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SUMMARY

Cancer cells exhibit many abnormal phenotypes that induce apoptotic signaling via the intrinsic, or
mitochondrial, pathway. That cancer cells nonetheless survive implies that they select for blocks in
apoptosis. Identifying cancer-specific apoptotic blocks is necessary to rationally target them. Using
a panel of 18 lymphoma cell lines, we show that a strategy we have developed, BH3 profiling, can
identify apoptotic defects in cancer cells and separate them into three main classes based on
position in the apoptotic pathway. BH3 profiling identifies cells that require BCL-2 for survival and
predicts sensitivity to the BCL-2 antagonist ABT-737. BCL-2 dependence correlates with high levels
of proapoptotic BIM sequestered by BCL-2. Strikingly, BH3 profiling can also predict sensitivity to
conventional chemotherapeutic agents like etoposide, vincristine, and adriamycin.
INTRODUCTION

Apoptosis, a form of programmed cell death (PCD), can be

triggered by numerous types of cellular damage and

derangement. Genomic instability, oncogene activation,

cell cycle checkpoint violation and loss of prosurvival

signaling all have been shown to induce apoptosis via

the intrinsic apoptotic pathway. Cancer cells often exhibit

some or all of these ‘‘deadly’’ phenotypes. To survive,

therefore, it is necessary that cancer cells select for a block

in apoptotic signaling at the mitochondrion. Such blocks

likely involve alterations in the function and control of the

BCL-2 family of proteins. Understanding these blocks is

essential for selective therapeutic targeting of apoptotic

pathways in cancer cells.

Proteins of the BCL-2 family are key mediators of

programmed cell death at the mitochondria (Figure 1A)

(Danial and Korsmeyer, 2004; Green and Kroemer, 2004;
Wang, 2001). They may be conveniently broken into three

main groups based on sequence homology and function

(Cory and Adams, 2002; Gross et al., 1999). BAX and

BAK, also known as multidomain proapoptotic proteins

or ‘‘effectors,’’ share homology in the BCL-2 homology

(BH) 1, 2, and 3 regions. The antiapoptotic proteins, includ-

ing BCL-2, MCL-1, BCL-XL, BCL-w, and BFL-1/A1, share

homology in the BH1, BH2, BH3, and BH4 domains. The

proapoptotic BH3-only family members are so named

because they share homology only in the BH3 domain,

which is essential for prodeath function. In response to

damage and derangement signals, BH3-only proteins are

activated, either by stabilization of protein, increased tran-

scription, or posttranslational modification (Huang and

Strasser, 2000; Kelekar and Thompson, 1998; Wei et al.,

2000). Certain of the BH3-only proteins, including BID

and BIM, are called ‘‘activators,’’ and induce activation

by causing an allosteric change in BAX and BAK (Cartron
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Figure 1. Three Distinct Classes of Apoptotic Blocks in

Diffuse Large B Cell Lymphoma Cells

(A) Model of BCL-2 family control over mitochondrial apoptosis. In

response to damage or derangement, activators activate effectors,

causing mitochondrial permeabilization and commitment to death.

Antiapoptotic proteins sequester activators to prevent their contacting

effectors, and sensitizers act as selective antagonists of antiapoptotic

proteins. Adapted from Certo et al. (2006).

(B) Three possible apoptotic blocks that cancer cells might select to

escape apoptosis.
172 Cancer Cell 12, 171–185, August 2007 ª2007 Elsevier Inc.
et al., 2004; Certo et al., 2006; Desagher et al., 1999;

Kuwana et al., 2002; Letai et al., 2002; Luo et al., 1998;

Marani et al., 2002; Wei et al., 2000). Recent evidence

has been presented that as an intact protein PUMA may

also function as an activator (Kim et al., 2006). BAX and

BAK oligomerization follows, with subsequent mitochon-

drial outer membrane permeabilization (MOMP). BAX

and BAK activation and MOMP may be considered the

critical steps at which point the cell is irretrievably com-

mitted to PCD. BAX and BAK are absolutely essential

for the proapoptotic function of BH3-only proteins, and

deficiency of BAX and BAK affords broad protection

from apoptosis against numerous insults (Wei et al.,

2001; Zong et al., 2001). Multiple proapoptotic factors

are released following MOMP, including cytochrome c,

AIF, and SMAC (Wang, 2001). Resulting widespread

proteolysis by the family of cysteine proteases, known

as caspases, induces cellular dysfunction and the tagging

of the cell with signals that trigger the engulfment of the

apoptotic cell by phagocytic cells.

Antiapoptotic proteins like BCL-2 oppose PCD primarily

by binding and sequestering activator BH3-only proteins,

preventing their activation of BAX and BAK (Certo et al.,

2006; Cheng et al., 1996, 2001; Kuwana et al., 2005; Letai

et al., 2002). The hydrophobic face of the BH3 domains’

amphipathic a helix binds into a hydrophobic groove

formed by the BH1, BH2, and BH3 domains of the antia-

poptotic proteins (Cheng et al., 1996; Kelekar et al.,

1997; Kelekar and Thompson, 1998; Muchmore et al.,

1996; Sattler et al., 1997). Antiapoptotic proteins also

bind BAX and BAK, particularly in their activated mono-

meric forms (Hsu et al., 1997; Hsu and Youle, 1997).

When a cell or mitochondrion contains antiapoptotic

proteins that are largely occupied by activator BH3-only

proteins due to ongoing death signaling, we describe

that cell type as ‘‘primed for death’’ (Certo et al., 2006).

Cells that are primed for death are uniquely dependent

on the function of antiapoptotic proteins of the BCL-2

family for survival. We have thus far found that being

‘‘primed for death’’ is more common among malignant

than among nonmalignant cells.

A second class of proapoptotic BH3-only proteins,

called ‘‘sensitizers,’’ are unable to induce activation of

BAX and BAK directly. Rather, they exert their proapop-

totic function by competing for the BH3 domain-binding

cleft in antiapoptotic proteins, displacing or preventing

the binding of activators (Certo et al., 2006; Kuwana

et al., 2005; Letai, 2003; Letai et al., 2002). Sensitizers

may thus be considered inhibitors of the inhibitors of

apoptosis. BH3 domains that behave as sensitizers

include BAD, BIK, NOXA, BMF, Harakiri (HRK), and

PUMA (Certo et al., 2006).

An important recent observation is that interactions

between members of the sensitizer BH3-only class and

the antiapoptotic class are selective (Certo et al., 2006;

Chen et al., 2005; Kim et al., 2006; Kuwana et al., 2005;

Opferman et al., 2003). For instance, while BCL-2 is bound

and antagonized by the BAD BH3 domain, NOXA BH3

binds BCL-2 very poorly. The exactly opposite pattern is
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observed for MCL-1. Since peptides derived from the BH3

domains of the sensitizers exhibit selective inhibitory inter-

actions with antiapoptotic proteins, we realized that they

could be exploited as probes of antiapoptotic protein func-

tion. Therefore, using a strategy we call ‘‘BH3 profiling,’’ we

can determine (1) if the cell is ‘‘primed for death’’ and (2) if

the cell is primed, which antiapoptotic protein(s) are

primarily responsible for maintaining survival (Certo et al.,

2006).

BH3 profiling is a potentially powerful tool in determining

how cancer cells evade apoptosis. To perform BH3 profil-

ing, mitochondria are isolated from the cell of interest and

then exposed to a series of peptides derived from the BH3

domains of BH3-only proteins. The ability of these

peptides to induce mitochondrial permeabilization is

measured by cytochrome c release. In model systems,

the ability of activator BH3 domains to induce cytochrome

c release indicates the presence of either BAX or BAK. The

ability of sensitizer BH3 domains to induce cytochrome c

release implies the presence of BAX and BAK, but also

the presence of antiapoptotic protein(s) primed with a pro-

tein capable of activating BAX or BAK, as sensitizer BH3

peptides lack this function. By examining the pattern of

sensitizer BH3 peptides that induce cytochrome c release,

the identity of the antiapoptotic protein necessary for

maintaining survival can be identified by comparison to

a table summarizing the interaction pattern between the

antiapoptotic proteins and the range of BH3 domains

(Certo et al., 2006).

We have previously used BH3 profiling for the interroga-

tion of the intrinsic, or mitochondrial, apoptotic pathway in

chronic lymphocytic leukemia (CLL) (Del Gaizo Moore

et al., 2007). We found that BH3 profiling was very effective

in demonstrating the uniform BCL-2 expression and

BCL-2 dependence of the many CLL samples tested.

This dependence was reflected in a uniform sensitivity of

CLL cells from chemotherapy-naive patients to the

BCL-2 antagonist ABT-737. While this study was instruc-

tive regarding CLL biology, the homogeneity of apoptotic

blocks represented in our CLL samples did not allow us

to investigate the wider range of apoptotic blocks

employed by cancer cells. In order to study cancers that

escape apoptosis by a wider variety of mechanisms we

turned to a more heterogeneous disease, diffuse large B

cell lymphoma (DLBCL). In DLBCL, roughly 15% of cases

express high levels of BCL-2 due to the t(14;18) transloca-

tion, which places the BCL-2 gene under the control of the

immunoglobulin heavy chain gene transcriptional ele-

ments. In another subset of DLBCL, BCL-2 is overex-

pressed as a result of gene amplification or gain of an extra

copy of chromosome 18, whereas others show high

BCL-2 expression without identifiable genetic abnormal-

ity. Remaining cases, which may represent at least half

of al DLBCL, show little expression of BCL-2 and thus

must rely on a different apoptotic block (Gascoyne et al.,

1997; Iqbal et al., 2006; Kramer et al., 1996). We turned

to a large panel of 18 DLBCL cell lines as a model system

to study classes of apoptotic escape exploited by cancer

cells.
Many chemotherapeutic agents kill cancer cells via

apoptosis, and there is considerable interest and invest-

ment in the direct targeting of abnormal apoptotic path-

ways in cancer (Letai, 2005). It is therefore of crucial

importance to investigate methods that can rapidly and

convincingly decipher the abnormalities in the cell death

pathways in cancer cells to better understand the critical

phenomena of therapeutic resistance and sensitivity. In

order to address this question, we needed a range of

cancer cells that evaded apoptosis in heterogeneous

ways but that were otherwise biologically similar. For

this reason, we turned to the study of apoptotic abnormal-

ities in the most common lymphoid malignancy, diffuse

large B cell lymphoma.

In this study, we analyzed a panel of 18 diffuse large B

cell lymphoma cell lines with tools that included BH3

profiling. We found that we were able to assign cells to

one of three classes based on the type of apoptotic block

they possessed. Membership in these classes was pre-

dictive of response to a BCL-2 antagonist as well as to

conventional chemotherapy. These findings show that

identification of the class of apoptotic block in cancer cells

is potentially of great clinical importance and utility.

RESULTS

BH3 Profiling Detects Three Classes of Apoptotic

Blocks in Lymphoma Cells

A priori, one can consider three distinct ways that cancer

cells might select to block intrinsic apoptotic signaling

generated by their abnormal phenotypes (Figure 1B). First,

upstream activation of BH3-only proteins might be

inhibited (class A block). Second, the effector arm of the

apoptotic pathway might be blunted by loss of BAX and

BAK (class B block). Finally, activation of BAX and BAK

might be prevented via expression of antiapoptotic pro-

teins like BCL-2 and MCL-1 (class C block). Note that cells

with a class C block are those we describe as being

‘‘primed for death’’ and would be detectable by mitochon-

drial sensitivity to sensitizer BH3 domains in BH3 profiling.

It should also be noted that presence of any one block

does not rule out the presence of another, though one

might expect selection pressure for additional blocks to

be attenuated after selection for an effective initial block.

We initiated our studies of lymphoma in four lymphoma

cell lines: SU-DHL4, SU-DHL6, SU-DHL8, and SU-DHL10

cell lines. These were chosen because two contained the

t(14;18) (SU-DHL4, SU-DHL6), while the other two did not.

To perform BH3 profiling, we tested the ability of a panel of

sensitizer peptides to induce mitochondrial outer mem-

brane permeabilization (MOMP) in mitochondria isolated

from the lymphoma cells. For easy reference, Figure 2A

shows the interaction pattern between the BH3 peptides

and antiapoptotic proteins. MOMP was measured by

quantifying cytochrome c release by ELISA.

BH3 profiling proved able to distinguish these three

classes of blocks in our sample of four lymphoma lines

(Figure 2). SU-DHL4 and SU-DHL6 demonstrated class

C blocks. They showed a ‘‘primed’’ phenotype, based
Cancer Cell 12, 171–185, August 2007 ª2007 Elsevier Inc. 173
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Figure 2. BH3 Profiling of SU-DHL4, -6, -8, and -10 Cells Discriminates Three Distinct Classes of Apoptotic Blocks

(A) Interaction pattern between BH3 peptides and antiapoptotic proteins (Certo et al., 2006). Red indicates high-affinity binding, orange indicates low-

affinity binding, and green indicates undetectable binding. Mitochondria were isolated from SU-DHL4 (B), SU-DHL6 (C), SU-DHL8 (D), and SU-DHL10

(E) cells, and incubated with a panel of BH3 peptides (100 mM). Release of cytochrome c was determined by a comparison of cytochrome c in the

pellet and supernatant quantitated by ELISA. Results were shown as percentage minus solvent control DMSO values, and mean of triplicates

with error bars for standard deviation. (F) Protein lysates were prepared and subjected to immunoprecipitation with an antibody specific for human

BCL-2 (6C8, Phamingen). Both lysates (left) and immunoprecipitates (right) were separated by denaturing electrophoresis. Membranes were blotted

with antibodies against BCL-2 family proteins as indicated. Actin was a loading control.
on the sensitivity to sensitizer BH3 peptides. Note that

a strong response to the PUMA BH3 peptide, which inter-

acts with all of the antiapoptotic proteins, provides a useful

gauge of whether the mitochondria are primed. The pat-

tern of sensitivity (PUMA, BMF, BAD, ± BIK) indicated

a dependence on BCL-2 for SU-DHL4. SU-DHL6 also

was primed, as shown by a strong PUMA BH3 and BMF

BH3 signal. The weaker, but definite, response to both

of the more selective BH3 peptides BAD BH3 and NOXA

A BH3 implicate combined dependence on BCL-2 and

MCL-1. SU-DHL8 appeared to be poorly primed, given

the limited response to PUMA BH3 and other sensitizers,

but nonetheless demonstrated an intact effector arm by

responding strongly to activators BIM BH3 and BID
174 Cancer Cell 12, 171–185, August 2007 ª2007 Elsevier Inc
BH3. This suggested a class A block for SU-DHL8. SU-

DHL10 responded poorly to both sensitizer and activator

peptides, indicating the loss of the effector arm, suggest-

ing a class B block.

BH3 profiling predicted that SU-DHL4 and SU-DHL6

would exhibit priming by an activator BH3-only protein,

that SU-DHL8 would be poorly primed, and that SU-

DHL10 would lack BAX and BAK. To test these predic-

tions, we examined the abundance of BCL-2 family pro-

teins and complexes of BCL-2 with other members of

the BCL-2 family (Figure 2F). BIM was present in high

levels in SU-DHL4 and SU-DHL6, and it was likewise

sequestered in a complex with BCL-2. Notably, SU-

DHL4, which showed singular dependence on BCL-2,
.
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had very low MCL-1 expression, whereas SU-DHL6,

which showed dependence on both BCL-2 and MCL-1,

showed higher levels of MCL-1 than SU-DHL4. BIM

expression was nearly undetectable in SU-DHL8, consis-

tent with the class A block shown by BH3 profiling.

Whereas uncleaved BID was present in roughly equal

amounts in all four cell lines, the active cleaved form of

BID was not detected, and there was very little BID seen

in complex with BCL-2 in any of the cells. Strikingly, the

class B block shown by BH3 profiling had also predicted

the nearly undetectable levels of BAX and BAK in SU-

DHL10, in stark contrast to the expression levels in the

other three cell lines. Thus, BH3 profiling accurately

assessed the mechanisms of apoptotic block present in

all four cell lines. It furthermore accurately predicted the

abundance of key proteins and protein complexes.

BH3 Profiling Predicts Response to ABT-737

Next, we investigated whether this single test also

correctly predicted sensitivity to BCL-2 antagonism by

ABT-737. BAD BH3 response and a BCL-2-dependent

pattern from BH3 profiling have previously been strong

predictors of cellular response to ABT-737 in other models

(Certo et al., 2006; Del Gaizo Moore et al., 2007). There-

fore, BH3 profiling predicts in this case a response of

SU-DHL4 and SU-DHL6, but not SU-DHL8 or SU-

DHL10, to ABT-737. We tested this prediction by generat-

ing a dose-response curve to ABT-737 for each of the cell

lines (Figure 3A). Clearly, the cell lines demonstrate sensi-

tivity and resistance exactly as predicted by BH3 profiling

Figure 3. BH3 Profiling Predicts Sensitivity to BCL-2 Antago-

nism by ABT-737

SU-DHL4, -6, -8, and -10 cells were treated with increasing doses of

ABT-737 (A) or its negative control enantiomer (enant, B) for 48 hr

and stained with Annexin V-FITC for flow cytometry analysis. Viability

was shown as a percentage of control (DMSO-treated) cells with stan-

dard deviation of triplicates shown by error bars.
(EC50 140 nM and 250 nM for SU-DHL4 and SU-DHL6,

respectively, >>10,000 nM for SU-DHL8 and SU-

DHL10). Supporting action by the intended mechanism

of BCL-2 antagonism, all four cell lines showed very

limited toxicity from treatment with an enantiomer of

similar physiochemical properties, but much lower affinity

to BCL-2 (Oltersdorf et al., 2005) (Figure 3B).

BCL-2 and BIM:BCL-2 Complex Levels

Quantitatively Predict Sensitivity to ABT-737

Above we showed that relatively high abundance of the

BCL-2:BIM complex predicted sensitivity to ABT-737.

To test how generalizable this predictor is, we examined

a larger panel of lymphoma cell lines. First, we prepared

dose-response curves for each of the 18 cell lines, which

demonstrated a wide range of EC50 (Figure 4A). To vali-

date the use of BH3 profiling in this additional cohort of

lymphoma cell lines, we tested the ability of BH3 profiling

to distinguish apoptotic blocks in two cell lines that both

bore the t(14;18), but which had very different responses

to ABT-737 (TOLEDO, EC50 = 74 nM; PFEIFFER, EC50 =

5619 nM) (Figures 4B and 4C). Both profiles demonstrate

a class C block. In the case of TOLEDO, the pattern of

response to BH3 peptides suggests that BCL-2 is primar-

ily responsible for the class C block, consistent with sen-

sitivity to ABT-737. For PFEIFFER, however, the pattern

suggests protection by a protein other than BCL-2, con-

sistent with relative resistance to ABT-737. The pattern,

in fact, is more suggestive of protection by the antiapop-

totic protein BFL-1, which is not antagonized by ABT-

737 (see Figure 2A) (Certo et al., 2006; Oltersdorf et al.,

2005). In support of the selective importance of BFL-1 in

the PFEIFFER cell line, we found that levels of BFL-1

mRNA expression are much higher in PFEIFFER than in

any of the other cell lines studied by BH3 profiling

(Figure 4D). Note that of these seven cell lines, only

PFEIFFER revealed a pattern suggestive of BFL-1 depen-

dence. Thus, results of BH3 profiling here again accurately

predict response to ABT-737 and expression of BCL-2

family proteins.

Next, we again examined the abundance of BCL-2

family proteins and complexes by immunoblots of cell

lysates (Figure 4E) and immunoprecipitates of BCL-2

(Figure 4F). We quantified the intensity of the bands by

gel densitometry, as presented in Table 1. Note that abso-

lute levels of other targets of ABT-737, BCL-w, and BCL-

XL were much lower than those of BCL-2 as established

by comparison to recombinant standards (Figure S2 in

the Supplemental Data available with this article online).

Thus, no further studies of BCL-w and BCL-XL were pur-

sued. Note also that BID was found to be uncleaved and

not in complex with BCL-2 throughout the cell lines, and

therefore unlikely to be playing a role in BCL-2 depen-

dence or sensitivity to ABT-737 (Figures 4E and 4F).

We examined the ability of the different protein and

complex levels to dictate response to ABT-737 by a linear

regression analysis of protein or complex abundance and

log EC50. We found that levels of BCL-2 (Figure 5A) and

BCL-2:BIM complex (Figure 5B) quantitatively predicted
Cancer Cell 12, 171–185, August 2007 ª2007 Elsevier Inc. 175
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Figure 4. Sensitivity to ABT-737 Falls across a Wide Range in a Panel of Lymphoma Cell Lines

(A) A panel of 14 DLBCL cell lines (not including the SU-DHL4, -6, -8, and -10 cells shown in Figure 3) was examined for their sensitivity to ABT-737.

Cells were treated with increasing doses of ABT-737 for 48 hr and stained with Annexin V-FITC for flow cytometry analysis as in Figure 3. Shown are

the means of experiments performed in triplicate. Dose-response curves indicating highest sensitivity are red, those indicating intermediate sensitivity

are yellow, and those indicating low sensitivity are blue.

(B and C) (B) and (C) were BH3 profiling results for DLBCL cell lines TOLEDO and PFEIFFER, respectively. The assays were performed with 100 mM

BH3-only peptides as in Figure 2. Shown is the mean of three experiments; error bars show standard deviation.

(D) Relative mRNA levels of BFL-1 found in seven lymphoma cell lines.

(E) Immunoblot analysis of BCL-2 family proteins in lysates prepared from the 14 DLBCL cell lines with indicated antibodies.

(F) Immunoblot analysis of immunoprecipitates prepared from the same lysates in (E) using an antibody against human BCL-2 (6C8) for immunopre-

cipitation. Sample numbers correspond to sample names as shown in Table 1.
sensitivity to ABT-737 better than any of the other proteins

or complexes. Levels of BCL-2:BAX complex (Figure 5C)

and BAX (Figure 5D) also correlated with response to

ABT-737, though the correlation was weaker than for
176 Cancer Cell 12, 171–185, August 2007 ª2007 Elsevier Inc.
BCL-2 or BCL-2:BIM. Correlation of MCL-1 and log EC50

did not reach statistical significance (p = 0.081, r2 =

0.18), but there is a weak trend for higher MCL-1 levels

to reduce sensitivity to ABT-737. Notably, BIM and BAK
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Table 1. Summary of Densitometric Analysis of Immunoblots, EC50 of ABT-737, and t(14: 18) Status in 18 DLBCL Cells

Sample Name Sample No. BCL-2 MCL-1 BIM BAX BAK BIM (IP) BAX (IP) EC50 (nM) t(14:18)

SU-DHL5 1 2 196 8 32 122 0 0 20,000 negative

SU-DHL7 2 177 29 11 70 138 22 129 807 negative

OCI-Ly1 3 228 127 51 97 97 139 273 21 positive

OCI-Ly4 4 26 128 3 60 120 10 8 20,000 negative

OCI-Ly7 5 0 101 5 32 99 6 4 20,000 negative

OCI-Ly8 6 140 8 7 13 52 36 30 1216 positive

OCI-Ly18 7 224 28 39 57 86 100 274 159 positive

DB 8 185 46 35 131 108 60 264 279 positive

FARAGE 9 15 70 2 55 66 7 10 2769 negative

HT 10 2 74 0 58 103 9 5 20,000 negative

KARPAS 422 11 220 105 53 129 87 11 2 350.6 positive

PFEIFFER 12 69 312 275 57 219 45 7 5619 positive

WSU-NHL 13 127 43 28 0 59 62 4 2405 positive

TOLEDO 14 158 99 183 93 172 108 52 74 positive

SU-DHL6 15 124 128 16 92 109 38 349 250 positive

SU-DHL4 16 97 116 37 76 100 28 0 140 positive

SU-DHL8 17 36 256 12 51 145 5 13 20,000 negative

SU-DHL10 18 32 268 41 17 8 8 30 20,000 negative

Immunoblots, shown in Figure 4D (lysates), Figure 4E (immunoprecipitates [IP]), and Figure S1 (where SU-DHL4, -6, -8, and -10

samples were normalized to cell lines OCI-Ly1, DB, and FARAGE in Figures 4D and 4E), were subjected to densitometric analysis.
Arbitrary units for protein lysates were normalized to actin levels. EC50 of ABT-737 of DLBCL cells were calculated from dose-re-

sponse curve experiments shown in Figures 3 and 4A. t(14:18) translocation status determined by standard cytogenetic analysis.
levels by themselves offered no ability to predict response

to ABT-737 (Figures 5F and 5G). While using a nonpara-

metric comparison, it is notable that the presence of the

t(14;18) was also strongly correlated to sensitivity to

ABT-737 (p < 0.0001, Mann-Whitney rank sum test, see

Table 1), supporting its mechanism of killing via interaction

with BCL-2. All of these findings support our model that

BIM only predisposes to BCL-2 dependence and

response to ABT-737 when it is sequestered by BCL-2,

priming the cell for a death that is prevented by BCL-2.

BCL-2 Overexpression Does Not Cause Sensitivity,

but BIM Knockdown Reduces Sensitivity to ABT-737

While BIM:BCL-2 levels correlate well with ABT-737 sen-

sitivity, so do BCL-2 levels. Our hypothesis was that the

level of the BIM:BCL-2 complex is mechanistically critical,

and the correlation of sensitivity to ABT-737 with BCL-2

simply reflects the requirement for sufficient BCL-2 to

sequester the amount of BIM generated by death signal-

ing. However, it remained a formal possibility that BCL-2

levels alone dictated sensitivity by an obscure mecha-

nism. To test this possibility, we expressed BCL-2 in

SU-DHL8 and HT cells that were relatively resistant to

ABT-737 and had expressed low levels of BCL-2

(Figure 6A). By transfection with a BCL-2 cDNA, we ob-

tained BCL-2 expression levels comparable to those

from the ABT-737-sensitive cell line SU-DHL6. Low BIM
expression levels remained unaltered. Congruent with

our model and with prior results (Certo et al., 2006; Olters-

dorf et al., 2005), overexpression of BCL-2 alone did not

confer sensitivity (Figure 6B).

If the presence of BIM sequestered by BCL-2 dictates

sensitivity, then we would predict a knockdown of BIM

to reduce sensitivity. We used shRNA against BIM to

reduce BIM levels in the cell line most sensitive to ABT-

737, OCI-Ly1 (EC50 = 21 nM; Figure 6C). Reduction of

BIM levels caused a reduced sensitivity to ABT-737 (Fig-

ure 6D). Furthermore, we examined the effect of BIM

reduction on BCL-2 dependence at the mitochondrial

level using BH3 profiling. Parental OCI-Ly1 mitochondria

revealed a BCL-2-dependent pattern upon BH3 profile,

and a mitochondrial sensitivity to the compound, consis-

tent with the cell line’s sensitivity to ABT-737 (Figure 6E).

Key to this analysis is the response to the sensitizer BAD

BH3 peptide, which maps tightly with ABT-737 sensitivity

(Certo et al., 2006). In an abbreviated BH3 profile, we

confirmed that reduction in BIM levels had no effect on

sensitivity to the activator BH3 peptide BIM BH3

(Figure 6F). However, decrease in BIM levels caused re-

duction in mitochondrial response to both BAD BH3 and

ABT-737. Note that mitochondrial response to ABT-737

correlated with cellular response in other cell lines as

well, supporting mitochondrial BCL-2 as the target for

ABT-737 action (Figure S3). This finding implicates
Cancer Cell 12, 171–185, August 2007 ª2007 Elsevier Inc. 177
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displacement of BIM from a complex with BCL-2 as a key

event in the mitochondrial and cellular toxicity resulting

from antagonism of BCL-2 by ABT-737 in lymphoma.

Figure 7A shows a summary of our classification of cells

into three classes based on type of apoptotic block. It

occurred to us that many types of conventional chemo-

therapy also kill via the mitochondrial apoptotic pathway.

If our classification is accurate, we would predict that

agents that rely on the mitochondrial pathway for killing

would be more active against the ‘‘primed’’ subset of class

C compared to the ‘‘unprimed’’ subset of class A and B.

To test this hypothesis, we treated seven cell lines that

had been already classified by BH3 profiling (summarized

in Figure 7B) with agents that have been characterized as

Figure 5. Levels of BCL-2 and BCL-2:BIM Complex Are Best

Predictors of ABT-737 Sensitivity in DLBCL Cells

(A–G) BCL-2 family proteins analyzed by immunoblotting in DLBCL cells

and EC50 of ABT-737 of those cells (both listed in Table 1) were subjected

to statistical analysis via a linear regression model. y axis is log EC 50 of

ABT-737 (nM); x axis represents the arbitrary units of different BCL-2

family proteins or immunoprecipitates as indicated, obtained by densito-

metric scanning of immunoblots. Colors of filled squares corresponds to

the color code used in Figure 4A: most sensitive to ABT-737 in red, inter-

mediate sensitivity in yellow, and low sensitivity in blue.
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inducing apoptosis through the mitochondrial pathway

(Decaudin et al., 1997; Kojima et al., 1998; Wei et al.,

2001; Zong et al., 2004). Strikingly, in each case we found

that the primed subset was more sensitive than the

unprimed subset (Figures 7C–7E). The case of the puta-

tively BFL-1-dependent PFEIFFER cell line is particularly

instructive, as it shows that it is the state of being ‘‘primed’’

rather than specifically being sensitive to ABT-737 that

dictates sensitivity to the chemotherapy drugs. It has

been shown previously that alkylating agents like N-

methyl-N0-nitro-N-nitrosoguanidine (MNNG) can use the

intrinsic apoptotic pathway but can also induce death

via an alternative PARP-dependent necrotic pathway

independent of BCL-2 family proteins (Zong et al., 2004).

Specifically, MEFs from mice lacking BAX and BAK were

highly resistant to etoposide, but not to MNNG. Therefore,

we would predict that lymphoma lines would respond to

MNNG independent of their classification by BH3 profil-

ing. That is precisely what we found (Figure 7F), providing

confirmation in a human cancer setting of what was previ-

ously proposed in genetically modified murine cells.

Therefore, just as BH3 profiling can identify cancer cells

(class C) that are likely to respond to agents using the

intrinsic apoptotic pathway like vincristine, etoposide,

and adriamycin, it may also be able to identify those cells

(class A or B) that will selectively respond to alkylating

agents. BH3 profiling therefore can provide fundamental

parameters of a cell’s phenotype.

DISCUSSION

Many, perhaps even all, cancer cells require blocks in

death signaling for oncogenesis and maintenance of the

malignant phenotype (Green and Evan, 2002; Hahn and

Weinberg, 2002). Since the most common abnormalities

of cancer behavior, like genomic instability and oncogene

activation, signal death via the mitochondrial apoptotic

pathway, it seems necessary that cancer cells select

means for blocking apoptosis at the mitochondrion. Using

diffuse large B cell lymphoma as a model, we show that

blocks in the intrinsic pathway of apoptosis may be bro-

ken into three main classes, and that BH3 profiling can

assign a cancer cell to one of these three classes (Fig-

ure 7). Due to the prior lack of availability of a technology

to make such distinctions, such a classification has previ-

ously been lacking. We hope its introduction will facilitate

systematic study of cancer cells and how to kill them.

A class A block occurs when normal generation of

proapoptotic activators by aberrant behavior is inhibited.

Mitochondrial outer membrane permeabilization requires

activation and oligomerization of BAX and BAK. Activation

of BAX and BAK requires the action of activator BH3-only

proteins. These proteins include BID and BIM, but other

proteins may possibly operate as activators, including

PUMA and p53 (Chipuk et al., 2004; Kim et al., 2006; Letai

et al., 2002). Given the difficulty in identifying BH3 do-

mains from primary sequence, there may well be several

undiscovered important activator proteins, and even mol-

ecules that activate BAX and BAK without a discernable
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BH3 domain. The mechanisms by which aberrant behav-

ior such as genomic instability and oncogene activation

generate death signals via BH3-only proteins is as yet

poorly understood, and therefore how this upstream

‘‘pre-BH3-only’’ signaling is attenuated is also poorly

understood. Since transcriptional activation certainly can

induce upregulation of activators, loss of transcriptional

proteins like p53 may certainly play a role. Posttransla-

tional modifications, including phosphorylation, also are

important in regulating function of BH3-only proteins, so

we can speculate that the modification of phosphorylation

cascades that occurs in cancer may play a role in estab-

lishing a class A block. This is an area of ongoing study.

A class B block occurs when there is a significant loss of

BAX and BAK. It has been shown that the presence of

either BAX or BAK is necessary for apoptotic signaling

through the mitochondrial pathway (Wei et al., 2001;

Zong et al., 2001). Again, it is not clear how this might

occur, whether by genetic or epigenetic means, but we

observed its spontaneous occurrence in the case of SU-

DHL10. Given how profound the block in apoptosis is

that results from loss of BAX and BAK, it is reasonable

to ask why such a loss does not occur more often in can-

cer. The answer well may lie in other nonapoptotic roles

played by BAX and BAK, including control of mitochon-

drial fusion and calcium homeostasis (Karbowski et al.,

2006; Scorrano et al., 2003). Loss of these roles may be

too costly to allow for frequent selection in natural

oncogenesis.

One can readily identify examples of the genetic basis of

the class C block in certain human cancers. The t(14;18)

found in follicular lymphoma and some DLBCL drives

overexpression of the antiapoptotic BCL-2 protein (Bakh-

shi et al., 1985; Cleary and Sklar, 1985; Tsujimoto et al.,

1985). In CLL, there is evidence that chromosomal dele-

tions causing loss of micro-RNAs that downregulate

BCL-2 expression are responsible for BCL-2 expression

in a large proportion of cases of CLL (Cimmino et al.,

2005). It is notable that, in this study, nine of the ten cell

lines that bear the t(14;18) are dependent on BCL-2 as

shown by sensitivity to ABT-737 and BH3 profiling (Table

1). This supports the model that high levels of expression

of antiapoptotic proteins in cancer cells license oncogenic

phenotypes, which generate death signals carried by

BH3-only proteins. These phenotypes, which would be

intolerable without antiapoptotic protection, include geno-

mic instability, hyperproliferation, and oncogene activa-

tion. Thus, when selected for during oncogenesis, the

BCL-2 resulting from the t(14;18) may not provide any

additional resistance to cytotoxic agents, as it is already

occupied by BH3-only death signals generated by cancer

phenotypes.

Superficially, this model might seem to contradict the

traditional view of BCL-2 expression as uniformly provid-

ing protection from cytotoxic insults like chemotherapy.

Yet it is important to understand the context under which

this view arose. BCL-2 was initially studied via overex-

pression in stable cell lines that had already reached an

equilibrium with their in vitro environment. In these circum-
stances, additional BCL-2 provided extra antiapoptotic

reserve which produced resistance to a variety of insults,

including genotoxic agents, growth factor withdrawal, and

broad spectrum kinase inhibition. However, cancers

cannot select for antiapoptotic protein expression in the

expectation that they will some day be subject to apopto-

tic signaling from chemotherapy. Rather, the only

selection pressure available during oncogenesis is that

generated by the cancer’s own aberrant behavior. While

the magnitude of death signaling may vary with an individ-

ual cancer cell’s local environment or position in cell cycle,

it seems likely that much of the antiapoptotic reserve that

might otherwise be provided by the selected BCL-2

expression will be eliminated by ongoing prodeath signal-

ing. To put it simply, in cell culture overexpression models,

BCL-2 is largely ‘‘empty,’’ whereas BCL-2 is largely

already ‘‘full’’ when it is selected for in cancer. This may

offer an explanation of the high sensitivity of certain can-

cer cells to chemotherapy and radiation, a sensitivity

that often lacks adequate molecular explanation. Strong

support for this view can be found in the clinically obvious,

but perhaps scientifically underappreciated, observation

that BCL-2-expressing follicular lymphoma and CLL are

among the most chemosensitive cancers known. An ex-

planation for this seeming paradox may be found in the

observation that, in CLL cells, the BCL-2 is primed with

abundant amounts of BIM, rendering CLL ‘‘primed for

death’’ (Del Gaizo Moore et al., 2007).

A particularly significant finding here is that BH3 profil-

ing can be used to predict sensitivity to conventional che-

motherapy agents. As predicted, cells that are ‘‘primed’’

with prodeath signaling proteins, class C cells, respond

better to chemotherapy agents using the intrinsic apopto-

tic pathways like vincristine, etoposide, or adriamycin.

Perhaps just as important, we can identify cells, class A

or B, that may be unlikely to respond to those agents,

but rather more likely to benefit from alkylating agents.

This paradigm certainly suggests itself to clinical applica-

tion, but clearly more work on a wider range of cell types

and wider range of agents is necessary before clinical

use. This approach is especially attractive as BH3 profiling

can be performed on tumor mitochondria without the need

for ex vivo cell culture (Del Gaizo Moore et al., 2007; Letai

et al., 2004), thus overcoming one of the major hurdles that

has plagued determination of chemosensitivity in vitro.

While needing confirmation, this model is thus far sup-

ported by the observation that previously untreated CLL,

which we found to be uniformly a class C disease (Del

Gaizo Moore et al., 2007), is also quite uniformly sensitive

to a wide range of chemotherapeutic agents.

BH3 profiling proves to be a very useful tool in detect-

ing each of the three classes of block, and furthermore,

detecting which antiapoptotic protein is most critical for

survival in the case of a class C block. Consequently,

BH3 profiling proves to be an excellent predictor of

cellular response to ABT-737. Cells that show a class

C block and BCL-2 dependence on BH3 profiling

are predicted to be sensitive to ABT-737, and those

with other profiles as relatively resistant. On this basis,
Cancer Cell 12, 171–185, August 2007 ª2007 Elsevier Inc. 179
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Figure 6. Overexpression of BCL-2 Alone Does Not Confer Cell Sensitivity to ABT-737-Resistant Cells, but BIM Loss Confers

Resistance to Sensitive Cells

(A) Immunoblot of BCL-2 and BIM levels in whole cell lysates (left) and anti-BCL-2 immunoprecipitates (right) in HT and SU-DHL8 stable clones. The

endogenous BCL-2 in SU-DHL6 cells is shown for comparison. P, parental cells; vec, vector-transfected cells; bcl-2, FlagBCL-2-transfected cells.

(B) Dose-response curve experiments were carried out in parental and vector- and Flag-BCL-2-transfected HT and SU-DHL8 cells as in Figure 4.

Shown is the mean of three experiments; error bars show standard deviation.

(C) Immunoblots of OCI-Ly1 parental (p), Luc ShRNA, and BIM ShRNA knockdown stable cells. c1, c3 and c15, c22 are two representative clones for

OCI-Ly1 Luc ShRNA and BIM ShRNA cells, respectively. Various antibodies against BIM, BCL-2, MCL-1, BAX, BAK, and loading control ACTIN were

used for immunoblot analysis.

(D) Dose response to ABT-737 experiments in OCI-Ly1 Luc ShRNA and BIM ShRNA clones. Luc (c1, c3) and BIM (c15, c22) cells were treated with

increased doses of ABT-737 for 4 hr and stained with Annexin-V-FITC for flow cytometry analysis as in Figure 4.

(E) BH3 profiling for OCI-Ly1 parental cells. Mitochondria were isolated from OCI-Ly1 parental cells and incubated with a panel of BH3-only peptides

(100 mM), ABT-737, and enantiomer (both were 1 mM). Results were shown as percentage minus DMSO values and normalized to BIM-treated sample.
180 Cancer Cell 12, 171–185, August 2007 ª2007 Elsevier Inc.
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SU-DHL4, SU-DHL6, TOLEDO, and OCI-Ly1 were all

correctly predicted to be sensitive to ABT-737, while

SU-DHL8, SU-DHL10, and PFEIFFER were all correctly

predicted to be resistant. While we had previously shown

in CLL that a BCL-2 BH3 profile corresponded to sensi-

tivity to ABT-737, the surprising homogeneity of the

leukemia samples studied (all were exquisitely sensitive

to ABT-737) did not allow for the testing of the ability

of ABT-737 to discriminate between sensitive and resis-

tant cell lines in a heterogeneous group of samples (Del

Gaizo Moore et al., 2007).

This same heterogeneity allowed for the testing of

protein correlates to ABT-737 sensitivity. We found that

sensitivity to ABT-737 correlated most tightly with abun-

dance of BCL-2 and BCL-2:BIM complex (Figures 5A

and 5B). This finding is consistent with our model in which

priming of BCL-2 with activators is the primary determi-

nant of BCL-2 dependence (Figure 7). To demonstrate

that BCL-2 expression in the absence of priming was

insufficient to cause ABT-737 sensitivity, we showed

that overexpression of BCL-2 failed to convert a resistant

cell line to a sensitive cell line (Figures 6A and 6B). These

results were congruent with results we obtained in model

systems, which showed that BCL-2 expression in the

absence of priming was insufficient to cause sensitivity

to ABT-737 (Certo et al., 2006). To demonstrate that

BIM’s priming of BCL-2 was critical for the dependence

on BCL-2, we showed that knockdown of BIM expression

decreased sensitivity of both cells and mitochondria to

BCL-2 antagonism (Figures 6C–6F). A weaker correlation

was found linking sensitivity to BAX and BCL-2:BAX levels

(Figure 5D). This may suggest that BCL-2 can be primed

with BAX in certain lymphoma cells. If so, this is likely to

reflect sequestration of BAX that has already been

activated, as BCL-2 binds poorly to BAX before it

undergoes the allosteric changes that accompany

activation.

Recent work in model systems and acute myelogenous

leukemia has suggested that expression of MCL-1 is a key

determinant of resistance to ABT-737 (Konopleva et al.,

2006; Lin et al., 2006; van Delft et al., 2006). It is indeed

very plausible that high levels of MCL-1 expression are

likely to render a cell resistant to ABT-737 treatment.

Our results indicate, however, that while MCL-1 levels

may well influence resistance, lack of MCL-1 is not the

sole determinant of sensitivity, nor likely the most critical,

at least in lymphoma. For instance, a simple inspection of

Table 1 shows that OCI-Ly1 and OCI-Ly4 have nearly

identical levels of MCL-1, but EC50 values that differ by

more than 100-fold. Other similar examples are seen in

Table 1. A more comprehensive assessment is found in

the linear regression modeling, which reveals a suggestive,

but fairly weak correlation between MCL-1 and log EC50

(Figure 5E). It remains to be seen whether other cell types

show a stronger correlation between MCL-1 and EC50 of
C

ABT-737. Mechanistically, we believe it is likely that

MCL-1 overexpression would protect cells from ABT-

737, as the drug cannot target MCL-1. However, while

high levels of expression of MCL-1 may be expected to

induce resistance, results here and elsewhere (Certo

et al., 2006; Oltersdorf et al., 2005) confirm that even total

absence of MCL-1 is unlikely to cause sensitivity to BCL-2

antagonism unless BCL-2 is present and primed with

prodeath activator BH3-only proteins.

Recently, a report suggested that there are circum-

stances in which activation of BAX or BAK by BID or

BIM is dispensable to the MOMP required for apoptosis

in the intrinsic pathway (Willis et al., 2007). However, our

results here further support the important role of BIM in ac-

tivating BAX and BAK. Using a combination of BH3 profil-

ing and ABT-737 treatment, we are able to determine

which lymphoma lines are most dependent on BCL-2

function for ongoing survival. Remarkably, dependence

on BCL-2 correlates very tightly, even quantitatively,

with amount of BIM:BCL-2 complex (Figure 5B). Reduc-

tion of BIM reduces this dependence (Figures 6C, 6D,

and 6F). Furthermore, overexpression of BCL-2 in the

absence of BIM alone does not induce BCL-2 depen-

dence (Figures 6A and 6B). BCL-2 dependence instead

requires significant amounts of BIM to be sequestered

by BCL-2. It is difficult to understand how BIM:BCL-2

complex levels would so quantitatively confer depen-

dence on BCL-2 in a model in which BIM plays no role in

activating BAX or BAK. These results are therefore less

consistent with the ‘‘indirect activation’’ model in which

the exclusive antiapoptotic function of BCL-2 is to bind

unspecified subsets of BAX or BAX (Willis et al., 2007).

They are instead more consistent with a model in which

BCL-2 sequesters activators like BIM from activating

BAX or BAK, resulting in a ‘‘primed’’ cell that is dependent

upon BCL-2 function. It is worth noting that we cannot,

and do not, claim that BIM or BID are the only activators.

Indeed, evidence already exists that activation of BAX and

BAK can occur via PUMA or p53, and there is no reason to

believe that all activators have been discovered (Chipuk

et al., 2004; Kim et al., 2006).

In this study, we focused on a single disease, diffuse

large B cell lymphoma. We found that, in a group of

cells that were superficially quite similar, vital molecular

details could be revealed by BH3 profiling and by

protein analysis driven by BH3 profiling results. These

details explained an important therapeutic phenomenon,

sensitivity to BCL-2 antagonism by ABT-737. BH3 profil-

ing of lymphoma cells provides a valuable and unique

insight into the diverse mechanisms maintaining their

survival, immediately suggesting targets for therapeutic

intervention. We suggest that, by identifying the class

of apoptotic block, BH3 profiling can provide valuable

information about a fundamental biological parameter

of any cell.
(F) BH3 profiling for OCI-Ly1 Luc shRNA c1 and BIM shRNA c15 stable clones. Mitochondria were isolated from the respective clones and subjected to

incubation with peptides BIM BH3 (10 mM), BAD BH3 (3 mM), or ABT-737 (30 nM).

(D)–(F) show the mean of three experiments; error bars show standard deviation.
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Figure 7. Three Classes of Apoptotic Escape for Cancer Cells Predict Sensitivity to Conventional Chemotherapy Agents

(A) Class A cells survive due to suppression of activator upregulation. Class B cells survive due to loss of BAX and BAK, the effector BCL-2 family

proteins. Class C cells survive due to high expression of antiapoptotic proteins like BCL-2. In the middle are shown representative actual BH3 profiles,

and at right are expected responses to antagonists of antiapoptotic proteins like ABT-737.
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EXPERIMENTAL PROCEDURES

Cell Lines

DLBCL cells were cultured in suspension with RPMI 1640 medium or

Iscove’s modified Dulbecco’s medium (Invitrogen) supplemented

with 10% heat-inactivated fetal bovine serum (Sigma, F-6178), L-

glutamine, and penicillin/streptomycin (Invitrogen).

Stable HT and SU-DHL8 cell lines carrying pCI-Neo.FlagBcl2 or

control vector pCI-Neo.Flag were obtained by electroporation of plas-

mids into lymphoma cells (Gene Pulser II, Bio-Rad) followed by selec-

tion with G418 (Sigma, 1 mg/ml).

BIM ShRNA (pLKO.1puro-Bim) or Luc ShRNA (pLKO.1puro-lucifer-

ase) was obtained from the RNAi Consortium (Cambridge, MA).

Knockdown cells were prepared by infecting lymphoma cells with ret-

roviral supernatants produced by cotransfection of 293T cells with

pCMVDR8.91, pMD.G, and either pLKO.1puro-Bim or pLKO.1puro-

luciferase (Del Gaizo Moore et al., 2007; Ernst et al., 2004). Stable

clones were selected with puromycin (Sigma, 250 ng/ml) and main-

tained by changing cell culture media daily with fresh L-glutamine

(2 mM).

BH3 Profiling

Mitochondria were purified from DLBCL cells by mechanical disruption

followed by differential centrifugation, as previously described (Letai

et al., 2002). Mitochondrial suspensions were made at 0.1 mg

protein/ml in experimental buffer and exposed to BH3 domain pep-

tides at 100 mM for 40 min at room temperature. Peptides used in

this assay were synthesized by Tufts University Core Facility and

purified by HPLC. Identity was confirmed by mass spectrometry.

Stock solutions were made in dimethyl sulfoxide (DMSO). Peptide

sequences are as previously reported (Certo et al., 2006). ABT-737

and its negative control enantiomer (Enant) were kindly provided by

Abbott Laboratories (Abbott Park, IL). Release of cytochrome c was

determined by a comparison of cytochrome c in the pellet and super-

natant quantitated by ELISA (R&D Systems).

Cell Viability Assay

DLBCL cells were treated with ABT-737 or enantiomer as described in

the figure legends. DMSO was used as a solvent-only negative control.

After treatments, cells were stained with fluorescent conjugates of

Annexin-V (BioVision) and analyzed on a FACSCalibur machine

(Becton Dickinson). Viable cells are Annexin V-FITC negative. Vincris-

tine, etoposide, and adriamycin were obtained from Sigma. MNNG

was obtained from Fisher.

Immunoprecipitation and Immunoblotting

Protein lysates were obtained by cell lysis in Triton X-100 buffer (50 mM

Tris-HCL [pH 7.4], 150 mM NaCl, 5 mM MgCl2, 1 mM EGTA, 10% Glyc-

erol, 1% Triton X-100 [Sigma]). Immunoprecipitation was performed in

600 ml lysates containing 400 mg proteins, which was precleared by

centrifugation followed by exposure to 12 ml (50% slurry) protein A

beads (Santa Cruz) at 4�C for 1 hr. Cleared extracts were incubated

overnight with protein A beads pre-exposed for 1 hr to anti-BCL-2

antibody (6C8, PharMingen). Immunoprecipitates were then washed

three times with Triton X-100 buffer and boiled in loading buffer

(Invitrogen). Protein samples were electrophoretically separated on

NuPAGE 10% Bis-Tris polyacrylamide gels (Invitrogen). Antibodies

were used to detect the following proteins on membrane: BCL-2

(Epitomics, 1017-1); BCL-xL (kind gift from Larry Boise); BCL-w (Onco-

gene, 75-1); MCL-1 (Santa Cruz, S-19); BIM (Calbiochem, 22-40); BID

(Santa Cruz, FL-195); BAX (Santa Cruz, N20); BAK (Upstate, NT), Actin

(Chemicon, MAB1501).
Western Blot Protein Quantification

Densitometry of protein bands were acquired using an AlphaImager

EC gel documentation system (Alpha Innotec Germany), and bands

were analyzed with the spot densitometry analysis tool (Alpha Ease

FC software, version, 4.1.0).

mRNA Comparison

Quantities of BFL-1 mRNA were measured according to the manufac-

turer’s specification on an Affymetrix chip using the 205681_at probe.

Statistical Analysis

GraphPad Prism 4 software was used to determine EC50 values by

nonlinear dose-response curve fitting. Correlation of EC50 with BCL-

2 family proteins was obtained by a linear regression model.

Supplemental Data

The Supplemental Data include three supplemental figures and can be

found with this article online at http://www.cancercell.org/cgi/content/

full/12/2/171/DC1/.
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