the estimations associated to (3.2), we employ a idea similar to
that in [3]. Consider the differential equation

{{$=L({) \,
\$=L$({) \2.

(3.3)

The integral of (3.3) is

1I : &
\

L({)
=I. (3.4)

I=0 corresponds to the origin in the phase plane. When I>0, 1I is a star-
shaped closed curve and the origin is in its interior. Moreover, any solution
({(t; {0 , \0), \(t; {0 , \0)) with the initial condition

{(0; {0 , \0)={0 , \(0; {0 , \0)=\0 , ({0 , \0) # 1I

is a periodic solution with the period

k(I )=|
2?

0

ds
IL2(s)

.

Especially, the periodic solution starting from ({0 , 1) has the period
between [�2?

0 (ds�(I+L2(s))), �2?
0 (ds�(I&L2(s)))], where I+=max{ # [0, 2?]

[&L&1({)] and I&=min{ # [0, 2?][&L&1({)].
The solution of (3.2) can be considered as a lift of a class of approximate

solution of (3.3) by the one-step method with step-size $. Since L is C2 and
the set

E� :=[({, \) | &L({) I&&=0�\�&L({) I++=0 , { # [0, 2?]]

is a compact set for =0>0 small enough, we can prove the following

Lemma 3.2. For any given T>0, there is a 2>0 and a function
|: (0, 2) � R+ with lim$ � 0 |($)=0, such that for $ # (0, 2), the solution of
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(3.2) with the initial condition {0 , \0=1 is defined for S2in({0 , 1), i=1,
2, ..., m, where m=[T�$]. Moreover,

|{2in&2i?&{(i$)|+|\2in&\(i$)|<|($), for i=1, 2, ..., _T
$ & ,

(3.5)

where {(t)={(t; {0 , \0), \(t)=\(t; {0 , \0).

Thus, for T=(3�2) �2?
0 (ds�(I&L2(s))), $<<1, and m=[T�$], we have

({2in , \2in) # E� , i=1, 2, ..., m

{(m$)&{0<&2?

which implies that

{2mn&{0<2(m&1) ?.

Turning to Eq. (3.1), we have

Lemma 3.3. Assume Dancer's assumption (1.17). Then we have m
*

# N,
such that for integer m�m

*
, there is v=v

*
# (m�T, m+1�T), with

?2(S2in({, v))�v0 , for i=1, 2, ..., m and {2mn&{0<2(m&1) ?.

On the other hand, from the estimation (2.11), for any fixed m # N, we
have v*>0, such that

{2mn&{>2(m&1) ?, for v�v*.

For the cases with the assumption (1.15) or (1.16) or (1.18), we can
prove, with the obvious modifications, that for sufficiently large positive
integer m, there are v*>v

*
>0, such that

{2mn&{>2(m+1)?, for v=v
*

,

and

{2mn&{<2(m+1)?, for v=v*.

Hence, we have proved that the map S 2mn has a twist property on
annulus S1_[v

*
, v*] under assumptions (G0), (g0), and one of the

conditions (1.13)�(1.18).
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4. THE EXISTENCE OF INFINITELY MANY SUBHARMONICS

In this section we will prove the existence of infinitely many subharmonic
solutions for Eq. (1.1) by using a generalization of the Poincare� �Birkhoff
twist theorem given by Franks [8].

Define the map T by T({, v)=({$n , v$n). The periodicity of the time yields
T({+2?, v)=T({, v)+(2?, 0). In Section 2, we have proved that for any
given vB>0, there exists vA>0 such that v1�vB , provided v�vA .

Denote by

A=[({, v) | v�vA], B=[({, v) | v�vB].

Without loss of the generality, we suppose g, p be c1 which guarantee that
the solutions of (1.1) are unique with respect to initial data. By using an
approximation approach as in [6], we can obtain a series of periodic solu-
tions for an approximate family for Eq. (1.1) and these periodic solutions
will converge to a solution of Eq. (1.1) with the same period under our
assumptions. Thus we have

Lemma 4.1. T : A � B is a homeomorphism from A to T(A)/B. Moreover
T preserves the element of area given by vdvd{.

The proof of Lemma 4.1 is almost the same as Lemma 1 in [9], so we
omit the detail here. Let s=v2�2. Then T preserves the element of area
given by dsd{. Suppose |=(v2�2) d{=s d{. We have

Lemma 4.2. For any c1 Jordan closed arc # in A, we have

|
#

|=|
T b #

|.

The proof of Lemma 3.2 is the same as Proposition 2.3 in [13] by using
the Stokes theorem.

Now consider map Tm=T m. As shown in Section 2, for any vA sufficiently
large, we have m, v*A>0, such that Tm is the boundary twist on annulus

A� =[({, v) | vA�v�v*A].

Moreover, we can choose vA such that A� /B� and Tm(A� )/B� , where

B� =[({, v) | v0�vB�v�v*B].

As a consequence of Lemma 4.2, we have

area(B� "Tm(A� ))=area(B� "A� ).
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Therefore, we meet all the assumptions of the Franks twist theorem (see
Remark of Theorem 4.2 in [8]).

Hence, Tm possesses at least two fixed points which correspond two
2m?-periodic solutions for Eq. (1.1) under assumptions (G0), ( g0), and
(1.13) or (1.14) or (1.17), and two 2(m+1) ?-periodic solutions for
Eq. (1.1) under assumptions (G0), ( g0), and (1.15) or (1.16) or (1.18).

These procedures are valid for sufficiently large positive integers m. Thus,
with the obvious modifications, we have proved that there exists m

*
# N,

such that for integer m�m
*

Eq. (1.1) has at least two 2m?-periodic
solutions xm(t) with

lim
k � �

((x$m (t))2+(xm (t))2)=+�.

Moreover, xm(t) has 2(m+1)n or 2(m&1)n zeros in [0, 2m?). If m, n are
prime to each other, then m, (m+1)n and m, (m&1)n are prime to each
other; thus xm(t) is 2m?-least periodic provided that p(t) is 2?-least periodic.

The existence of the 2?-periodic solution is now a consequence by using
the Massera theorem. The proof of Theorem 1.1 is thus completed.

Finally, we note that xm(t) turns around the origin; thus we have that

lim
m � �

( max
t # [0, 2m?]

xm(t)& min
t # [0, 2m?]

xm(t))=+�.

So we call these subharmonics with arbitrarily large amplitude. On the
other hand, in the case with h\ finite, if Dancer's condition (1.10) does not
hold, then there is some { # [0, 2?], such that

2n \h+

a2 &
h&

b2 +=M({).

Moreover, |M$({)|>0 from the assumption (1.19). So we meet all the
conditions of Proposition 3.1 in [3]. We conclude from this proposition
that there is R>0, such that every solution x(t) of (1.7) with

(x(t0))2+(x$(t0))2>R

for some t0 # R, goes to infinity in the future or in the past, which implies
no large amplitude periodic solution. Thus we complete the proof of
Theorem 1.2.
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