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Abstract

This paper presents a multi-agent distributed framework for Swarm Intelligence (SI) based on our previous work ACODA
(Ant Colony Optimization on a Distributed Architecture). Our framework can be used to distribute SI algorithms for solving
graph search problems on a computer network. Examples and experimental results are given for SI algorithms of: Ant Colony
System (ACS) and Bee Colony Optimization (BCO). In order to use the framework, the SI algorithms must be conceptualized
to take advantage of the inherent parallelism determined by their analogy with natural phenomena (biological, chemical,
physical, etc.): (i) the physical environment of the swarm entities is represented as a distributed multi-agent system and (ii)
entities’” movement in the physical environment is represented as messages exchanged asynchronously between the agents of
the problem environment. We present initial experimental results that show that our framework is scalable. We then compare
the results of the distributed implementations of BCO and ACS algorithms using our framework. The conclusion was that our
approach scales better when implementing the ACS algorithm but is faster when implementing BCO.

Keywords: Distributed Applications; Swarm Intelligence; Artificial Intelligence; Ant Colony Optimization; Bee Colony
Optimization

1. Introduction

This paper introduces a new distributed framework for a class of Swarm Intelligence algorithms that better
exploits the inherently distributed nature of these algorithms.

Swarm Intelligence (SI hereafter) “is the emergence of coherent functional global patterns from the collective
behaviors of entities interacting locally with their environment” [1].

SI approaches are usually applied to solve computationally complex problems, such as NP-hard problems.
There is a certain level of abstraction at which the solving of such problems can be modeled by distributed com-
putational systems composed of interacting artificial entities. Thus we expect distributed computing, including
distributed multi-agent middleware, to have great potential for the application of SI computational approaches.

The framework presented here is an extension of our ACODA (Ant Colony Optimization on a Distributed
Architecture) which was initially designed to support only Ant Colony Optimization (ACO). Initial experimental
results on the scalability of ACODA were already presented in [2].

In fact our framework can be applied to a class of SI algorithms with the condition of abstracting the process of
searching the solution space as the movement of computational swarm entities into their distributed computational
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environment, similarly with the movement of natural entities (like birds, ants, or bees) in their physical environ-
ment. During their movement process, these entities save partial solutions as well as other relevant information
onto the environment, sense the environment and exchange information via the environment, thus achieving the
continuous improvement of partial solutions into gradually better solutions. Typical examples of SI approaches
suitable for our framework are ACO and Bee Colony (BC). In particular, we considered here the algorithms of
Ant Colony System (ACS) presented [3] in chapter 3 and Bee Colony Optimization (BCO) presented in [4].

In this paper we present our framework and show how it can be used to implement distributed ACO and
BC. Moreover, we updated the initial design of the framework presented in our previous work [2] in order to
accommodate the implementation of more types of SI algorithms and problems.

Summarizing, the main contributions of this paper can be outlined as follows:

(i) We generalized our ACODA distributed framework, initially designed only for ACO algorithms, to other
types of SI algorithms. The novelty is the new modeling of the SI environment as a multi-agent system and
conceptualizing the mobility of swarm entity as messages exchanged by agents.

(i) We showed that the new framework supports two different types of SI: ACS [3] and BCO [4].

(iii) We performed an experimental comparison of the implementations of BCO and ACS for solving the Trav-
eling Salesman Problem (TSP hereafter) on our framework. In our experiments with BCO we obtained the
best value of efficiency (equation (1)) that we found in literature.

The paper is structured as follows. In section 2 we introduce graph search problems that are targeted by our
framework and we give an overview of ACS and BCO. In section 3 we present our literature review on distributed
SI. Section 4 presents our framework. While in section 5 we show how ACS and BCO can be implemented on it.
In section VI we present our experiments and in section 7 we present our conclusions and future work.

2. Background

Before presenting our architecture design, we state the target problem and introduce the SI approaches that
we used as case studies. Due to lack of space we will not detail the mathematical engines of the implemented SI
algorithms, as they are known and can be found in in [3] (ACS) and in [4] (BCO).

SI algorithms are well suited for graph search problems, so our framework targets this type of problems.
A graph search problem can be formalized as optimizing a real-valued function defined over a subset of graph
paths — i.e. paths restricted by specific problem-dependent constraints. For the TSP this subset contains all the
Hamiltonian cycles [5] of the graph —i.e. paths containing all vertices such that the source and the destination are
the same, while any other two vertices of the path are distinct. Other notable examples of graph search problems
include: graph flow problems [5], generalized TSP [6], pickup and delivery problem [7], etc.

2.1. Ant Colony Optimization

ACO [3] refers to a family of SI optimization algorithms that get their inspiration from the metaphor of real
ants searching for food. During their searching process, ants secrete pheromone to mark their way back to the
anthill. Other colony members sense the pheromone and become attracted by marked paths; the more pheromone
is deposited on a path, the more attractive that path becomes.

The pheromone is volatile so it disappears over time. Evaporation erases pheromone on longer paths as well
as on paths that are not of interest anymore. However, shorter paths are more quickly refreshed, thus having the
chance of being more frequently explored. Intuitively, ants will converge towards the most efficient path, as that
path gets the strongest concentration of pheromone.

In the ACO approach to SI, artificial ants are programmed to mimic the behavior of real ants while searching
for food. The ants’ environment is modeled as a graph while the path to the food becomes the solution to a given
graph search problem. Artificial ants originate from the anthills that are vertices of the graph and travel between
vertices to find optimal paths, following ACO rules. When a solution path is found, ants mark its edges with
pheromone by retracing the path.

We mapped the ACS algorithm [3] to our framework by configuring it with the parameters recommended by
the authors. In ACS an ant chooses the next edge to follow towards an unvisited vertex with a probability that
increases with the quantity of pheromone deposited on that edge.
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2.2. Bee Colony

BC refers to a family of SI optimization algorithms that get their inspiration from the metaphor of real bees
searching for food. Bee colonies forage for pollen sources by moving randomly in the physical environment.
When a bee finds a rich food source, upon its return to the hive, it starts to perform the so called “waggle dance” [8].
The purpose of this dance is to inform the other bees about the direction and distance to the food source [9]. The
other bees from the swarm will be attracted to explore the indicated location.

In BC artificial bees are programmed to mimic the behavior of real bees while searching for food. There are
many types of BC computational approaches proposed in the literature [10], [11]. In this paper we adapted the
specific version of the BCO algorithm for solving TSP introduced in [4] to our distributed SI framework. The bees
environment is modeled as the TSP graph while the path to the food becomes the solution to a given graph search
problem. Intuitively, a bee determines the next vertex where to go by analyzing the currently best solution known
by the colony and determining a probability for moving to an unvisited neighboring vertex. Assuming that the
bee is currently placed in vertex i and that the successor of i in the currently best solution is j, the bee computes a
probability A > 0 for moving to j. If there is no currently best solution known yet by the colony or if j was already
visited by the bee then A = 0. For all the other unvisited neighbor vertices k of i the bee computes the probability
of moving to k by equally distributing the remaining probability 1 — A to each of the unvisited neighboring nodes.

A local search algorithm [12] can be used to improve the quality of the solutions offered by both ACS and
BCO. An example of local search algorithm is 2-opt. It takes a solution, chooses two distinct edges of the path
representing the solution and tries to reorganize them in such a way that the quality of the solution improves.

2.3. Speedup and Efficiency

Performing a fair comparison of the different approaches for distributing various SI algorithms requires the use
of general and meaningful quantitative measures that are independent on the distribution model. For this reason
we introduce the classical notions of speedup and computational efficiency.

The speedup metric S . of a distributed application measures how much the application is faster when running
on more computing nodes as compared to running on a single computing node. We define the term computing
node as abstraction of a computer or machine, physical or virtual, with its own or allocated processor and memory.
This term is used in the literature on distributed applications [13] and adopted by distributed computing support
systems, including for example the Condor cluster workload management system [14] that we used in our exper-
iments. Very often the short version “node” is used in the literature, but this can be confused with “vertex” from
graph theory [5]. Therefore we preferred to use the longer version “computing node” to avoid confusions.

The computational efficiency metric e. normalizes the value of the speedup to the number of computing nodes.

The two metrics are introduced by equation (1).

T Se
_n, S (1)

S
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In equation (1): ¢ is the number of computing nodes; S . is the speedup of the application; T is the execution
time of the application on a single computing node; 7, is the execution time of the application on ¢ computing
nodes; e, is the efficiency of running an application on ¢ computing nodes.

3. Related Work

A very recent overview and classification of parallel computing approaches to Ant Colony Optimization (ACO)
was reported by [15]. The authors propose an interesting and novel classification scheme for parallel ACO algo-
rithms. The classification includes: master-slave model, cellular model, independent runs model, island model
and hybrid models. However, the authors do not include in their analysis the agent-based approaches by arguing
that they are usually not designed to take advantage of multi-processor architectures in order to reduce execution
time. A detailed state of the art of distributed approaches for ACO has already been presented in [2].

The cellular model mentioned in [15] is actually based on the author’s own work [16] which proposes the
splitting of ACO search space into overlapping neighborhoods, each one with its own pheromone matrix. The
good solutions gradually spread from one neighborhood to another through diffusion. This approach requires the
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partitioning of the search space such that each set contains a continuous part of the optimal solution. However,
this condition is almost never met in practice, so an optimal solution is hardly reachable. The authors are the only
ones that have ever implemented and tested this model.

In the case of BC approach to SI we could find papers [17] and [18] that collectively offer a good classification
of BC parallel approaches. Interestingly, these papers identify the same general taxonomy of approaches for BC
as in [15] does for ACO, i.e. master-slave model, independent runs model, island model and hybrid models.

Our review of the literature shows that most authors focused on the island model. The island model of dis-
tributing SI requires running a separate group of entities, referred to as an “island”, on each available computing
node. Each island has its own copy of the search space, i.e. a graph, so it can be considered in fact a sequential
implementation of the SI algorithm. At predetermined points in time, with fixed frequency (i.e. periodically), is-
lands communicate solutions to each other and the best solution over all is marked as required by the SI algorithm.
Depending on the implementation, solutions can also be communicated asynchronously.

The results reported in the literature generally obtained top efficiency when distributing their island model
implementations on 8 or less computing nodes. The top efficiency we are aware of was reported in [19] for
asynchronous ACO approaches using the island model that boast 0.9 efficiency on 8 nodes. The results obtained
on the TSP used graphs from the benchmark library TSPLIB [20] of up to 500 vertices. We did, however, find one
approach that reports scalability beyond 8 computing nodes in [21]. In that paper the authors presented an ACO
island model that reached peak efficiency at 25 nodes. Note however that the efficiency obtained was inferior to
that reported in [19]. This result was tested on a 318 vertex TSP instance.

We found significant research sustaining the superiority of asynchronous communication for the island model.
For example, paper [22] compared three approaches to BC: an island model using sequential communication, one
using asynchronous communication and a sequential version of BC. The conclusions drawn by the authors were
that the asynchronous distributed approach is superior to the others in both quality of solutions and execution time.

Our conclusion supported by a number of papers from the literature on this subject, as well as by their positive
results is that the island approach represents the state of the art model for distributing SI computations. However,
the island model requires the sequential implementation of the SI algorithm in each island. So the authors of island
model implementations do not take advantage of the inherently distributed nature of SI approaches.

Agent-based approaches to SI tend to be purely theoretical such as [10] for BC and [23] for ACO. We could
also find some papers that actually report implementations of SI using agents. Note however that they usually do
not provide a study of scalability and efficiency [15]. One example is the work reported in paper [24]. It presents
a BCO-inspired agent based approach called “BeeJamA” to the Vehicle Routing Problem. However, the approach
was evaluated only in terms of solution quality using a multi-agent simulation toolkit.

4. Development of a Distributed Framework for SI Algorithms

Our framework takes a representation of entities’ environment as input data, i.e. the graph in this case, and
creates a distributed computing environment onto the available computing nodes, based on this representation.
The distributed environment is then populated with software agents. Each agent is assigned a subset of the graph
vertices representing a part of the graph, as described in paper [2].

Each agent creates its own population of entities represented as software objects that can be transferred from
vertex to vertex with the help of agents, thus mimicking migration of natural entities in their natural environment.
When an entity must migrate between two vertices managed by different agents, the object is serialized and sent
via a message. Otherwise, the migration is achieved by pushing and popping the object from a local agent queue.

We have implemented our distributed platform using JADE multi-agent framework [25]. The UML class
diagram that shows the most important classes of our framework is presented in Fig. 1. The central class of the
framework is MOBILE-AGENT. This is an abstract class that represents an agent of the framework that manages
a subset of the graph vertices. A MOBILE-AGENT is able to control the movement of entities between two
graph vertices, either locally or by exchanging messages with other agents of the framework. Additionally, a
MOBILE-AGENT is able to interpret special messages that control the execution of the framework.

The execution of an agent in our framework follows the JADE model [25] i.e. it assumes the non-preemptive
interleaved execution of a set of behaviors. A behavior is conceptually a single execution unit of an agent and it is
represented by class BEHAVIOR (see Fig. 1). MOBILE-AGENT class contains three behaviors:
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MAIN-CLASS AGENT ENTITY LOCAL-MOVE
, i / 0 /
BOOTSTRAP = RECEIVE-ENTITY
MOBILE-AGENT — | BEHAVIOUR

1.0 | +AGENTHNIT() : void !
+ BEST-NEIGHBOR(entity: ENTITY) " int

|+ ADIUSTATTRIBUTES{eniiy ENTITY)  voia
USER-AGENT]| + HANDLE-SOLUTION(entity - ENTITY) - void I ReceE.commans
+ SENT-TO(destination : int, entity : ENTITY) - void 1

Fig. 1. Framework class hierarchy.

(i) RECEIVE-ENTITY that handles incoming entities received as messages sent by other agents;
(ii)) LOCAL-MOVE that locally handles the entities either by pushing them onto the local queue or by popping
them out from the local queue;
(iii) RECEIVE-COMMANDS that handles incoming messages representing commands for controlling the exe-
cution of the framework.

The MOBILE-AGENT abstract class provides four abstract methods:

(i) AGENT-INIT(): this methods is called once when the agent starts. The main purpose of this method is to

initialize the entity population of the agent.

(ii)) BEST-NEIGHBOR(entity): this method determines the next vertex the entity should visit in order to get
closer to completing a solution.

(iii) ADJUST-ATTRIBUTES(entity): this method implements the logic necessary for adjusting entity attributes.

(iv) HANDLE-SOLUTION(entity): this method is called every time an agent receives a complete solution from
other agents. This is meant to be used in the case of SI algorithms that require the broadcasting of solutions
such as BCO (i.e. the “waggle dance”). The implementation of this method is not always necessary because
some SI algorithms such as ACS do not need it (see also Fig. 2).

These methods must be implemented by the user of the framework in a class derived from MOBILE-AGENT
(shown as class USER-AGENT on Fig. 1) to support a specific SI algorithm.

The class MOBILE-AGENT is also using a method SEND-TO(destination, entity) in order to send an entity
to a given destination vertex. Finally, MOBILE-AGENT is a basic agent class providing the mobility capability
that is required during the framework setup process (see below).

Each entity is represented by the ENTITY class that contains the members: cost of the currently explored
path; returning flag; vertex of origin; best solution cost that the entity knows, based on its search history; a list
of vertices representing the path followed to reach the current location; a method that resets all members to their
initial values, i.e. initializes the entity (this is useful for reusing an ENTITY object).

The setup of the framework requires the instantiation of a JADE platform, as well as the creation of an agent
container running on each computing node. For this purpose we developed MAIN-CLASS with two functions:

(i) to create the Main-Container required by the JADE platform and then to create the BOOTSTRAP agent that
will be used for setting up the framework.
(i1) to remotely create auxiliary JADE containers, one container on each available computing node.

The BOOTSTRAP agent that is created on the JADE Main-Container has the following roles:

(i) to create the framework agents, of class USER-AGENT;
(i1) to allocate the vertices of the problem graph to each agent;
(iii) to use JADE mobility to distribute these agents onto the available computing nodes, identified by their
corresponding agent containers.

By default, one agent is allocated to each container and the set of vertices is equally distributed to the agents.
SI algorithms are heuristic by nature and as such, they require multiple runs of the same experiment in order
to reach a sound statistical conclusion. That is why the MOBILE-AGENT running on the Main-Container (called
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Table 1. Calculation of performance measures.

Parameter Explanation

v = min’;;é Vij v; is the solution found by round i.

t = min’};é {tijlvi,j = vi} t; is the time in which solution was found by round i.

Vavg = (Xl vi/r Vavg is the average value of solutions found in all rounds.

tavg = (Zf:l t)/r tavg 1s the average time in which solutions were found in all rounds.

Vmin = Min_, v; Vmin 18 the best solution found after carrying out all rounds.

tin = min;‘:I {tilvi = Vinin} tmin 1S the minimum time in which the best solution was found in all rounds.
T; T; is the duration of experimental round i.

Tavg = (ZLI T)/r Ty is the average execution time of the rounds in an experiment.

Master) has the additional role of controlling the experiment and gathering the experiment statistics. Experiments’
execution is controlled using special control messages that are distinguished from the entity exchange messages
(see [2] for more details). MOBILE-AGENT handles such messages using RECEIVE-COMMANDS behavior.

An experiment is organized as a fixed number r of rounds. Each of them consists of one execution of the SI
algorithm for a given set of parameters and it ends when the stop condition is met. The SI algorithm’s parameters
are reset at the beginning of each round using AGENT-INIT(). Experimental data is collected during each round.
At the end of the experiment this data is post-processed to calculate performance measures.

Using the framework for the definition and running of an SI algorithm requires the following steps:

(1) the setup of one JADE container running on each computing node
(i1) the preparation of the code of the SI algorithm and the definition of its parameters
(iii) the definition and coding of the stop condition. The default stop condition is true when a predefined number
M of entities visited the “reference vertex”.

Note that by allocating all vertices to a single agent (i.e. using a single computing node) no entity will be
transferred to another agent. All entities will only use the queue of the LOCAL-MOVE behaviour resulting in a
sequential implementation of the SI algorithm.

4.1. Performance Measures

The standard approach for analyzing the performance of heuristic approaches such as SI is to perform statis-
tical analysis on a population of multiple sets of data collected during repeated executions of the same test [1].
Therefore we organized our experiments as a fixed number of independent rounds. Each of them consists of one
execution of the ST algorithm for a given set of parameters and it ends as soon as a stop condition is met.

Experimental data for performance measures’ evaluation were captured during each experiment. Duration 7;
of an experimental round i is recorded by the Master agent. Whenever an agent updates its current value of the best
solution, the time elapsed since the start of the experiment is recorded. When an experimental round is finished,
Master agent gathers the raw statistical data from all the agents. This data is then used by the Master agent to
calculate performance measures of the current round.

We utilized the performance measures introduced in [2] and we briefly review them here. Let us suppose that
we have n vertices and r experimental rounds. For each vertex j let #; ; be the time of the last update of the best
solution found by agent j in round i and let v; ; be the cost of this solution. The experimental data that is acquired
during all the rounds of an experiment are post-processed to calculate performance measures as shown in Table 1.

Please note that our primary concern was to improve the distribution of the computation performed by ex-
isting SI algorithms by exploiting the inherent parallelism determined by their analogy with natural phenomena
(biological, chemical, physical, etc.). So evaluation was done mainly in terms of execution time and scalability.

5. Using the Framework

In order to implement an SI algorithm for solving a specific graph search problem (like TSP), the follow-
ing four methods must be implemented after extending the MOBILE-AGENT abstract class: AGENT-INIT(),
HANDLE-SOLUTION(), BEST-NEIGHBOR() and ADJUST-ATTRIBUTES().

We will now show how these methods can be implemented for the ACS and BCO algorithms. Then experi-
mental results will be presented for each case.



Sorin Ilie and Costin Badica / Procedia Computer Science 18 (2013) 611 — 620

5.1. ACS Implementation

In this implementation, entities of the framework represent artificial ants, as found in ACO algorithms. Fig. 2
outlines the ACS implementation in our framework. Please note that only the methods that should be implemented
by the user are shown.

AGENT-INIT() BEST-NEIGHBOR (entity)
1. V < MANAGED-VERTICES() 1. if RETURNING(entity) then
2. forveVdo 2. if BEST-SOLUTION(entity) then
3. CREATE-ENTITY(v) 3 DEPOSIT-PHEROMONE()

4. else return ANTHILL(entity)
ADJUST-ATTRIBUTES (ant) 5. return LAST-VISITED-NODE(entity)
1. if AT-ANTHILL(entity) then 6. bestNeighbor «— RANDOM-CHOICE()
2. if RETURNING(entity) then 7. LOCAL-EVAPORATE-PHEROMONE()

INITIALIZE(entity) 8. return bestNeighbor

if SOLUTION-COMPLETED(entity) then
SET-RETURN-FLAG(entity)
LOCAL-SEARCH(entity)
CALC-PHEROMONE-STRENGTH(entity)
. UPDATE-BEST-SOLUTION(entity)

Noowaw

Fig. 2. ACS implementation.

AGENT-INIT() method creates one ant per vertex. BEST-NEIGHBOR() determines the vertex where an ant
should be sent. However, if an ant has found a solution and it is returning then the ant has to retrace its path and
mark it with pheromone. In this case BEST-NEIGHBOR() sends the ant back to the last visited vertex, which
is popped from the list of visited vertices, and deposits the ant’s pheromone on the corresponding edge. In this
example a solution is marked with pheromone only if it has at least the quality of the best known solution so far.
BEST-NEIGHBOR() also implements pheromone evaporation. ANTHILL() returns the identifier of the agent that
manages the anthill, i.e. the vertex of origin of the ant.

SOLUTION-COMPLETED() method returns true if the path followed by the ant is a solution. ADJUST-AT-
TRIBUTES() method sets the returning flag (if necessary), performs local search on the ant’s path and calculates
pheromone strength whenever an ant has completed a solution. Ants that have returned after completing a solution
are refreshed. All agents maintain locally the value of the best known solution. Therefore, whenever an ant moves,
the agent that is managing the vertex where the ant is located updates its local best known solution using the
UPDATE-BEST-SOLUTION() method. Whenever an ant visits this vertex, it is able to sense the environment and
eventually to update its “current knowledge” about the value of the best solution found so far. Hence agents have
the possibility to send and receive via the ants not only pheromone information, but also qualitative information
about the best solutions found so far.

The HANDLE-SOLUTION() method does not need to do anything since in ACS pheromone updates are done
automatically when ants decide where to move, inside BEST-NEIGHBOR() method.

5.2. BCO Implementation

In this implementation, entities of the framework represent artificial bees, as found in BC algorithms. Fig. 3
outlines the BCO implementation in our framework.

ADJUST-ATTRIBUTES() method performs local search on the bees that have found a solution, broadcasts
them to the other agents (i.e. the “waggle dance” is performed) and then these bees are refreshed. As in the case
of ACS, only the entities that improve the best known solution are allowed to perform the “waggle dance”. All
agents maintain the best known solution locally. The HANDLE-SOLUTION() method is called whenever the
agent receives the broadcasted bees. The agent then updates the best known solution using method UPDATE-
BEST-SOLUTION().

Comparing BCO with ACS implementations we can easily conclude that the main difference is the method
used by the agents to notify each other about the solutions found. In ACS the entities mark the solutions with
pheromone while retracing their path resulting in additional o entity moves, where o is the size, i.e. the number
of vertices, of the solution found by that entity. When more than one agent is used, some of those moves will
inevitably be messages exchanged by agents. On the other hand BCO sends a single broadcast message with the
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AGENT-INIT() BEST-NEIGHBOR (entity)

1. V.« MANAGED-VERTICES() 1. bestNeighborj= RANDOM-CHOICE()

2. forveVdo 2. ADD-TO-VISITED-LIST(bestNeighbor,entity)
3. CREATE-ENTITY (v) 3. return bestNeighbor

ADJUST-ATTRIBUTES (entity) HANDLE-SOLUTION(entity)

1. if SOLUTION-COMPLETED(entity) then 1. UPDATE-BEST-SOLUTION(entity)

2. LOCAL-SEARCH(entity)
3. BROADCAST-SOLUTION(entity)
4. INITIALIZE(entity)

Fig. 3. BCO implementation.
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Fig. 4. Experiments with BCO and comparison with ACS.

entity that contains also its solution path. Therefore, while ACS uses by default the retracing method of agent
notification when a better solution is found, the BCO uses the broadcast method. For BCO, method UPDATE-
BEST-SOLUTION() simply saves the best known solution. In contrast, ACS needs to mark the solution with
pheromone, thus consuming more execution time (as required by o~ ant moves).

6. Experimental Results

We tested the scalability of the framework on the HPC Infragrid cluster composed of machines using Intel
Xeon CPU E5504 consisting of 8 cores. The computers are connected by an Infiniband 40 Gbits/s network. The
cluster is running Linux operating system and Condor workload management system [14]. Condor provides a job
queuing mechanism, scheduling policy, priority scheme, resource monitoring, and resource management. Each
computer core was used as a separate computing node with 1GB of RAM.

The BCO parameters were set to the values recommended by [4], while the ACS parameters were set to the
values recommended by [3]. The algorithms were applied to solve the TSP problem on the fully connected graph
pr1002 with 1002 vertices, as defined in the benchmark maps from [20]. The stop condition was checked for the
reference vertex 0, i.e. the first vertex in pr1002 input file. The condition checked that the reference vertex was
visited by a number of M = 10000 entities.

We ran 9 experiments with BCO, each one consisting of » = 10 experimental rounds, on an increasing number
of computing nodes varying from 1 to 60.

Fig. 4a clearly shows a decreasing trend for 7,,, when the number of computing nodes is increasing. However,
there are small exceptions such as the experiments on 20, 50 and 60 computing nodes where T, is higher than the
predecessor experiment for less computing nodes (i.e. 10, 40 and respectively 50 nodes). The computing nodes
from the cluster are organized into groups of 8 nodes per each physical machine (or server) of the cluster. So,
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Table 2. Experiments with BCO

nodes Tavg [S] Vavg tavg [S] Vimin tmin [S] S c

1 15135 319368 7045 319368 7045 1

2 7995 313146 4570 306392 5012 1.89
5 3118 297374 2106 291192 2464 4.85
10 1523 310020 7729 306768 1228 9.93
20 1653 310848 1037 305844 1653 9.15
30 1245 313280 1064 281452 1294 12.15
40 458 313588 454 309463 432 33.04
50 791 310224 681 306596 703 19.13
60 798 313768 622 310598 713 18.96

Table 3. BCO compared with ACS

SI alg nodes Tavg [s] Vavg tavg[s] Vimin Tmin[5]
BCO 1 15135 319368 7045 319368 7045
ACS 1 22718 321520 3943 310220 2889.6
BCO 5 3118 297374 2106 291192 2464
ACS 5 4844 308027 727 307004 841.9
BCO 10 1523 310020 7729 306768 1228
ACS 10 2312 307848 252 306768 281.7
BCO 20 1653 310848 1037 305844 1653
ACS 20 1536 307036 308 305216 395.9

experiments with 10 computing nodes are using just 2 physical machines, i.e. two 8-processor servers, while an
experiment with 20 computing nodes requires 3 physical machines and implicitly more network bandwidth of the
Infragrid connection. In the case of the experiment with 40 computing nodes, there are used all the 8 processors
from each of the 5 involved servers. In contrast, for the 30 node experiment, 4 servers were used. Each of the
first 3 servers used 8 nodes, while the last server used only 6 nodes. Therefore, a higher volume of network
communication occurred for the last server.

Our experiments show that the best performance for a graph of 1002 vertices was obtained when we used
40 computing nodes. This is also indicated by the last two rows of Table 2. It presents a final increase of Ty,
although the number of computing nodes was also increased. We obtained a decrease of T, from T,,, = 151355
when using 40 computing nodes to 7,,, = 4585 when using a single computing node. However the best speedup
was obtained for 10 computing nodes resulting in an efficiency of 0.99 which surpasses the best efficiency value
of 0.9 that we have encountered in our literature review.

From this discussion, we can safely conclude that BCO implemented using our architecture is indeed scalable.

The comparison of the BCO and ACS implementations presented in this paper gives an idea of which SI
algorithm performs better on our architecture. Both SI algorithms were tested on the same TSP map pr1002 of
1002 vertices from the benchmark library TSPLIB using a variable number of computing nodes & € {1, 5, 10, 20}.
Table 3 presents the performance values obtained by experimenting with ACS and the results obtained by BCO.
Fig. 4b is a graphical representation of the data from Table 3. that clearly shows that BCO is actually faster than
ACS. This is due to the fact that the BCO process of broadcasting the best solution is faster. BCO only needs to
save the best known entity which is an operation of O(1) complexity and does not need to mark a pheromone trail
of size n which is an operation of O(n) computational complexity (the case of ACS). Our experiments show that
our framework peaks at 15 computing nodes using ACS, respectively at 10 computing nodes when using BCO.
See paper [2] for details on scalability of ACS implemented on our framework.

7. Conclusions and Future Work

This paper presented a new framework based on our previous work ACODA, for distributed implementation of
SI algorithms aimed at solving complex graph search problems. Examples of implementations and experimental
results were given for SI algorithms of ACS and BCO for solving the TSP.The conclusion being that our approach
scales better when implementing the ACS algorithm but is faster when implementing BCO.
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As future work we plan to thoroughly compare our framework with “island approach” for the distribution SI

algorithms. For this purpose we must first implement this approach using distributed multi-agent middleware in
order to obtain a fair comparison. We also plan to extend the peak efficiency of the architecture by balancing the
load of the agents at runtime in order to minimize network communication. Our recent simulation results reported
in [26] show that the communication overhead could be reduced up to 50%.
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