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Abstract 

Stochastic multi objective programming problems commonly arise in complex systems such as portfolio analysis, medium- to 
long-term capacity planning and design applications under uncertainty. The identification of the candidate solution set is a main 
step in many applications which depends on the nature of uncertainty. This study presents a method to generate Pareto surface for 
multi-objective integer programs with stochastic coefficients in the objective functions based on minimum expectation and 
variance criteria. The objective function coefficients are represented through random discrete distributions. The methodology 
follows a two-phase approach where, in the first phase, the stochastic multiple objectives are converted into deterministic 
equivalents based on the minimum expectation and variance efficiency concepts. The second phase solves the deterministic multi
objective problem, using a Pareto generation methodology which aims at generating the whole Pareto surface of multi objective 
integer programming problems. We present results of experimental study of applying the proposed method to an assignment 
problem with three objective functions.
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1. Introduction 

Multi-objective optimization has become an essential part of the design decisions in many industrial applications 
attributable to the increasing complexity of systems and the need for integrated decision making. In many 
applications, decision makers prefer evaluating a number of distinct solution alternatives before finalizing their 
decision. Ideally, the decision makers prefer access to the full Pareto front for a complete trade-off analysis. 
However, even in the case of multi objective integer programs with deterministic coefficients, generating the full 
Pareto surface, without resorting to complete enumeration, has been a challenge. Multi objective integer 
programming (MOIP) problems are even more difficult to tackle, due to the non-convex feasible solution space. 
Although stochastic multi objective programming (SMOP) problems are frequently encountered in practice, the 
literature on solution methodologies accounting for the stochasticity is still in nascency. The majority of the efforts 
have focused on developing custom methodologies for specific SMOP problems such as portfolio selection, capacity 
investment, reconfiguration of ring topologies or various combinatorial optimization problems.  

The methods for solving SMOPs can be classified as exact and approximate (evolutionary or simulation based 
methods). Further, the exact methods can be classified into two groups (Caballero, Cerda, Munoz, & Rey, 2004) . 
The first group, converts each stochastic objective into a deterministic equivalent and then 
solves a deterministic MOP problem. The second approach,  first converts the SMOP into a 
single objective   stochastic   programming   problem, then solves its deterministic equivalent. In this study, authors 
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recommend using the stochastic approach for the achievement of efficient solutions rather than the multi-objective 
approach in the presence of stochastic dependencies among objectives.  Abdelaziz (Abdelaziz, 1992) also classifies 
the stochastic MOIP (SMOIP) solution techniques according to the order by which the conversions are carried out, 
e.g. stochastic to deterministic and multi- to single-objective. In the conversion from stochastic to deterministic 
problem, various efficient solution concepts are employed: expected-value efficiency, minimum variance efficiency, 
or a combination of both such as the expected-value standard deviation efficiency, minimum-risk efficiency and 
efficiency with probabilities. The study of Cabellero et. al. (Caballero, Cerda, Munoz, & Rey, 2004) explores the 
relationships among these efficiency types under some assumptions. Unfortunately, their conclusions cannot be used 
in SMOIP since one of the assumptions of the study is the convexity of the feasible region. We refer the reader to 
the book by Stancu-Minasian (Stancu-Minasian, 1984) for a broader discussion of the SMOIP problems. Aouni et 
al. (Aouni & Torre, 2010) presents an approach to solve SMOP problems through goal programming. They used 
three types of deterministic conversion, namely optimization of expectation, standard deviation and both expectation 
and standard deviation of objectives. Abdelaziz et al.(Abdelaziz, Aouni, & Fayed, 2003) propose a chance 
constrained compromise programming model (CCCP) as a deterministic transformation to multi objective stochastic 
programming portfolio. CCCP is based on CP and chance constrained programming (CCP).  

Another study to compute the dotted representation for the portfolio selection problem belongs to Qi et al. (Qi, 
Hirschberger, & Steuer., 2009). The authors study the Markowitz type problems, i.e. mean-variance problems with 
all linear constraints. The proposed approach utilizes the results of algorithms that can compute all hyperbolic 
segments of a Markowitz efficient frontier and places dots on the hyperbolic segments of the efficient frontier in a 
variety ways including equally spaced. The “ constraint” and “risk tolerance factor” methods are used for 
producing dotted representations of efficient frontiers. Both involve the repetitive optimization of a quadratic 
programming problem. Pena (Pena, Lara, & Castrodeza, 2009) worked on a multi objective stochastic programming 
for feed formation by introducing stochastic constraints in the single objective minimum cost model requiring fixing 
the level of probability desired for each one of the nutrients in advance. A chance constrained goal programming 
model has been designed by Bhattacharya (Bhattacharya, 2009), after considering the parameter corresponding to 
reach for different media as random variables in a advertising planning problem setting. Gabriel et al. (Gabriel, 
Shim, Llorca, & Milner, 2008), developed a heuristic for dynamic reconfiguration of ring topologies with stochastic 
load. The aim is to minimize both total cost total congestion with uncertain traffic load. The authors handled the 
problem by converting stochastic problem to a deterministic one. Capacity investment problem is also formulated as 
SMOIP, and studied by Claro and de Sousa (Claro & Sousa, 2010). They proposed a local search metaheuristic as 
the solution method. 

 SMOIP problems with stochastic objective function coefficients are the focus of this study. The coefficients of 
the objective function are discrete samples from arbitrary continuous distributions. Our goal is to identify the whole 
Pareto surface by considering both minimum expectancy and variance efficient solution concepts. Our solution 
approach converts the stochastic problem into its deterministic equivalent and then uses an exact algorithm to 
generate the Pareto surface of the deterministic equivalent. We apply this approach to solving multi-objective 
assignment problems with stochastic coefficients. We illustrate the results with graphical representation for different 
efficient solution concepts. 

2. Stochastic models under study 

The general formulation for a stochastic linear multi objective optimization problem (SMOP) in this study, is 
natural extension of MOP with probabilistic objective function coefficients. General form of SMOP is as follows: 

                                                                  (1) 
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where = c(  and c(  being a stochastic parameter. 
For this model the following notations and assumptions are employed: 

is the vector of decision variables of the problem and is a random vector whose components 
are random variables, defined on the set E . We assume given the family  of events (that is 
subsets of  and the distribution of probability  defined on  so that, for any subset of 

 the probability  is known. Also we assume that the distribution of probability  is 
independent of the decision variables, . 

The functions, , ),..., ) are defined on . 

The set of feasible solutions is nonempty. 

Let  denote the expected value of the  objective function, and let be its standard deviation, 
Let us assume that, for every  and for every feasible vector  of the SMOP problem, the standard 

deviation  is finite. 

The general solution approaches for SMOP problems with probabilistic objective function coefficients are 
divided into two main groups. First approach is to convert each stochastic multi objective function into its 
deterministic equivalent; this approach is called “Multi objective approach” in Cabellero et al. (Caballero, Cerda, 
Munoz, & Rey, 2004). The second approach is called “stochastic approach” which combines stochastic multi 
objectives into a single stochastic objective and then finds its deterministic equivalent. Cabellero et al. investigate 
whether these two approaches have a significant difference at producing the solutions where the feasible region of 
the problem is convex. In this study, we consider SMOIP with non-convex feasible space and independent random 
objective coefficients.

For the SMOP problems, there are five types of efficiency concepts that can be used to convert the stochastic 
function into its deterministic equivalent. These are as follows: 

Expected value efficient solution, (White, 1982):  is an expected value efficient solution to the problem (1) 
if it is Pareto efficient to the problem 

where  is the expected value of the random variable, . 

Minimum variance efficient solution, (White, 1982):  is an expected value efficient solution to the 
problem (1), if it is Pareto efficient to the problem 

where  is the variance of  objective function. 

Weighted expected value & standard deviation efficient solution:  is weighted expected value & standard 
deviation efficient solution to the problem (1), if it is Pareto efficient to the problem 

which includes the expected value and the standard deviation of the problem's stochastic objective functions with 
equal importance. 
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3. Full Pareto Surface Generating Method 

This algorithm is an exact algorithm proposed by Ozlen and Azizoglu (Ozlen & Azizoglu, 2009) which aims to 
obtain the whole Pareto surface of a multi objective integer problem with deterministic coefficients. It is a modified 
version of classical -constraint method, which searches within narrower efficiency ranges, jumping between non-
dominated solutions, instead of incremental steps. One important difference from the original -constraint method is 
the structure of objective function. An important property of the algorithm all of the objective function coefficients 
should be integers; if this is not the case, then the coefficients can be converted to integers by proper scaling. The 
general formulation of the model and the algorithm can be found in (Ozlen & Azizoglu, 2009). 

4. Sample problem 

The Assignment Problem:  
This problem is a famous problem that occurs in especially in most of the selection or decision occasions. 

  

  

  
                                                                                         (3)

                                                                                                  

  
  

where has dimensions, with objective function costs   ,  For this study, the size of the 
decision variable matrix is that is we have decision number of variables. The objective coefficients are 
assumed to take three different values   changing in the interval  with different probabilities, 
i.e. p( . Three different sets of coefficients are generated randomly between ``1-100", for each 
objective coefficient; and corresponding probabilities are generated randomly between  for first two levels 
of coefficients, then the probabilities for the last levels are calculated by subtracting their sum from the total 
probability, i.e.   . 

  The results are obtained using a computer with Intel Dual-Core processor with 2.66 GHz speed, and with 4 GB 
memory. The summary table of the results and depiction of two instances with the largest sizes on graph are 
presented in the next section. 

Table 1: Comparison of Efficiency types applied to obtain the deterministic problem 

Type of efficiency applied
Minimum expectancy 

efficiency
Minimum variance 

efficiency
Weighted expectancy 
and standard deviation 

efficiency
Time to finish* 78,898 31,659 43,210
# of unique Pareto points 197 147 157
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In Figure 1, Figure 2  and Figure 3, the probable outcome regions of the solutions are presented; one can 
conclude that these regions are affected to the extent one takes variance into account. In particular, the solutions 
obtained by minimum variance efficiency have the narrowest regions, while the solutions obtained as the result of 
minimum expectancy efficiency have the widest probable outcome region.

Similar results can be derived by observing the following figures Figure 4 and Figure 5, where Pareto optimal 
results obtained according to minimum expectancy concept are represented by red dot, “ ” ; results obtained 
according to minimum variance concept are represented by magenta circle, “ ”; results obtained according to 
equally weighted expectancy and variance concepts are represented by green star,  “ * ”.

Figure 2: Regions for some selected solutions, obtained by applying 
minimum expectancy efficiency

Figure 1: Regions for some selected solutions, obtained by 
applying minimum variance efficiency

Figure 3: Regions for some selected solutions, obtained by applying 
weighted expectancy and variance efficiency

Figure 5: Comparison of variance values for each efficiency concept 
applied

Figure 4: Comparison of expected values for each efficiency concept 
applied
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5. Conclusion 

Our results show that applying different efficiency concepts results in different distribution of the solutions in the 
objective space. Specifically, a decision maker wanting to reduce the probable region of a candidate solution needs 
to consider the variance. On the other hand, the decision maker may also want to minimize the expected outcome of 
candidate solutions. In such a situation, constructing objective functions which consider both expectation and 
variance can result in reduced regions of the probable outcome of candidate solutions which are good quality in the 
expected sense. 

The CPU time requirement of an algorithm in generating the whole Pareto space grows exponentially with the 
size of the problem. Due to this computational complexity, determining a solution set which is guaranteed to 
represent the whole Pareto surface is more practical. This concept is defined as the ``cardinality measure" in the 
representativeness phenomenon of multi objective literature. Hence, a future extension for this study is to develop an 
algorithm which will generate an approximation set of the whole Pareto surface. The two requirements for such an 
algorithm are efficiency in terms of CPU time requirement and high degree of representativeness based on the 
cardinality measure. In addition to minimum expectancy and variance, minimum risk efficiency is also an important 
concept and will be investigated in the future extension of this study. 
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