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We propose to compute the action and global charges of the asymptotically de Sitter solutions in
Einstein–Gauss–Bonnet theory by using the counterterm method in conjunction with the quasilocal
formalism. The general expression of the counterterms and the boundary stress tensor is presented for
spacetimes of dimension d � 7. We apply this technique for several different solutions in Einstein–Gauss–
Bonnet theory with a positive cosmological constant. Apart from known solutions, we consider also d = 5
vacuum rotating black holes with equal magnitude angular momenta. These solutions are constructed
numerically within a nonperturbative approach, by directly solving the Einstein–Gauss–Bonnet equations
with suitable boundary conditions.
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1. Introduction

One of the most fruitful approaches in computing conserved
quantities in general relativity is to employ the quasilocal formal-
ism [1]. The basic idea here is to enclose a given region of space-
time with some surface, and to compute all relevant (conserved
and/or thermodynamic) quantities with respect to that surface. For
a spacetime that is either asymptotically anti-de Sitter (AdS) [2–4]
or asymptotically flat [5–7] it is possible to extend the quasilocal
surface to spatial infinity without difficulty, provided one incorpo-
rates appropriate boundary terms in the action to remove diver-
gences. The boundary terms are built up with curvature invariants
of the boundary metric and thus obviously they do not alter the
bulk equations of motion. Therefore, this approach has the nice
feature that it is not necessary to embed the boundary geometry
in a reference background (see also [9–11] for other applications of
this formalism for a different asymptotic structure of spacetime).

The situation is much more involved for asymptotically de Sit-
ter (dS) spacetimes, because of the absence of spatial infinity and a
globally timelike Killing vector in this case. In the prescription pro-
posed in [8], these obstacles are avoided by computing the quasilo-
cal tensor of Brown and York [1] (augmented by suitable boundary
counterterms), on the Euclidean surfaces at future/past timelike in-
finity I ± . This allows also a discussion of the thermodynamics of
the asymptotically dS solutions outside the cosmological horizon,
the boundary counterterms regularising the (tree-level) gravitation
action as well. The efficiency of this approach has been demon-
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strated in a broad range of examples, including configurations with
gravitating matter fields [12–15].

The results in [8–15] concern the case of Einstein gravity with
a positive cosmological constant. However, for a spacetime dimen-
sion d > 4, the Einstein gravity presents a natural generalisation —
the so-called Lovelock theory, constructed from vielbein, the spin
connection and their exterior derivatives without using the Hodge
dual, such that the field equations are second order [16,17]. Follow-
ing the Ricci scalar, the next order term in the Lovelock hierarchy
is the Gauss–Bonnet (GB) one, which contains quadratic powers of
the curvature. As discussed in the literature, this term appears as
the first curvature stringy correction to general relativity [18,19],
when assuming that the tension of a string is large as compared
to the energy scale of other variables.

In principle, there are no obstacles in computing the action
and global charges of EGB solutions in dS spacetime by using a
quasilocal formalism similar to that proposed in [8] for the Einstein
gravity. At any given dimension one can write down only a finite
number of counterterms that do not vanish at future/past timelike
infinity. This feature does not depend upon the bulk theory is Ein-
stein or GB. However, the presence in this case of a new length
scale (the GB coupling constant) implies a complicated expression
for the coefficients of the boundary counterterms and makes the
procedure technically much more involved.

The corresponding problem for an asymptotically AdS space-
time has been discussed in the recent paper [20] (see also [21]).
The main purpose of this work is to generalize the boundary coun-
terterms and the quasilocal stress energy tensor there to a positive
value of the cosmological constant and thus to extend the pre-
scription in [8,12] to the case of EGB theory. Our results are valid
for configurations with d � 7, although a general counterterm ex-
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pression is also conjectured. In the second part of this Letter we
apply this general formalism to several different asymptotically
dS black holes. Apart from known static solutions, we consider
also rotating black holes with two equal magnitude angular mo-
menta in EGB theory formulated in five spacetime dimensions.
These solutions are constructed numerically within a nonperturba-
tive approach, by directly solving the EGB equations with suitable
boundary conditions. They also provide a nontrivial generalization
in EGB theory of a particular class of the known Myers–Perry–dS5
black holes [22].

Most of the notation and sign conventions used in this Letter
are similar to those in Ref. [12].

2. The general formalism

2.1. The action and field equations

We consider the EGB model with a positive cosmological con-
stant Λ = (d −2)(d −1)/2�2, coupled with some matter fields with
a Lagrangian density LM

I = 1

16πG

∫
M

ddx
√−g

(
R − 2Λ + α

4
LGB + LM

)
, (2.1)

where

LGB = R2 − 4Rμν Rμν + Rμνστ Rμνστ , (2.2)

is the GB term, while R , Rμν and Rμνστ are the Ricci scalar, the
Ricci tensor and the Riemann tensor associated with the bulk met-
ric gμν . For d = 4, LGB is a topological invariant and thus does
not contribute to the equations of motion; in higher dimensions
it is the most general quadratic expression which preserves the
property that the equations of motion involve only second order
derivatives of the metric. The constant α in (2.1) is the GB coeffi-
cient with dimension (length)2 and is positive in the string theory.
We shall therefore restrict in this work to the case α > 0, although
the counterterm expression does not depend on this choice.

The variation of the action (2.1) with respect to the metric ten-
sor results in the gravity equations of the model

Rμν − 1

2
Rgμν + Λgμν + α

4
Hμν = 2Tμν, (2.3)

where

Hμν = 2
(

Rμσκτ R σκτ
ν − 2Rμρνσ Rρσ − 2Rμσ Rσ

ν + R Rμν

)
− 1

2
LGB gμν, (2.4)

and Tμν is the energy–momentum tensor of the matter fields.
For a well-defined variational principle, one has to supplement

the action (2.1) with the Gibbons–Hawking surface term [23]

I(E)

b = − 1

8πG

∂M+∫
∂M−

dd−1x
√

γ K , (2.5)

and its counterpart for the GB gravity [19]

I(GB)

b = − α

16πG

∂M+∫
∂M−

dd−1x
√

γ
(
s J − 2Gab K ab), (2.6)

where γab is the induced metric on the boundary with the
outward-pointing normal vector na and K is the trace of the ex-
trinsic curvature Kab of the boundary. The factor s in (2.6) is
s = +1 for a spacelike normal vector na and s = −1 for a time-
like normal vector (the case considered here), see e.g. [24]. Other
quantities in (2.6) are Gab — the Einstein tensor of the metric γab
and J — the trace of the tensor

Jab = 1

3

(
2K Kac K c

b + Kcd K cd Kab − 2Kac K cd Kdb − K 2 Kab
)
. (2.7)

Also, the case of interest in this Letter corresponds to a spatial
boundary future/past timelike infinity.1 Therefore ∂M± are spatial

Euclidean boundaries at early and late times, while
∫ ∂M+
∂M− dd−1x

indicates an integral over the late time boundary minus an inte-
gral over the early time boundary. In what follows, to simplify the
picture, we will consider the I + boundary only, dropping the ±
indices (similar results hold for I −).

Eqs. (2.3) present many interesting solutions possessing new
features as compared to the pure Einstein gravity case (for a re-
view, see the recent work [27]). In this section we shall consider
the issue of computing the action and global charges of the EGB
solutions in dS spacetime, several examples of such configurations
being discussed in the next sections. Here we have found conve-
nient to write2

�c = �

√
1 + U

2
, with U =

√
α(d − 3)(d − 4)

�2
+ 1, (2.8)

which results in a compact form for the expression below; physi-
cally, �c corresponds to an effective dS length scale in EGB theory.

2.2. The counterterms and the boundary stress tensor

The GB term in (2.1) does not change the general formalism to
compute the conserved charges and the action of asymptotically
dS solutions developed in [8,12]. Therefore, we only recapitulate
the basic steps here, emphasizing the new features which emerge
for α �= 0.

In general, the action (2.1) (together with the boundary terms
(2.5), (2.6)) is divergent when evaluated on a solution to the equa-
tions of motion (2.3). In the counterterm approach, the remedy is
to supplement the initial action (2.1) by a boundary counterterm
part Ict depending only on geometric invariants of the boundary
metric (therefore the bulk equations of motion remain the same).
Ict regularizes the tree gravitational action Icl and the boundary
stress tensor. Crucial to the success of the counterterm prescription
is that the divergencies are universal, so that a single choice of the
counterterms suffices to render finite the action of all asymptoti-
cally dS solutions.

For d < 8 solutions, our proposal for the boundary counterterm
action is3

Ict = 1

8πG

∫
∂M

dd−1x
√

γ

{
−

(
d − 2

�c

)(
2 + U

3

)

+ �cΘ(d − 4)

2(d − 3)
(2 − U )R

− �3
c Θ(d − 6)

2(d − 3)2(d − 5)

[
U

(
RabRab − d − 1

4(d − 2)
R2

)

1 For the black hole solutions in this Letter, this corresponds to evaluate various
quantities for some fixed radius larger than the radius of the cosmological horizon
and then sending this radius to infinity.

2 For the sake of simplicity, we have restricted ourselves to the case of solutions
with a well defined Einstein gravity limit. However, the results in this section can
easily be generalized to the branch of solutions diverging as α → 0, in which case
several terms in (2.9) have an opposite sign.

3 Note that in odd spacetime dimensions, for some boundary geometries, there
is an additional logarithmic divergence that cannot be cancelled without including
an explicit cutoff dependence in the counterterm action, which should be sup-
plemented with new extra terms. This feature occurs already for Einstein gravity
theory, leading to a conformal anomaly similar to what has been obtained in the
context of AdS spacetime [2]. However, this is not the case of the solutions dis-
cussed in next sections.
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− d − 3

2(d − 4)
(U − 1)LGB

]}
, (2.9)

where R, Rab and LGB are the curvature, the Ricci tensor and the
GB term associated with the induced metric γ . Also, Θ(x) is the
step-function with Θ(x) = 1 provided x � 0, and zero otherwise.
One can easily see that as α → 0 (thus U → 1), the known coun-
terterm expression in the Einstein gravity [8,12] is recovered.

Following Ref. [20], we conjecture the general form of Ict in d
spacetime dimensions:

Ict = 1

8πG

∫
∂M

dd−1x
√

γ

{∑
k�1

Θ(d − 2k)

× (
f1(U )LE + f2(U )L(k−1)

)}
, (2.10)

where LE is the corresponding k-th part of the counterterm La-
grangian for a theory with only Einstein gravity in the bulk (with
the length scale � in front of it replaced by the new effective dS
radius �c) and L(k−1) is the (k − 1) term in the Lovelock hierar-
chy. The functions f1(U ), f2(U ) are first order polynomials in U ,
whose expression can easily be derived from those given in [20]
for Λ < 0. The series (2.10) truncates for any fixed dimension, with
new terms entering at every new even value of d.

Once we know the expression of the boundary counterterm, the
computation of the conserved charges is performed in a similar
way to the α = 0 limit [8,12]. The (Euclidean) boundary metric on
equal time surfaces can be written, at least locally, in a ADM-like
general form

ds2 = γab dxa dxb

= N2
ρ dρ2 + σab

(
dψa + Na dρ

)(
dψb + Nb dρ

)
, (2.11)

where Nρ and Na are the lapse function and the shift vector re-
spectively, while ψa are angular variables parametrizing a closed
surfaces Σ . The physical significance of the coordinate ρ in (2.11)
depends on the considered situation; e.g. for the black hole solu-
tions discussed in the next sections, ρ is the coordinate associated
with the asymptotic Killing vector that is timelike inside the static
patch of dS, but spacelike at I ± .

Varying the total action with respect to the boundary metric
γab results in the following boundary stress-energy tensor

Tab = 2√
γ

δ

δγ ab

(
I + I(E)

b + I(GB)

b + Ict
)
, (2.12)

with the following expression valid for d < 8:

8πGTab = Kab − γab K + α

2

(
Q ab − 1

3
Q γab

)
+ d − 2

�c
γab

(
2 + U

3

)

+ �cΘ(d − 4)

d − 3
(2 − U )

(
Rab − 1

2
γabR

)

+ �3
c Θ(d − 6)

{
− U

(d − 3)2(d − 5)

(
−1

2
γab

(
RcdRcd

− (d − 1)

4(d − 2)
R2

)
− (d − 1)

2(d − 2)
RRab + 2RcdRcadb

− d − 3

2(d − 2)
∇a∇bR + ∇2Rab − 1

2(d − 2)
γab∇2R

)

+ U − 1

2(d − 3)(d − 4)(d − 5)
Hab

}
+ · · · (2.13)

where [24,25]

Q ab = s
(
2K Kac K c

b − 2Kac K cd Kdb + Kab
(

Kcd K cd − K 2))
+ 2K Rab + RKab − 2K cdRcadb − 4Rac K c

b, (2.14)
and Hab given by (2.4), this time written in terms of the bound-
ary metric γab , however. All terms in (2.13), except the first four,
come from the variation of the counterterms in (2.9). The bound-
ary stress-energy tensor Tab measure the response of the space-
time to changes of the boundary metric and encodes the notion of
conserved global charges.

Following [8,12], let us suppose that ξ i is a Killing vector gen-
erating an isometry of the boundary geometry (2.11). Then it is
straightforward to show that Ti jξ

j is divergenceless and one can
define a conserved quantity Qξ associated with ξ i as follows

Qξ =
∮
Σ

dnψ
√

σniTi jξ
j, (2.15)

where ni is a unit vector normal on a surface of fixed ρ . The phys-
ical interpretation of this relation is the same for any theory of
gravity: it means that a collection of observers, on the hypersurface
with the induced metric σi j , would all measure the same value
of Qξ provided this surface has an isometry generated by ξ i . As
mentioned above, a dS spacetime has no globally timelike Killing
vector, which makes difficult to define a mass for the solutions
with this asymptotics. However, for all cases of interest (e.g. the
black holes solutions in the next sections), there is a Killing vector
that is timelike inside a static patch, while it is spacelike out-
side the cosmological horizon and therefore at I ± . (Moreover, any
spacetime that is asymptotically dS will have such an asymptotic
symmetry generator.) The total mass/energy of solutions is evalu-
ated with respect to this Killing vector.

Proceeding further, one can define a Hawking temperature T H

(e.g. by computing the corresponding surface gravity) and entropy
S for the cosmological horizon by using the saddle point approx-
imation to the gravitational partition function (namely the gen-
erating functional analytically continued to the Euclidean space-
time). In the semiclassical approximation, the dominant contri-
bution to the path integral will come from the neighborhood of
saddle points of the action, that is, of classical solution; the zeroth
order contribution to log Z is given by −Icl . A tree-level evalua-
tion of the path integral with a GB term may be carried out along
the lines described e.g. in Ref. [12] for the Einstein gravity case.
Therefore, we find the entropy of the cosmological horizon (with
β = 1/T H )

S = β(E − μiCi) − Icl, (2.16)

which is found upon application of the Gibbs–Duhem relation to
the partition function, with chemical potentials Ci and conserved
charges μi , while E is the total mass/energy, evaluated according
to (2.15). Also, all solutions should satisfy the first law of thermo-
dynamics for the cosmological horizon

dS = β(dE − μi dCi), (2.17)

which provides a test of the general formalism.

3. Applications: Known solutions

3.1. dS spacetime in EGB theory

As the simplest illustration of the above formalism, we consider
the case of empty dS spacetime. This solution has a simple form in
a large number of coordinate systems. For example, there is a static
frame centered on each observer (timelike geodesic) in dS. More-
over, when a black hole exists, there is still a static frame centered
about the black hole. Since different parametrizations emphasize
different features, it is of interest to consider dS spacetime in al-
ternative coordinate systems corresponding to different classes of
observers.
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Starting with an inflationary coordinate system, the dS solution
reads

ds2 = −dt2 + e2t/�c d�x2, (3.1)

which solves the EGB equations (2.3) with Tμν = 0 (i.e. no matter
fields). The properties of this solution are similar to the case of
Einstein gravity (see e.g. [26]); the equal time surfaces here are
flat, while t runs from −∞ to +∞. One can easily verify that the
counterterms (2.9) removes all divergencies of the total action for
d � 7, and leads to Icl = 0. The total mass/energy of this solution
is also vanishing, since Ti j = 0.

The situation is different for a static coordinate system, the cor-
responding line element being

ds2 = dr2

F (r)
+ r2 dΩ2

d−2 − F (r)dt2, (3.2)

where (here we shall consider only the branch of solutions with a
smooth Einstein gravity limit)

F (r) = 1 + 2r2

α(d − 3)(d − 4)

(
1 −

√
1 +

(
α(d − 3)(d − 4)

1

�2

))

= 1 − r2

�2
c
.

This spacetime has a cosmological horizon at rc = �c (where
F (rc) = 0), with an associated temperature T c

H = (2π�c)
−1. The

topology of this solution for large constant r > rc , is an Euclidean
cylinder R × Sd−2 and t is the coordinate along the cylinder. I ± are
located outside the future/past cosmological horizons, where r is
timelike and t is spacelike. The relationship between the coordi-
nate patches (3.1) and (3.2) and their Penrose diagrams are pre-
sented in Ref. [28].

The general formalism in Section 32 is applied working out-
side of the cosmological horizon, where F (r) < 0. The gravitational
mass/energy is the charge associated with the Killing vector ∂/∂t
— now spacelike outside the cosmological horizon. As expected,
the total energy found by using the counterterm prescription van-
ishes for an even dimensional spacetime and has a nonzero value
for an odd d:

M0 = Vd−2

8πG

(d − 2)!!2
(d − 1)!

(
(d − 2)U − 2

d − 4

)
�d−3

c δ2p+1,d, (3.3)

where Vd−2 is the area of the unit Sd−2 sphere and p � 2 is an
integer. For solutions in Einstein gravity (α = 0), M0 is usually
interpreted as the Casimir energy in the context of dS/CFT corre-
spondence. Also, it reduces to the expression obtained in Ref. [12]
when U = 1.

From (2.16) one finds the following expression for the entropy
of dS spacetime in EGB theory:

S = Vd−2

4G
�d−4

c

(
�2

c + α

2
(d − 2)(d − 3)

)
, (3.4)

which in the limit of small α can written in the simple form

S = S0 + Sc with S0 = �d−2 Vd−2

4G
,

Sc = α
Vd−2

4G
d(d − 2)(d − 3)�d−4. (3.5)

From the study of (3.1), (3.2) we conclude that, similar to the
case of Einstein gravity, the horizon and entropy of the dS space in
EGB theory have an obvious observer dependence.
3.2. Reissner–Nordström–dS–GB black hole

These solutions are found for a matter Lagrangian density LM =
−F 2, with the Maxwell field strength tensor F = dA, where the
(pure electric-) gauge potential is

A = At dt =
(√

d − 2

2(d − 3)

Q

rd−3
+ Φ

)
dt, (3.6)

where Φ is a constant. Working again in a static coordinate sys-
tem, the line element is still given by (3.2), with a different ex-
pression for F (r), however:

F (r) = 1 + 2r2

α(d − 3)(d − 4)

×
(

1 −
√

1 + α(d − 3)(d − 4)

(
M

rd−1
− Q 2

r2(d−2)
+ 1

�2

))
.

(3.7)

As argued below, M and Q in the above expression are constants
proportional to the gravitational mass/energy E and the total elec-
tric charge Q , respectively. The Q = 0 limit of this metric corre-
sponds to the EGB generalization of the McVittie solution describ-
ing a Schwarzschild black hole embedded in dS spacetime [14].

A discussion of the solution (3.6), (3.7) appeared in Ref. [29]
(see also Ref. [13] for an extended analysis of the limiting case
α = 0, including also multi-black hole generalizations). Here we
briefly review its basic properties. One can easily verify that the
metric has a curvature singularity at the origin r = 0. In general,
the metric (3.2) presents Killing horizons at the radii where F (r)
vanishes. Of interest are the outer black hole horizon at r = rh
and the cosmological horizon r = rc corresponding to the largest
root of F (r). The Hawking temperature of associated to each of
the horizons is T h,c

H = |F ′(rh,c)|/(4π), where a prime denotes the
derivative with respect the radial coordinate. The two horizons are
not in thermal equilibrium because the time periods in the Eu-
clidean section required to avoid a conical singularity at both do
not match in general. An extremal black hole is found by impos-
ing F (rh) = F ′(rh) = 0 which fixes M , Q as functions of �,α and rh
(a similar relation is found when considering instead the cosmo-
logical horizon). The constant Φ in (3.6) is usually fixed such that
At(rc) = 0, and thus it corresponds to the electrostatic difference
between the cosmological horizon and infinity.

The computation of the mass, action and entropy of a RNdS
black hole is a direct application of the method described in the
previous section. The gravitational mass/energy is the charge asso-
ciated with the Killing vector ∂/∂t . The total mass/energy found by
using the counterterm prescription described in the previous sec-
tion is

E = − Vd−2

16πG
(d − 2)M + M0, (3.8)

with M0 the Casimir term given by (3.3). The negative sign implies
that the black hole lowers the total bulk energy with respect to the
total energy of the pure dS spacetime [8].

The computation of the total electric charge is similar to that
performed in [13] for the case without a GB term. The results there
show that the total electric charge evaluated at future/past infinity
is

Q = Q Vd−2

8πG

√
2(d − 3)(d − 2). (3.9)

From (2.16) one finds the entropy of the cosmological horizon
(note that both S0 and Sc have a nontrivial dependence on α):
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S = S0 + Sc with S0 = Vd−2

4G
rd−2

c ,

Sc = α
Vd−2

4G

1

2
rd−4

c (d − 2)(d − 3). (3.10)

One can easily verify that the first law of thermodynamics (2.17)
also holds, with μi = Φ,Ci = Q .

It would be interesting to study the properties of the Reissner–
Nordström–de Sitter solution (3.6), (3.7) in the inflationary coor-
dinate system (3.1). This problem has been considered in Ref. [13]
in the absence of a GB term in the action. Interestingly, the same
general picture have been found there for black holes in both co-
ordinate systems (3.1) and (3.2), which shows the complex relation
between different classes of observers in dS spacetime. For exam-
ple, the mass of the black holes in an inflationary coordinate sys-
tem is still given by (3.8), with M0 = 0 however.4 We expect that a
similar result will be found in the presence of a GB term. However,
in the absence of an explicit form of the Reissner–Nordström–dS–
GB black hole in the inflationary coordinate system,5 any progress
in this direction appears to require a separate numerical study of
these solutions.

4. Rotating EGB black holes with positive cosmological constant

4.1. The metric ansatz and known limits

The computation of the global charges and entropy of a rotating
black holes in EGB theory represents another nontrivial application
of the general formalism in Section 2. Unfortunately, no exact so-
lutions are available in this case, and one has to solve numerically
the field equations.

To simplify the general picture, we consider here the vacuum
case in d = 5 dimensions only, although the inclusion of a U(1)
field is straightforward in principle. A general spinning black hole
solution is characterized in this case by two angular momenta and
its mass/energy, and can be found by solving a set of seven partial
differential equations. However, the numerical problem is greatly
simplified by taking the a priori independent two angular momenta
to be equal in order to factorize the angular dependence [31,32].
The asymptotic expressions and the explicit computation of the
action and boundary stress tensor also simplifies drastically in this
case.

To construct these solutions, we use the same metric ansatz
employed in Ref. [33] for the corresponding problem with Λ < 0:

ds2 = dr2

f (r)
+ g(r)dθ2 + h(r) sin2 θ

(
dϕ − w(r)dt

)2

+ h(r) cos2 θ
(
dψ − w(r)dt

)2

+ (
g(r) − h(r)

)
sin2 θ cos2 θ(dϕ − dψ)2 − b(r)dt2, (4.1)

where θ ∈ [0,π/2], (ϕ,ψ) ∈ [0,2π ], r and t being the radial and
time coordinates. This ansatz has a residual degree of freedom
which is fixed by taking g(r) = r2.

The equations satisfied by the functions b, f ,h, w result di-
rectly from (2.3). We refrain to write them because they are very
long and not particularly enlightening. They present however two
exact solutions which are important in what follows. The dS5 gen-
eralization [22] of the Myers–Perry rotating black holes [34] with

4 This result has been interpreted in [13] as providing support for the putative
dS/CFT correspondence, since the general features of the CFT dual to a black hole
should not depend on the dS slicing choice.

5 The main obstacle here is the absence of a simple closed form expression of
the Reissner–Nordström–GB (or even Schwarzschild–GB) black hole in an isotropic
coordinate system for the Λ = 0 case. For α = 0, this form of the solution is used
to construct cosmological configurations by using the prescription in [30].
equal magnitude angular momenta (hereafter MPdS5) is found for
α = 0 (no GB term) and has

f (r) = 1 − r2

�2
− 2M̂Ξ

r2
+ 2M̂â2

r4
,

h(r) = r2
(

1 + 2M̂â2

r4

)
, w(r) = 2M̂â

r2h(r)
,

g(r) = r2, b(r) = r2 f (r)

h(r)
, (4.2)

where M̂ and â are two constants related to the solution’s mass
and angular momentum, while Ξ = 1 + â2/�2.

For g(r) = h(r) = r2, w(r) = 0 and f (r) = b(r) = 1 + r2/α(1 −√
1 + 2α(M/r4 + 1/�2)), one recovers the Schwarzschild–dS5 solu-

tion with a Gauss–Bonnet term. The slowly rotating generalisation
of this solution6 is found for small values of the rotation parame-
ter a, and reads

w(r) = 2aU 2

�2
c (U − 1)

(√
1 + 2M�2

c (U − 1)

r4U 2
− 1

)
, (4.3)

the other metric function remaining unchanged to this order in a.

4.2. Boundary conditions and global charges

We want the generic line element (4.1) to describe a nonsin-
gular, asymptotically de Sitter spacetime outside a cosmological
horizon located at r = rc > 0, with f (rc) = 0. Here f (rc) = 0 is
only a coordinate singularity. The regularity assumption implies
that all curvature invariants at r = rc are finite. Outside the cos-
mological horizon r and t changes the character (i.e. r becomes a
timelike coordinate for r > rc). A nonsingular extension across this
null surface can be found just as at the event horizon of a black
hole. These configurations possess also an event horizon located at
some intermediate value of the radial coordinate 0 < rh < rc , all
curvature invariants being also finite as r → rh .

Restricting to nonextremal solutions, the following expansion
holds near the event horizon with the parameters f h

1 ,bh
1, wh

h and
hh

h , where ( f h
1 ,bh

1,hh
h) > 0:

f (r) = f h
1 (r − rh) + O (r − rh)2, h(r) = hh

h + O (r − rh),

b(r) = bh
1(r − rh) + O (r − rh)2, w(r) = wh

h + O (r − rh). (4.4)

A similar expansion holds for cosmological horizon, the corre-
sponding parameters there being f c

1 ,bc
1,hc

h , and wc
h .

Both the event and the cosmological horizon have their own
surface gravity κh,c , the associated Hawking temperatures being

T h,c
H = |κh,c|

2π
=

√
bh,c

1 f h,c
1

4π
. (4.5)

Another quantities of interest are the area Ah,c
H of the black

hole/cosmological horizon

Ah,c
H = √

hh
h,c(

rh,c
h

)2
V 3, (4.6)

where V 3 = 2π2 denotes the area of the unit three-dimensional
sphere.

6 By using the results derived in [35] for Λ < 0, one can find a different set of
closed form EGB asymptotically dSd rotating black hole solutions with only one non-
vanishing angular momentum (where the rotation parameter appears as a small
quantity), the effects of an U(1) field being also included. A different approximation
of the rotating black hole solution of the d = 5 EGB equations with a cosmological
constant have been presented in closed form in [36].



Y. Brihaye, E. Radu / Physics Letters B 678 (2009) 204–212 209
The Killing vector χ = ∂/∂t + Ωϕ∂/∂ϕ + Ωψ∂/∂ψ is orthogonal
to and null on both horizons. For the solutions within the ansatz
(4.1), the event horizon’s angular velocities are all equal, Ω

h,c
ψ =

Ω
h,c
ϕ = Ω

h,c
H = w(r)|r=rh,c .

A direct computation reveals that the solution admits at large r
a power series expansion of the form:

f (r) = 1 − r2

�2
c

+
∑
k�1

f2k

(
�c

r

)2k

,

b(r) = 1 − r2

�2
c

+
∑
k�1

b2k

(
�c

r

)2k

,

h(r) = r2
(

1 +
∑
k�1

h2k

(
�c

r

)2k)
,

w(r) = 1

r

∑
k�1

w2k+1

(
�c

r

)2k+1

, (4.7)

where the coefficients f2k, b2k, h2k, w2k+1 with k > 1 are de-
termined by f2, b2 and w3. Specifically, we find f4 = h4 = b2 −
f2,b6 = (b2( f2 + b2(U − 2)) + (3U − 2)w2

3)/(2U ), w7 = −( f2 +
U (2b2 − 3 f2))w3/(2U ), for the lowest order nonvanishing terms.
Their expression becomes more complicated for higher k, with no
general pattern becoming apparent.

The mass/energy7 E and angular momenta of these solutions
evaluated at future/past timelike infinity by using the counterterm
formalism are fixed by the constants f2, b2 and w3, and read

E = V 3

16πG
�2

c U (4b2 − f2), Jϕ = Jψ = J = − V 3

8πG
�3

c U w3. (4.8)

The entropy of these solutions associated with the cosmological
horizon is found from the relation (2.17) with μi = Ωc

ψ,φ, C = J :

S = S0 + SGB, with S0 = Ac
H

4G
,

SGB = α
V 3

4G

√
hc

h

(
4 − hc

h

(rc
h)2

)
. (4.9)

4.3. The numerical method

Finding numerical solutions of a field theory model in a dS
spacetime is a notoriously difficult task. Therefore, before describ-
ing the properties of the solutions, we shall give some details
on the numerical methods we have used.8 The EGB field equa-
tions were solve by employing a collocation method for boundary-
value ordinary differential equations, equipped with an adaptive
mesh selection procedure [37]. Typical mesh sizes include 103–104

points. The solutions have a typical relative accuracy of 10−8. In
constructing rotating EGB–dS black holes, we make use of the ex-
istence of the MPdS5 and Schwarzschild–GB–dS closed form solu-
tions, and employ them as starting configurations, increasing grad-
ually Ωh

H or α, respectively.
However, when trying to find black hole solutions with Λ > 0

for r ∈ [rh,∞] by imposing a regular horizon at r = rh , one has

7 In the expression of E , we have subtracted the Casimir energy of the pure dS5

space as given by (3.3).
8 The our knowledge, this is the first attempt in the literature to numerically con-

struct EGB rotating solutions in a dS background. The approach and the numerical
methods here are quite different from those employed e.g. in [33] for rotating EGB
solutions with AdS asymptotics or for rotating Einstein–Maxwell black hole solu-
tions [31,32].
to tackle the technical difficulty that there also appear a cosmo-
logical horizon.9 That is, the metric functions f ,b admit a zero
at an intermediate value of the variable r, say at r = rc > rh . Of
course, the value of rc is not known a priori as a function of Λ,α.
However, the condition of a regular horizon should be imposed
both at r = rh and r = rc . In our approach, we impose by hand
the values of rh, rc and solve the equations first for r ∈ [rh, rc] as a
boundary value problem. At the same time, we compute the value
of Λ corresponding to this cosmological horizon by using the fic-
tious equation dΛ/dr = 0. In a second step, we finally integrate the
equations for r ∈ [rc,∞] as an initial value problem with this value
of the cosmological constant. This assures that the metric functions
and their first and second derivatives are continuous at r = rc .

In this approach, the set of boundary condition we imposed at
rh, rc is

f = 0, b = 0, b′ = 1, G(gij, g′
i j) = 0,

w = wh at r = rh, (4.10)

and f = 0, b = 0, G(gij, g′
i j) = 0 at r = rc, (4.11)

where G(gij, g′
i j) is a complicated expression in terms of the met-

ric function and their first derivatives which occurs from the con-
dition for a regular horizon. In the above expression, the arbitrary
rescaling of time is used to set b′(rh) = 1, keeping in mind that
the function b(r), w(r) have to be renormalized at the end of the
second step according to

b(r) → b̃(r) = b(r)μ2, w(r) → w̃(r) = w(r)μ, (4.12)

where the constant μ is chosen in such a way that the b̃(r) ap-
proaches the asymptotic (4.7).

One disadvantage of this method is that the solutions cannot be
studied systematically for fixed Λ. For the same reason, we have
found difficult to study families of solutions obtained by varying α
while Ωh

H is fixed.
To summarise, in our approach the input parameters are the

black hole event horizon radius rh , the cosmological horizon radius
rc , the black hole event horizon velocity Ωh

H and the GB coupling
parameter α. The value of the cosmological constant, the metric
functions and their derivatives at r = rc and the global charges
emerge from the numerical output.

4.4. Numerical results

A systematic study of the properties of these rotating black
holes appears to be a difficult task and is beyond the purposes of
this work. In practice we have solved the equations numerically for
several values of rh , rc and Ωh

H and a range of the Gauss–Bonnet
coupling constant α.

When increasing from zero the angular velocity Ωh
H , we have

found numerical evidence for the existence of nontrivial general-
izations of any static Schwarzschild–GBdS configuration we con-
sidered; the shape of the metric function w(r) we found for small
values of Ωh

H is in good agreement with (4.3). We reach the same
conclusion when considering instead GB counterparts of the Ein-
stein gravity rotating solution (4.2), by slowly increasing the pa-
rameter α. As a general remark, the qualitative features of all so-
lutions we have constructed are rather similar to the MPdS5 case.
For α > 0, we have noticed only quantitative difference in the val-
ues on the cosmological horizon and at infinity, for a number of
parameters of interest.

In order to limit the amount of numerical investigation, we
have studied in details mainly the case rh = 1, rc = 3. For the

9 We do not consider in this work the behaviour of solutions inside the black
hole even horizon r < rh .
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Fig. 1. The profiles for a generic d = 5 rotating black hole solution in EGB theory
with positive cosmological constant.

Fig. 2. Several parameters are compared for the Myers–Perry–dS5 (dotted curves)
and Einstein–Gauss–Bonnet (continuous line) rotating black hole solutions. The in-
put parameters here were rh = 1, rc = 3, α = 0.5 and �2 = 10.

non-rotating limit, this corresponds to �2 = 10 and −(8πG)E/V 3 =
3M/4 = 3(5α + 9)/40,4π T h

H = 8/(5(α + 1)).
The profiles of the metric functions of a typical EGB–dS rotating

black hole solution corresponding to α = 1, Ωh
H = 0.66, � � 3.2

are presented on Fig. 1. One can see that the rotation leads to
nonconstant values for h(r)/r2 and b(r) �= f (r), especially in the
region close to the black hole horizon. Also, the metric functions
and their derivatives are continuous at the cosmological horizon
(although to simplify the plot we presented there only the profile
of b′(r)).

Several parameters characterizing the solutions are represented
in Fig. 2 as a function of the angular velocity at the black hole
horizon. The data corresponding to MPdS5 solution is represented
by the dotted lines and results from analytical calculations. In con-
trast, the curves corresponding to the EGB theory are represented
by continuous lines and result from our numerical calculation. (The
energy E and angular momentum J are represented in the units of
V 3/(4π). The Hawking temperature is represented in units 1/(4π)

and horizon area AH in units V 3, while we have set also G = 1
in all data.) Along with the case of the MPdS5 solutions, the EGB
Fig. 3. The black hole event horizon area is plotted as function of the black hole
temperature for several values of the GB coupling constant α. These solutions have
rh = 1, rc = 3 and �2 = 10.

black holes exist up to a maximal value of Ωh
H = Ωmax. For α = 0

one finds

Ωh
H(max) =

√
2

r2
c + 2r2

h

rcr3
h(r2

c + r2
h)

r2
c r4

h + r2
c + 2r2

h

,
1

�2
= 1

r2
c + 2r2

h

. (4.13)

For the cases we have investigated, when fixing the values of
rh, rc , this maximal value gets larger when the Gauss–Bonnet cou-
pling constant increases. In this limit, the solution approaches an
extremal black hole, i.e. the functions f (r), b(r) reach a double
root at the black hole event horizon. However, these function still
present a simple zero at the cosmological horizon. For the values
of the parameters adopted here we find e.g. Ωh

H ≈ 0.64 for α = 0
and Ωh

H ≈ 0.72 for α = 1.
For the Einstein gravity black holes, the event horizon area Ah

H
increases with increasing Ωh

H while the Hawking temperature T h
H

decreases. The entropy S(T H ) turns out to be a decreasing func-
tion of the temperature, for fixed event horizon radius. We have
found that when the GB parameter α is large enough, the scenario
is completely different. For instance, both T h

H and Ah
H decreases

while Ωh
H increases. The entropy is an increasing function of T h

H .
In Fig. 3 we show this behaviour for several values of α. There the
parameter varying on the Ah

H (T h
H ) curves is Ωh

H .
As with other rotating black holes, these solutions present also

an ergoregion inside of which the observers cannot remain sta-
tionary, and will move in the direction of rotation. The ergoregion
is the region bounded by the black hole event horizon, located at
r = rh and the stationary limit surface, or the ergosurface, with
r = rE < rc . The Killing vector ∂/∂t becomes null on the ergo-
surface, i.e. gtt = −b(rE ) + r2

E w(rE )2 = 0. For the ansatz (4.1), the
ergosurface does not intersect the horizon. We observe indeed
that, for rotating solution with fixed Ωh

H , the value rE decreases
slightly and get closer to rh when α increases. For example, with
Ωh

H = 0.66, we get rE/rh ≈ 1.34 and rE/rh ≈ 1.27 respectively for
α = 0.1 and α = 1. In principle, there is also a second value of r,
located outside the cosmological horizon, where the Killing vector
∂/∂t becomes null again. However, for all solutions we could con-
struct, the metric component gtt there is dominated by b(r) and
thus the “cosmological” ergo-radius hardly differs from r = rc .

Another qualitative difference between Einstein and EGB black
holes resides in the magnitude of the ratio ρ ≡ f ′/b′|r=rh . For in-
stance, for α = 0, we have ρ < 1 for all values of the angular
momentum. However, when α got sufficiently large, one can find
solutions with ρ > 1.
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5. Further remarks

In this work we have presented the boundary counterterm that
removes the divergences of the action and conserved quantities of
the solutions in EGB theory with a positive cosmological constant
for a spacetime dimension d � 7. Similar to the case of Einstein
gravity, the counterterm is built up with curvature invariants of the
boundary metric. Their coefficients, however, present an explicit
dependence of the dimensionless factor α2Λ.

Here one should say that the expression of the counterterm
proposed in this Letter was obtained by demanding cancellation of
divergencies for a number of solutions in EGB theory, which was
also the approach used in initial work on the boundary countert-
erm in Einstein gravity [2,3]. However, for asymptotically dS solu-
tions in the Einstein gravity, there exist an algorithmic procedure
for constructing Ict in a rigorous way, and so its determination is
unique for α = 0 [12]. This procedure involves solving the Einstein
equations (written in Gauss–Codacci form) in terms of the extrinsic
curvature functional of the boundary and its derivatives to isolate
the divergent parts. All divergent contributions are independent
of the boundary normal and can be expressed in terms of intrin-
sic boundary data. In principle, this approach can be extended to
asymptotically dS solutions in EGB theory, the only obstacle we
can see at this stage being the huge complexity of the required
computation. A more promising direction would be to look for the
expression of Ict in the linear order in α, by generalising the work
in [21] to the Λ > 0 case.

For asymptotically AdS solutions, an alternative regularization
prescription for any Lovelock theory has been proposed in [38].
This approach uses boundary terms with explicit dependence on
the extrinsic curvature Kab , also known as counterterms. It would
be interesting to generalize the approach in [38] to dS asymptotics
and to compare the results with those found here.

In the second part of this work, the general formalism has been
applied for several different asymptotically dS black hole solutions
in EGB theory. Apart from several known solutions, we have con-
sidered also rotating black holes with two equal-magnitude angu-
lar momenta in d = 4 + 1 EGB theory with a positive cosmological
constant. Although the numerical difficulties associated with the
existence of a cosmological horizon prevented us from a system-
atic study of the parameter space, we have presented arguments
for the existence of nontrivial generalization in EGB theory of a
particular class of the known MPdS5 black holes.

As avenue for future research, it would be interesting to con-
sider the status of “the maximal mass conjecture” in EGB theory, by
using the mass definition proposed in this work. Formulated in
[8] for Einstein gravity, this conjecture states that any asymptot-
ically dS spacetime cannot have a mass larger than the pure dS
case without inducing a cosmological singularity. Here we men-
tion only the fact that all rotating black holes we have constructed
in Section 4 satisfy this conjecture.

The conserved charges of the rotating solutions in this Let-
ter have been evaluated on a Euclidean surface at future timelike
infinity. In principle, by using the results in Section 2, a simi-
lar computation can be performed for a spatially finite bound-
ary inside the cosmological event horizon. The corresponding
problem for Kerr–dS rotating black holes in Einstein gravity has
been considered in Ref. [39]. The results in that work show that
quasilocal angular momentum is independent on the radius of the
boundary, which does not hold for the total mass of the solu-
tions.

The relevance of the results discussed in this Letter in a dS/CFT
context is another interesting open question. For the AdS/CFT case,
the higher derivatives curvature terms can be viewed as the cor-
rections of large N expansion of the boundary CFT in the strong
coupling limit, see e.g. [40]. For the asymptotically dS case, any
progress in this direction is likely to require first a better un-
derstanding of the conjectured dS/CFT correspondence [41] with
α = 0.
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