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The homogeneous Lippmann–Schwinger integral equation is solved in momentum space to calculate the 
masses of heavy tetraquarks with hidden charm and bottom. The tetraquark bound states are studied in 
the diquark–antidiquark picture as a two-body problem. A regularized form of the diquark–antidiquark 
potential is used to overcome the singularity of the confining potential at large distances or small 
momenta. Our numerical results indicate that the relativistic effect leads to a small reduction in the 
mass of heavy tetraquarks, which is less than 2% for charm and less than 0.2% for bottom tetraquarks. 
The calculated masses of heavy tetraquarks for 1s, 1p, 2s, 1d and 2p states are in good agreement with 
other theoretical calculations and experimental data. Our numerical analysis predict the masses of heavy 
tetraquarks for 3s, 2d and 3p states for the first time, and we are not aware of any other theoretical 
results or experimental data for these states.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In the early 60’s, quarks become the constituent of strong inter-
action and it raise to be a handy tool to describe the observed par-
ticles in the hadron spectrum [1]. It is known that quarks can be 
in groups like a system of coupled quarks and coupled antiquarks. 
The idea of strongly coupled two-quarks–two-antiquarks mesons 
to baryon–antibaryon channels was suggested by R. Jaffe [2], where 
the MIT bag model used to predict the quantum numbers and 
the masses of prominent states. Afterword a non-relativistic poten-
tial model (NRPM) was presented by Zouzou et al. [3] to investi-
gate the system consisting of two-quarks and two-antiquarks with 
equal/unequal masses. Precisely they were searching for probable 
bound states under the threshold for the spontaneous dissocia-
tion into two-mesons system. Relativistic quark–antiquark bound-
state by considering the spin-dependent interactions in momen-
tum space has been explored by Jean et al. [4] where it was 
the first study toward a relativistic three-quark bound-state us-
ing a Hamiltonian consistent with the Wigner–Bargmann theorem 
and macroscopic locality. They used a potential which includes 
confinement and is of the general form consistent with rotation, 
space-reflection, and time-reversal invariance and it was a combi-
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nation of linear, Coulomb, spin–spin, spin–orbit, and tensor terms. 
An investigation on heavy–light tetraquark bound states by means 
of a chiral constituent quark model reported by Vijande et al. [5]. 
They also presented the hyperspherical harmonic formalism for 
tetraquarks and they studied the systems made of quarks and an-
tiquarks of the same flavor [6].

In a series of studies by Ebert et al. [7–9], they have proposed 
a relativistic model of the ground and excited states of heavy 
tetraquarks for hidden charm and bottom within the diquark–
antidiquark (D D̄) picture (heavy–light diquark and antidiquark). 
They have treated the light quarks, in the heavy–light diquark, 
and diquarks quite relativistically. Additionally they have discussed 
the experimental data on charmonium-like states above open 
charm threshold and they have found that the masses of ground 
state tetraquarks with hidden bottom are below the open bot-
tom threshold. They have also shown that the anomalous scalar 
D∗

s0(2370) and axial vector Ds1(2460) mesons cannot be consid-
ered as D D̄ bound states, while Ds(2632) and D∗

s J (2860) could be 
interpreted as scalar and tensor tetraquarks, respectively.

In a recent paper by Monemzadeh et al. [10], the tetraquark 
masses are calculated in configuration space using two-body 
bound state of diquark–antidiquark. They have solved the spin-
independent non-relativistic LS equation only for heavy charm 
tetraquarks restricted to s-wave channel. However we have ques-
tioned the validity of their results and we brought the criticism 
in a comment on this paper [11]. The main goal of the comment 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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was to show it remains completely unclear, how the authors of 
Ref. [10] can discriminate between the masses of tetraquarks with 
axial-vector diquark content and different total angular momen-
tum J in a spin-independent framework. Also it has been shown 
that the paper suffers from few computational issues, for instance 
their regularization cutoff is not high enough to achieve accurate 
results.

In this letter we have solved the non-relativistic and relativistic 
homogeneous Lippmann–Schwinger integral equation using a reg-
ularized form of the spin-independent D D̄ potential in momentum 
space. The tetraquark bound states are studied as a two-body prob-
lem in the D D̄ picture and the masses of heavy tetraquarks with 
hidden charm and bottom are calculated. The role of the relativis-
tic effect in the mass spectrum of tetraquarks is studied in detail.

2. Tetraquark bound states in the diquark–antidiquark picture in 
momentum space

The relativistic bound state of D D̄ system with the relative mo-
mentum of p in a partial wave representation is given by

ψl(p) = 1

mT − ω(p)

∞∫
0

dp′ p′ 2 Vl(p, p′)ψl(p′), (1)

where ω(p) =
√

m2
D + p2 +

√
m2

D̄
+ p2. mT , mD and mD̄ are the 

masses of tetraquark, diquark and antidiquark, correspondingly. 
Vl(p, p′) is the projection of the potential V (p, p′) ≡ V (p, p′, x) in 
the partial wave channel l

Vl(p, p′) = 2π

+1∫
−1

dx Pl(x) V (p, p′, x). (2)

In the non-relativistic limit the free propagator [mT − ω(p)]−1 is 
replaced by (E − p2

2 μD D̄
)−1, where E = mT − mD − mD̄ is D D̄ bind-

ing energy and μD D̄ = mDmD̄
mD+mD̄

is the reduced mass of D D̄ system. 
In this study the spin-independent part of heavy D D̄ potential of 
Ref. [12] is used

V (r) = V Coul(r) + V conf (r), (3)

with the linear confining

V conf (r) = Ar + B, (4)

and the Coulomb-like one-gluon exchange potential

V Coul(r) = γ
F D(r)F D̄(r)

r
, γ = −4

3
αs. (5)

F D and F D̄ are the form factors of diquark and antidiquark, corre-
spondingly, and have the following functional form

F (r) = 1 − eαr−βr2
. (6)

By considering this functional structure of the form factors, the 
Coulomb part of the D D̄ potential can be rearranged as

V Coul(r) = γ

r

⎛
⎝1 +

3∑
j=1

(−) je−α j r−β j r2

⎞
⎠ , (7)

where α j and β j are defined by diquark and antidiquark form fac-
tor parameters, as shown in Table 1. The parameters of this model 
are fixed from the analysis of heavy quarkonia masses and radia-
tive decays [13–15]. The confining parameters are A = 0.18 GeV2
Table 1
The form factor parameters α j and β j in Coulomb-like 
potential of Eq. (7).

j α j β j

1 αD βD

2 αD + αD̄ βD + βD̄
3 αD̄ βD̄

Table 2
The masses of diquark and antidiquark (mD and mD̄ ) and the form factor parame-
ters (αD , αD̄ , βD , βD̄ ) of heavy–light diquarks. S and A denote the scalar and axial 
vector diquarks.

Tetraquark 
content

D D̄ type mD = mD̄
(MeV)

αD = αD̄
(GeV)

βD = βD̄
(GeV2)

cqc̄q̄ S S̄ 1973 2.55 0.63
A Ā 2036 2.51 0.45

csc̄s̄ S S̄ 2091 2.15 1.05
A Ā 2158 2.12 0.99

bqb̄q̄ S S̄ 5359 6.10 0.55
A Ā 5381 6.05 0.35

bsb̄s̄ S S̄ 5462 5.70 0.35
A Ā 5482 5.65 0.27

and B = −0.30 GeV which have standard values of quark models. 
The strong coupling constant αs is given by [9]

αs(μ) = 4π

βαs

1

ln

(
4μ2

D D̄
+M2

αs

�2

) , βαs = 11 − 2

3
n f ,

Mαs = 2.24
√

A, � = 0.413 GeV, (8)

where n f = 4 is the number of flavor quarks. In our calculations 
we have used the masses of diquark (antidiquark) and form factor 
parameters of Ref. [7], which are given in Table 2.

Since the confining part of the D D̄ potential is unbounded at 
large distances, it leads to a singularity in the integral equation (1)
at small momenta. To overcome this singularity one can use the 
regularized form of the confining potential [16]. To this aim one 
can keep the divergent part of the potential fixed after exceed-
ing a certain distance. This procedure creates an artificial barrier 
and the influence of tunneling barrier is manifested by significant 
changes in the energy eigenvalues at small distances. By follow-
ing this strategy and keeping the potential fixed at rc , the Fourier 
transformation of the regularized form of the potential in momen-
tum space is given by

V (p, p′, x) = V 0 δ3(q)

− V 0

2π2q

(
− rc

q
cos(qrc) + 1

q2
sin(qrc)

)

+ A

2π2q

(
2

q3
cos(qrc) + 2rc

q2
sin(qrc) − r2

c

q
cos(qrc) − 2

q3

)

+ B

2π2q

(
1

q2
sin(qrc) − rc

q
cos(qrc)

)

+ γ

2π2q

(
1

q
− 1

q
cos(qrc)

)

+ γ

2π2q

3∑
(−) j Im

[
eβ j r

2
j

√
θ f − θi

−2β j

(
e−β j R2

f − e−β j R2
i

)]
, (9)
j=1
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Fig. 1. The matrix elements of the diquark–antidiquark potential in units of GeV−2

for s-, p- and d-wave channels calculated for S S̄ state in the parameterization of 
cqc̄q̄ tetraquark.

where

q = |q| = |p − p′| =
√

p2 + p′ 2 − 2pp′x,

V 0 = Arc + B + γ

rc

⎛
⎝1 +

3∑
j=1

(−) je−α j rc−β j r
2
c

⎞
⎠ ,

Ri = √
2 r j,

R f = √
2 (r j + rc),

θi = tan−1
(

r j

r j + rc

)
,

θ f = tan−1
(

r j + rc

r j

)
,

r j = iq − α j

−2β j
. (10)

3. Results and discussion

In Fig. 1 we have shown an example of the matrix elements of 
D D̄ potential for partial wave channels s, p and d in parameteri-
zation of S S̄ state of cqc̄q̄ tetraquark. As it is shown the negative 
dip of the potential shifts to higher momenta for higher partial 
waves and its depth becomes smaller with a factor of about 2 
for two successive partial waves. The structure of the matrix ele-
ments of D D̄ potential for S S̄ and A Ā states of charm and bottom 
tetraquarks is similar, but they have a small difference which is 
shown in Fig. 2.

The first step toward the numerical solution of the integral 
equations (1) and (2) is discretization of continuous momentum 
and angle variables and to this aim we have used Gauss–Legendre 
quadratures. The momentum integration interval [0, ∞) is cov-
ered by a combination of hyperbolic and linear transformations of 
Gauss–Legendre points from the interval [−1, +1] to the intervals 
[0, p1] + [p1, p2] + [p2, p3] as

phyperbolic = 1 + x
1
p1

+ ( 2
p2

− 1
p1

) x
,

plinear = p3 − p2

2
x + p3 + p2

2
. (11)

The typical values for p1, p2 and p3 in our calculations are 0.5, 
1 and 10 GeV. The integral equation (1) can be written schemat-
ically as eigenvalue equation λ ψ = K (M) ψ , where the physical 
tetraquark mass mT is corresponding to eigenvalue λ = 1. The 
eigenvalue equation can be solved by direct method. For calcula-
tion of the masses of charm (bottom) tetraquarks we have solved 
the integral equation by searching in a wide range of tetraquark 
Fig. 2. The difference of the matrix elements of diquark–antidiquark potential in 
units of GeV−2 for s-, p- and d-wave channels calculated for S S̄ and A Ā states in 
the parameterization of charm and bottom tetraquarks.

mass in the region 3.7 ≤ M ≤ 5.4 GeV (10.4 ≤ M ≤ 11.7 GeV) and 
we have extracted the physical bound states for λ = 1 with a rela-
tive error of 10−10.

Our numerical results for the masses of charm (cqc̄q̄ and csc̄s̄) 
and bottom (bqb̄q̄ and bsb̄s̄) tetraquarks for s-, p- and d-wave 
channels with total spin S = 0 are listed in Tables 3 and 4. The 
tetraquark masses are calculated for scalar S S̄ and axial-vector A Ā
diquark–antidiquark contents.

We have solved both non-relativistic and relativistic form of 
Lippmann–Schwinger integral equation and our results indicate 
that the relativistic effect leads to a small reduction in the mass 
of heavy tetraquarks. These relativistic corrections are due to rela-
tivistic free propagator and decrease the masses by less than 2%
for charm and less than 0.2% for bottom tetraquarks. For both 
relativistic and non-relativistic calculations the same form of D D̄
potential given by Eq. (10) is used. The absolute value of the rela-
tive percentage difference between our results for 1s, 1p, 2s, 1d
and 2p states with those of previous studies by Ebert, Faustov, 
and Galkin (EFG) reported in Refs. [7,17,18] is shown by � (see 
Tables 3 and 4). It indicates that our results are in very good agree-
ment with those of EFG with a relative difference estimated to be 
at most 2%. Since we have ignored spin degrees of freedom in our 
calculations, this difference comes from the contribution of spin 
in the D D̄ interaction which appears in spin–orbit, spin–spin and 
tensor spin–space terms [17]. One can say spin-dependent terms 
in D D̄ interactions have a very small contribution in the masses 
of tetraquarks. While the relativistic effects leads to small reduc-
tion in the masses of tetraquarks, considering the spin degrees of 
freedom may leads to small reduction or increase in the masses of 
tetraquarks. Carlucci et al. have predicted the masses of 1s state 
of cqc̄q̄ tetraquark with the values of 3.857 and 3.729 GeV and 
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Table 3
Masses of charm diquark–antidiquark states in units of GeV, calculated from non-relativistic (NR) and relativistic (R) Lippmann–Schwinger equation. � is the absolute value 
of the relative percentage difference between our findings and EFG results.

State cqc̄q̄ (S S̄) cqc̄q̄ (A Ā)

NR R EFG [7,17] � (%) NR R EFG [7,17] � (%)

1s 3.792 3.739 3.812 1.9 3.919 3.869 3.852 0.4
1p 4.262 4.231 4.244 0.3 4.374 4.346 4.350 0.1
2s 4.419 4.357 4.375 0.4 4.535 4.469 4.434 0.8
1d 4.556 4.526 4.506 0.4 4.668 4.637 4.617 0.4
2p 4.697 4.644 4.666 0.5 4.816 4.771 4.765 0.1
3s 4.843 4.757 4.944 4.862
2d 4.933 4.876 5.037 4.983
3p 5.062 4.990 5.184 5.114

State csc̄s̄ (S S̄) csc̄s̄ (A Ā)

NR R EFG [7,17] � (%) NR R EFG [7,17] � (%)

1s 4.011 3.946 4.051 0.8 4.139 4.078 4.110 0.8
1p 4.490 4.464 4.466 0.0 4.616 4.591 4.582 0.2
2s 4.620 4.558 4.604 1.0 4.744 4.687 4.680 0.1
1d 4.770 4.743 4.728 0.3 4.894 4.869 4.847 0.4
2p 4.920 4.870 4.884 0.3 5.041 4.993 4.991 0.0
3s 5.039 4.964 5.160 5.090
2d 5.143 5.094 5.263 5.216
3p 5.276 5.204 5.394 5.324

Table 4
Masses of bottom diquark–antidiquark states in units of GeV, calculated from non-relativistic (NR) and relativistic (R) Lippmann–Schwinger equation. � is the absolute value 
of the relative percentage difference between our findings and EFG results.

State bqb̄q̄ (S S̄) bqb̄q̄ (A Ā)

NR R EFG [7,18] � (%) NR R EFG [7,18] � (%)

1s 10.426 10.410 10.471 0.6 10.469 10.453 10.473 0.2
1p 10.813 10.806 10.807 0.0 10.856 10.850 10.850 0.0
2s 10.914 10.899 10.917 0.2 10.958 10.942 10.942 0.0
1d 11.034 11.028 11.021 0.1 11.077 11.071 11.064 0.1
2p 11.140 11.128 11.122 0.0 11.183 11.171 11.163 0.1
3s 11.230 11.211 11.273 11.254
2d 11.310 11.299 11.354 11.342
3p 11.406 11.389 11.450 11.433

State bsb̄s̄ (S S̄) bsb̄s̄ (A Ā)

NR R EFG [7,18] � (%) NR R EFG [7,18] � (%)

1s 10.629 10.613 10.662 0.5 10.668 10.653 10.671 0.2
1p 11.015 11.009 11.002 0.1 11.054 11.048 11.039 0.1
2s 11.116 11.100 11.111 0.1 11.155 11.139 11.133 0.0
1d 11.235 11.229 11.216 0.1 11.274 11.268 11.255 0.1
2p 11.340 11.329 11.316 0.1 11.379 11.368 11.353 0.1
3s 11.430 11.411 11.469 11.428
2d 11.511 11.499 11.549 11.538
3p 11.606 11.590 11.645 11.629
also of bqb̄q̄ tetraquark with the values of 10.260 and 10.264 GeV 
for S S̄ and A Ā diquark–antidiquark contents, respectively [19]. The 
masses of 1s state of cqc̄q̄ tetraquark is also reported by Maiani et 
al. as 3.723 and 3.832 GeV for S S̄ and A Ā diquark–antidiquark 
contents, correspondingly [20]. They have also reported the mass 
of 1p state of csc̄s̄ tetraquark for S S̄ diquark–antidiquark content 
with the value of 4330 ± 70 [21].

The calculated masses of tetraquarks should be independent 
of the regularization cutoff rc . If the largest tetraquark mass be 
independent of rc , the lower mass states definitely would be in-
dependent of the regularization cutoff. To this aim, in Table 5 we 
have studied the dependence of 3p state of bottom tetraquark bsb̄s̄
in A Ā, as a function of the regularization cutoff. Clearly a regu-
larization cutoff equal to 10 GeV−1 is quite enough to achieve the 
cutoff independent results for tetraquark masses converged with at 
least 4 and 5 significant digits for charm and bottom tetraquarks, 
respectively.

In Table 6, we have compared our results for the masses of 
charm tetraquarks with the possible experimental candidates. They 
Table 5
The mass of bottom tetraquark bqb̄q̄ for 3p state (in A Ā) 
as a function of the regularization cutoff rc .

rc (GeV−1) Tetraquark mass (GeV)

2.5 11.6316
3 11.6274
4 11.6263
5 11.6322
7 11.6285
10 11.6288
15 11.6288

are in excellent agreement with a relative difference below 0.8%. 
We have also extended our calculations to higher excited states 
and we have successfully obtained the masses of charm and bot-
tom tetraquarks for 3s, 2d and 3p states. To the best of our knowl-
edge these states are calculated for the first time and we are not 
aware of any theoretical prediction or experimental data for these 
states.
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Table 6
Comparison of our numerical results for the masses of charm diquark–antidiquark 
states, calculated from non-relativistic (NR) and relativistic (R) Lippmann–Schwinger 
equation, and possible experimental candidates. The masses are in units of MeV.

State Theory Experiment

NR R Exp. candidate Mass

cqc̄q̄ (S S̄)

1p 4262 4231 Y (4260)

{
4259 ± 8+2

−6 [22]

4247 ± 12+17
−32 [23]

2p 4697 4644 Y (4660)

{
4664 ± 11 ± 5 [24]

4634+8+5
−7−8 [25]

cqc̄q̄ (A Ā)

1p 4374 4346 Y (4360)

{
4361 ± 9 ± 9 [24]

4324 ± 24 [26]

2s 4535 4469 Z(4430) 4433 ± 4 ± 2 [27]

The theoretical uncertainties of our numerical results for 
tetraquark masses, in the present spin-independent formalism, 
arise from the effect of the uncertainties associated with the di-
quark mass and also the potential parameters. The uncertainties 
within the model can be evaluated and are mostly related to 
the adopted approximations. The parameters of the model, such 
as quark masses and parameters of the interquark potential, are 
rather rigidly fixed from the analysis of meson and baryon mass 
spectra and decays. The comparison of EFG predictions with data 
indicates that the uncertainty of the predicted masses should be 
about few MeV. For the heavy diquark masses it should be of the 
same order. The uncertainty arising from the approximation of the 
calculated diquark form factor F (r), given in Eq. (6), is less than 1%
[28]. So, the overall theoretical uncertainties of our results by con-
sidering the spin effects, discussed in Sec. 3, should be about 3%.

4. Conclusion

Our numerical results for the masses of charm and bottom 
tetraquarks with regularized form of D D̄ interactions, even by ne-
glecting the spin degrees of freedom, are in great agreement with 
other theoretical predictions, especially with those reported by 
Ebert et al., and also by available experimental data. The effect of 
spin in the mass spectrum of tetraquarks can be studied by consid-
ering the realistic D D̄ interactions in the proposed regularization 
method. It can be done in a three-dimensional formulation [29], 
where the total spin of D D̄ can be treated in a helicity represen-
tation.
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